CN1309110C - 燃料电池设备的加热 - Google Patents

燃料电池设备的加热 Download PDF

Info

Publication number
CN1309110C
CN1309110C CNB028028074A CN02802807A CN1309110C CN 1309110 C CN1309110 C CN 1309110C CN B028028074 A CNB028028074 A CN B028028074A CN 02802807 A CN02802807 A CN 02802807A CN 1309110 C CN1309110 C CN 1309110C
Authority
CN
China
Prior art keywords
negative electrode
fuel cell
anode
hydrogen
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028028074A
Other languages
English (en)
Other versions
CN1636295A (zh
Inventor
松岡直哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001396579A external-priority patent/JP3661643B2/ja
Priority claimed from JP2001396587A external-priority patent/JP3659225B2/ja
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of CN1636295A publication Critical patent/CN1636295A/zh
Application granted granted Critical
Publication of CN1309110C publication Critical patent/CN1309110C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)

Abstract

燃料电池(1)包括被配置在一块固体电解质膜(8A)的两侧的阳极(9A)和阴极(9B),并且通过向阳极(9A)提供氢和向阴极(9B)提供氧来产生电力。当燃料电池(1)的温度低于0℃时,电池中的水就凝固。当使用燃料电池(1)的设备在低于0℃的温度下被加热时,阳极(9A)被连接到二次电池(13)的正电极,同时阴极(9B)被连接到二次电池(13)的负电极,以便对电池中的凝固的水进行电解,由此,使用伴随着电解过程所产生的热来使凝固的水融化。

Description

燃料电池设备的加热
技术领域
本发明涉及在凝固点以下的燃料电池设备的加热。
背景技术
在聚合物电解质燃料电池(PEFC)中,氢离子(H+)通过一块固体聚合物电解质膜,这块电解质膜必须经常保持湿润的状态。当向电解质膜供水时,使用这种类型燃料电池的燃料电池设备就开始工作。因此,该燃料电池含有数量相当可观的水,并且若该设备在静止状态下被保持在凝固点以下,则在燃料电池中的水,包括在电解质膜中的水,将会凝固。因而,为了在凝固点以下起动燃料电池设备,首先必须将燃料电池中的冰融化。
在这一方面,日本专利局在2000年公开的第2000-315514号专利申请公开了一种装置,其中,从外部向燃料电池中的气体通路供应高温气体,以便使电池中的冰融化。
发明内容
从融化装置提供的高温气体经由燃料电池外面的一根管子输送到形成于燃料电池的隔板之中的一个通路,并到达一个膜电极组件(MEA),后者包括一块电解质膜,以及含有催化剂的各电极。然而,相当可观数量的热在到达MEA之前已消耗在管子或隔板的通路之中。这意味着用于使MEA加热的这种装置的热效率很差。特别是,在-20摄氏度(℃)以下的非常低的温度环境中,需要一段很长的时间才能使MEA中的冰完全融化,并使设备产生电力。
因此,本发明的一个目标就是缩短在凝固点以下使MEA中的冰融化所需的时间。
为了达到上述目标,本发明提供一种应用于燃料电池设备的起动的、用于融化在燃料电池中的已凝固的水的方法,上述燃料电池设备包括一个燃料电池堆,其中又包括多个层状的燃料电池,每一个燃料电池在一块电解质膜的两侧各有一个阳极和一个阴极。本方法包括:检测燃料电池的温度,并且当温度低于水的凝固点时,通过在该燃料电池的阳极和阴极之间施加一个直流电压,使凝固的水进行电解而产热,从而使凝固的水融化。
本发明的各项细节以及其他各项特征和优点将在本说明书的其余部分中加以陈述,并在诸附图中加以展示。
附图说明
图1是一份应用本发明的融化方法的燃料电池设备的示意图。
图2是一份图,用以分析在根据本发明的融化方法的燃料电池中,由于化学反应而导致热的产生。
图3A和3B这两份时间图表示在根据本发明的融化方法的燃料电池中,所施加的电压和温度的变化。
图4是处于凝固状态下的燃料电池的3相边界层的一份示意性的截面图。
图5A和5B是两份时间图,用以说明在根据本发明的第二实施例的融化方法中的电压施加模式。
图6A-6C是3份时间图,用以说明根据本发明的第二实施例的融化方法的燃料电池温度、所施加的电压和功率消耗数值的变化。
图7是根据本发明的第三实施例、使用融化方法的燃料电池设备的电路和信号图。
图8是一份时间图,说明在根据本发明的第三实施例的融化方法中的电压施加模式。
图9A-9C是3份时间图,用以说明根据本发明的第三实施例的融化方法的燃料电池温度、所施加的电压和功率消耗数值的变化。
具体实施方式
参照诸附图中的图1,燃料电池设备包括一个燃料电池堆2,后者又包括一层聚合物电解质燃料电池1。
燃料电池1包括一个膜电极组件(MEA)8以及隔板11A,11B。
膜电极组件8包括一块固体聚合物电解质膜8A,以及被压接在膜8A两侧的一个阳极9A和一个阴极9B。
电解质膜8A包括一块过氟磺酸(perfluorosulfonic acid)离子交换膜,例如由杜邦(Dupont)公司生产的Nafion 112。
参照图2,阳极9A和阴极9B包括一个由碳纸形成的气体扩散层(GDL)21,以及一个3相边界层22。3相边界层22包括一个在碳黑上的铂催化剂以及跟用于电解质膜8A的相同的过氟磺酸材料的混合物。该混合物被涂覆在GDL21之上。3相边界层22具有介于含有氢或氧的气体、电解质以及催化剂之间的3相边界。
再次参照图1,隔板11A和隔板11B由导电性材料构成,在隔板11A中,在阳极9A附近形成了用于富氢气体的通路10A。在隔板11B中,在阴极9B附近形成了用于氧的通路10B。
从氢圆筒容器5经由调压阀6向通路10A供应富氢气体。从压缩机3经由调压阀4向通路10B供氧。
在阳极9A中已经进行电化学反应的氢变为氢离子,通过电解质膜8A,并且在阴极9B中跟氧结合,以形成水蒸气。
水蒸气作为来自阴极9B的废气,主要地被排放到大气之中。部分水蒸气经由电解质膜8A扩散到阳极9A,并从阳极9A排放到大气之中。
由于大量的氢被送往阳极9A,所以在来自阳极9A的废气中,除了水蒸气以外还含有数量可观的氢。因此,喷射器7将这种作为阳极流出物的废气重新循环到来自调压阀6的氢气流送往通路10A,从而有效地利用氢。
分层的燃料电池1以串联方式电气地被连接在电池堆2的电极18A和18B之间。阳极9A经由隔板11A以及相邻的燃料电池1的隔板11B,从电气上被连接到相邻的燃料电池1的阴极9B。电极18A被连接到开关12。
开关12分别经由逆变器17被连接到作为负载的电动机15,以及经由恒流电源电路14被连接到二次电池13,从而根据开关位置,选择性地将电动机15和二次电池13连接到电极18A。电极18B被连接到电动机15的地线以及二次电池13的负极。
根据从控制器16输出的各种信号,分别对开关12、逆变器17以及恒流电源电路14进行控制。控制器16包括一部微型计算机,后者又包括中央处理单元(CPU)、只读存储器(ROM)、随机存取存储器(RAM)以及输入/输出接口(I/O接口)。控制器还可以包括多部微型计算机。
为了进行上述控制,从温度传感器19向控制器16输入一组温度信号,上述温度传感器19对燃料电池2的温度进行检测。
在图1中,实线表示气流,点划线表示电流,并且虚线表示信号流。
当设备开始工作时,若温度传感器19检测到的温度低于凝固点,则控制器16控制开关12,将二次电池13的正极连接到燃料电池堆2的电极18A。其结果是,在燃料电池1中,有直流电流从阳极9A流向阴极9B。
在这里,若燃料电池1的电解质膜8A的产生电力的表面积为25cm2,并且通过电解质膜8A的电流(密度)为每平方厘米1安培(1A/cm2),则应当有25安培的电流通过燃料电池堆2。恒流电源电路14增加或减小二次电池13的电压,使得有所需的电流流过。
再次参照图2,当MEA 8被凝固、并且向阳极9A施加正电压以及向阴极9B施加负电压时,由于MEA 8中凝固的水的电解,就在阳极9A产生氧,并在阴极9B产生氢。
当将超过某一电平的电压施加到已凝固的燃料电池1时,根据下列方程式(1)将发生水的电解:
Figure C0280280700071
                       (1)
在这种状态下,从氢圆筒容器5向阳极9A供给氢。从压缩机3向阴极9B供给空气,并且在阳极9A处,产生的氧跟供应的氢相结合以形成水。同样。在阴极9B处,产生的氢跟在供给的空气中的氧相结合以形成水。氢和氧的结合伴随着热的释放。因此,用这种热就能使在燃料电池堆2中的冰融化。
现在将考虑设备处于-30℃的温度条件下的情形。在这样的温度条件下,电解质膜8A的离子导电效率约为每厘米4毫西门子(4mS/cm),因此,在1A/cm2的电流密度下,由于电解质膜而产生的电压降约为0.7伏特(V)。催化剂的活化电压约为0.3V,因介于GDL21和隔板11A之间的接触电阻所产生的电压降,以及因介于GDL 21和隔板11B之间的接触电阻所产生的电压降的总和约为0.2V。
为进行水的电解所需的电压约为1.2V,这个电压可以用Nernst方程式、针对为平衡膜两侧的离子浓度差所需的平衡电位计算出来,详见下列方程式(2):
E r = E O 2 - E H 2 = E 0 + 23 RT 2 F log P O 2 · P H 2 P H 2 O - - - ( 2 )
式中,Er=平衡电位,
EO2=阳极电位,
EH2=阴极电位,
E0=标准电位=+1.2V(在大气压力下),
R=气体常数
T=温度,以及
PO2,PH2,PH2O=各分压。
若将因电压降而造成的1.2V的总损失添加到这个1.2V之上,则在各电极之间必须施加大约2.4V的电压,以便在-30℃下进行燃料电池1中的水的电解。其中,对应于不包括用于电解的部分的过电压1.2V被转换为热,并且可以被用来使冰融化。当1A/cm2的电流流过燃料电池1时,这对应于每平方厘米1.2瓦特(1.2W/cm2)的热释放。通过使用释放的热来使冰融化,即使在十分寒冷的-30℃的环境下,也能在短时间内使燃料电池堆2中的冰融化。
如上所述,由水的电解产生的氢与由压缩机3提供的空气中的氧结合在一起,并且由水的电解产生的氧与氢圆筒容器5提供的氢结合在一起,它们分别产生反应热。这样产生的热进一步地促进了燃料电池堆2中冰的融化。然而,紧接在施加一个电压之后,GDL 21又会重新凝固,因而在氢和氧之间很难发生结合反应,而且由氢和氧结合产生的反应热量也随着融化的进行而增加。
接下来,将对通过在燃料电池1的各电极之间施加一个电压而产生的热进行详细描述。
在电解质膜8A,GDL 21以及隔板11A和11B中产生的焦尔热可以用i2R来表示。这里,i是电流密度,R是电解质膜8A、GDL 21、以及隔板11A和11B的电阻。
在GDL 21与隔板11A和11B之间的接触表面,即表面面积上,热能是根据这些接触电阻来产生的。在GDL 21的催化剂附近,对应于为促进方程式(1)的化学反应所需的过电压的能量中的大部分被转变为热能。所有这些热能对冰的融化都是有用的。
而且,由于在阳极9A处,通过水的电解而产生的氧与氢圆筒容器5提供的氢的结合,以及在阴极9B处,通过水的电解而产生的氢与压缩机3提供的空气中的氧的结合,就会产生上述的反应热。
现在参照图3A和3B,来说明本发明人对燃料电池1所进行的融化实验的各项结果。
当向处于-30℃的凝固状态下的燃料电池1的各电极之间施加一个电压时,由于在燃料电池1中施加电压而产生的焦耳热将首先使燃料电池1的温度升高。温度的升高在-20℃处暂时停止。温升曲线的中断表明在电解质膜8A中被部分地结合的水正在融化。
以下将对电解质膜8A中的水进行描述。在电解质膜8A中,与磺酸基结合在一起的水不会凝固,没有与磺酸基结合的自由水在0℃附近凝固,而部分地与磺酸基结合在一起的水则在-20℃凝固。混合水的按重量计算的浓度是以上三者之和,约为磺酸基的按重量计算的浓度的10倍。
图4表示在-30℃温度下3相边界层22的内部状态。在3相边界层22中,在由过氟磺酸、铂催化剂、氧气或氢气组成的电解质的3相边界处,将发生电化学反应。然而,在-30℃温度下,在3相边界层22中的水将会凝固,并阻断气体从GDL 21向催化剂渗透。在图中只显示了3相边界层22的一部分被阻塞,但在实际上,显而易见,整个表面都是被阻塞的。在这种状态下,燃料电池1不能产生电力,而且在催化剂处,由电解产生的氧和氢不能跟由GDL 21提供的氢和氧混合。
再次参照图3A和3B,燃料电池1的温升曲线升到-20℃时暂时停止升高的原因在于电解质膜8A中,部分地结合的水在融化时消耗了热量。
部分地结合的水在开始施加电压大约50秒钟后完全融化,这时燃料电池1的温度再次升高。当温度到达0℃时,由于凝固的自由水的融化,使温升曲线又暂时停止升高。当自由水的融化完成时,由电解产生的氧与氢圆筒容器5向通道10A提供的氢结合,而且由电解产生的氢也跟压缩机3向通道10B提供的氧结合。伴随着氢和氧的结合而产生的反应热加速了燃料电池1的温升。在图3A中,在所有的自由水都融化之后,燃料电池1的温升曲线的陡峭的斜率就归因于这种反应热。
另一方面,随着燃料电池1的温度升高,施加在阳极9A和阴极9B之间的电压将出现下降。如上所述,当开始施加电压时,该电压为2.4伏,然而当温度到达+20℃时,电解质膜8A的电导率就变为30mS/cm。其结果是,由电解质膜8A引起的电压降约为0.1伏,并且在各电极之间施加的电压为1.8伏,这已经是足够的了。在这种状态下,若有1A/cm2的电流从燃料电池1中流过,则散发的热量对应于大约0.6W/cm2
在本实验中,我们发现在开始施加电压大约两分钟以后,燃料电池1中冰的融化才宣告完成,这时燃料电池1可以产生电力。通过对提供给通道10A的氢或提供给通道10B的空气进行加热或加湿,还能使为融化燃料电池1(中的冰)所需的时间进一步地缩短。
以上所述的实施例涉及只有一个单独的燃料电池堆的燃料电池设备。在一个由多个燃料电池堆组成的设备中,某一个燃料电池堆中的冰首先用上述的方法融化,其余的燃料电池堆再利用融化后能产生电力的燃料电池堆的输出电流进行融化。如果能做到这一点,就能减轻二次电池13的负载。
其次,将说明本发明的第二实施例。
这个实施例涉及向燃料电池堆2的电极18A、18B施加电压的方法。其硬件结构跟第一实施例相同,但二次电池13的正电极和负电极被倒置。特别是,二次电池13的负电极被连接到电极18A,二次电池13的正电极被连接到电极18B。
即使氢和氧被输送到在-30℃下的燃料电池1,但是由于在MEA 8中的水是凝固的,所以来自GDL 21的氢和氧不能到达处于3相边界层22中的催化剂,同时在该层中不会发生电化学反应。
如上所述,若向处于上述状态下的电极18A、18B施加一个电压,则在阳极9A处产生氢,在阴极9B处产生氧。在施加电压60秒之后,在电解质膜8A中部分地结合的水的融化已经完成,如图3A所示。在这个阶段,对开关12进行操作,以便将燃料电池堆2切换到负载一侧。然后,从通道10A向阳极9A输送氢,从通道10B向阴极9B输送氧。
这时,在电解质膜8A中部分地结合的水的融化已经完成,部分氢和氧到达3相边界层22中的催化剂,并且通过电解产生的氢和氧仍保留在阳极或阴极处。其结果是,在3相边界层处可能发生电化学反应,同时开始产生电力。电力的产生根据方程式(3)而发生,它是方程式(1)的逆反应。
Figure C0280280700111
                         (3)
在电力产生过程中,分别由于下列3种原因而产生热:一是由于氢离子在电解质膜8A中的运动(所遇到)的膜电阻引起的电压降,二是介于GDL 21与隔板11A、11B之间的接触电阻引起的电压降,三是由于催化剂活化电阻引起的电压降。电动机15被连接到燃料电池堆2,并且为了产生电力,对氢的供应量以及逆变器17进行控制,使得电动机15的电阻为25毫欧姆(mΩ),并且燃料电池堆2的电流密度为1A/cm2。然而,若电流密度为1A/cm2,并且介于燃料电池1各电极之间的电位差小于0.4V,则进行调整使它达到0.4V,以避免损坏燃料电池1。在这段时间内,由于过电压而释放的热处于0.6-1.2W/cm2的范围内,这取决于燃料电池1的温度。
在本实施例中,如图5A和图5B所示,电压施加过程和电力产生过程在0℃下重复进行。其结果是,如同在第一实施例中那样,跟简单地连续施加电压的情形相比,这时,因施加电压而消耗的功率得以降低,同时,燃料电池堆2的起动效率有所提高。
在图5A和图5B中,电压施加时间间隔T1、T3、T5和电力产生时间间隔T2、T4、T6被设置为完全相等。也可以根据融化条件来改变这样的设置。例如,若电压施加时间间隔被设置为比电力产生时间间隔长一些,则为产生电力所需的氢和氧可以主要地从水的电解中获得。
可供选择地,可以随着时间的推移,来提高介于电压施加过程和电力产生过程之间的切换频率。换句话说,如下的设置也是可取的:T1>T3>T5,T2>T4>T6。
参照图6A-6C,本发明人进行了一项实验,其中,电压施加过程和电力产生过程按照T1=60秒、T2=50秒、T3=40秒、T4=50秒、T5=30秒来进行交替,然后,***切换到正常的电力产生。
在-30℃下,当在燃料电池1的阳极和阴极之间施加电压达到60秒时,在电池中将产生焦尔热,同时电池的温度升高。在-20℃处,如上所述,由于在电解质膜8A中部分结合的水的融化,使得温升暂时停止。
在施加电压大约50秒之后,部分结合的水的融化结束,使得燃料电池1的温度再次升高。在已经施加电压60秒之后,***就切换到电力产生过程。在电力产生过程中,从氢圆柱容器5向通道10A供应氢,并从压缩机3向通道10B供应空气。在燃料电池1里面,使用在空气中含有的氢和氧来产生电力,并且由于伴随着电力产生过程的产热,使燃料电池1的温度升高。同样,在电压施加过程中,在阳极18A上产生氧,并与通道10A中的氢相结合,同时在阴极18B上产生氢,并与通道10B中的氧相结合。由于这种结合而产生的热促进了燃料电池1的温升。在电力产生过程中所产生的电能以热的形式被全部消耗掉。在这种电力产生过程中,二次电池13的电力当然没有被消耗。
在电力产生过程已经继续50秒之后,再次进行40秒的电压施加过程。在切换的大约15秒之后,燃料电池1的温度到达0℃。在0℃下,所产生的热被用来作为液化的潜热,以便使自由的(指未结合的)水融化,这时,燃料电池1的温升暂时停止。接着,在电压施加过程已经结束之后,电力产生过程持续50秒钟,以及电压施加过程持续30秒钟,二者交替地进行下去。
这样一来,从融化操作开始于-30℃下的时间起算,经过250秒钟之后,在MEA 8之中的自由水就被全部融化。
如图6C所示,在融化操作中所消耗的电力仅在电压施加过程中产生,而不在电力产生过程中产生。同样,所施加的电压从2.4V开始,随着燃料电池1的温升而降低,并且在0℃时降低到1.8V。
根据此项实验,从开始施加电压的时间起算,在大约250秒钟以内,燃料电池1(中的冰)被全部融化。从开始施加电压到融化完成这段时间的功率消耗量为100焦耳/平方厘米(100Joules/cm2)。
接着,参照图7、8以及图9A-9C,将对本发明的第三实施例进行说明。
首先,参照图7,根据本实施例的设备包括介于第一实施例的开关12以及恒流电源电路14之间的另一个开关20。开关12将燃料电池堆2的电极18A选择性地连接到通往恒流电源电路14的一个触点12A以及通往逆变器17的一个触点12B其中之一。开关20将二次电池13的正电极(经由恒流电源电路14)以及二次电池13的负电极其中之一连接到触点12A,同时将另一个连接到燃料电池堆2的电极18B。各开关12、20的切换由控制器16进行控制。设备的硬件的其余特征跟图1所示的第一实施例中的相同。
根据本实施例,当开关12的触点12A被连接到电极18A时,控制器16就操作开关20从前一种状态切换到后一种状态,在前一种状态中,二次电池13的正电极经由恒流电源电路14被连接到电极18A,同时二次电池13的负电极被连接到电极18B,在后一种状态中,二次电池13的负电极被连接到电极18A,同时二次电池13的正电极经由恒流电源电路14被连接到电极18B。
当设备起动时,若温度传感器19检测到的温度低于凝固点,则控制器16控制开关12,使触点12A与电极18A连接,同时控制开关20,将二次电池13的负电极连接到电极18A,并通过恒流电源电路14将二次电池13的正电极连接到电极18B。其结果是,燃料电池1的MEA 8中的已凝固的水被电解,在每个燃料电池1的阳极9A产生氢,而在阴极9B产生氧。在以下的描述中,该过程指的是氢/氧的产生过程。在这个过程中,控制器16控制恒流电源电路14,从而使电解质膜8A中的电流密度为1A/cm2,如同在第一实施例中那样。
如上所述,电解质膜8A的离子导电率在-30℃的状态下为4mS/cm2,而在-20℃的状态下则为30mS/cm2。当在-30℃状态下施加电压时,电解质膜8A的电压降为0.7V,而在-20℃状态下则为0.1V。由于催化剂的激活电压约为0.3V,在GDL21和隔板11A中的电压降约为0.2V,而电解水所需要的电压为1.2V,所以有必要根据温度来施加从2.4V到1.8V范围内的电压,以便在燃料电池1中进行水的电解。在该电压中,有0.6-1.2V的过电压用于产热。当电流密度为1A/cm2时,电力消耗量为0.6-1.2W/cm2
其次,控制器16对开关20进行切换,从而使二次电池13的正极通过恒流电源电路14与电极18A连接,二次电池13的负极与电极18B连接。其结果是,如同在第一实施例中那样,在燃料电池1的阳极9A产生氧,而在阴极9B产生氢。在以下的描述中,这个过程指的是氧/氢产生过程。在该过程中,控制器16也按照在氢/氧产生过程中的方式来控制恒流电源电路14。
在氧/氢产生过程中在阳极9A产生的氧跟在氢/氧产生过程中在阳极9A产生的氢结合形成水。在氧/氢产生过程中在阴极9B产生的氢跟在氢/氧产生过程中在阴极9B产生的氧结合形成水。伴随着这些水的形成反应产生了反应热。
控制器16对开关20进行切换,使得氢/氧产生过程和氧/氢产生过程交替进行,如图8所示,而且使用水形成时所产生的反应热来加速MEA 8中冰的融化。在图8中,当阳极9A的电位比阴极9B高时,电压施加状态表现为正电压,当阴极9B的电位比阳极9A高时,电压施加状态表现为负电压。
氢/氧产生过程持续时间T1和氧/氢产生过程持续时间T2实际上是相同的,但考虑到氢是由氢圆筒容器5向阳极9A提供的,而且氧是作为空气由压缩机3向阴极9B提供的,所以T1可以被设置为比T2短。
随着MEA 8(中冰)的融化的进行,从外面向燃料电池1提供的氢和氧就能更容易地到达催化剂那里。考虑到这一点,最好是根据融化的进程来改变T1和T2的比值。这将降低在阳极9A上氢的产生量和阴极9B上氧的产生量,并且所降低的数量将由氢圆筒容器5提供的氢和压缩机3提供的空气中的氧来补偿。这样一来,融化时间就缩短了。
现在参照图9A-9C,来说明本发明人所进行的与本实施例相关的融化实验结果。
在-30℃的状态下,如同在第一和第二实施例中那样,在氢/氧产生过程中,二次电池13的负极与电极18A相连接,二次电池13的正极通过恒流电源电路14与电极18B相连接,这个过程的持续时间为20秒。其次,氧/氢产生过程历时40秒,其中,二次电池13的正极通过恒流电源电路14与电极18A相连接,二次电池13的负极与电极18B相连接。再次,氢/氧产生过程历时30秒,以及氧/氢产生过程历时40秒。在实验期间,从外部向阳极9A提供氢,从外部向阴极9B提供氧。
在第一实施例中,在融化的初始阶段,阳极9A产生的氧与从外部供应的氢,阴极9B的产生氢与作为空气从外部提供的氧分别被3相边界层22中的冰所阻隔,因此它们不能结合。另一方面,在本实施例中,甚至在融化的初始阶段,阳极9A产生的氢也能跟阳极9A产生的氧结合,阴极9B产生的氧也能跟阴极9B产生的氢结合。因此,由于结合而产生的反应热从融化的初始阶段开始就能被充分利用。而且,在融化过程的后半部分,通过从外部供应的氢和氧,分别补偿阳极9A的氢产生量和阴极9B的氧产生量,就能缩短氢/氧过程的时间。进一步说,在本实施例中,燃料电池1的温度变化趋势与第一实施例相同。然而,虽然在第一实施例中,从施加电压开始到融化完成历时250秒,但是在本实施例中,这个时间被显著地缩短到90秒。
2001年12月27日在日本申请的第2001-396579号以及第2001-396587号专利已作为参考文献被收入本文。
虽然以上参照于本发明的某些实施例已经对本发明作了说明,但是本发明并不局限于上述的各实施例。根据以上的讲授内容,专业人士将有可能对上述各实施例作出各种修改或变更。
工业上的应用领域
如上所述,根据本发明,利用水的电解来融化在燃料电池中的已凝固的水,同时能将燃料电池投入到具有高效率的电力产生状态,并且不需要例如加热器或吹风机那样的专门的融化装置。因此,当把本发明应用于安装在车辆中的燃料电池设备时,就能获得特别满意的效果。
本发明的各实施例(在其中,主张了专有的知识产权或特权)被规定在权利要求书中。

Claims (11)

1.一种应用于燃料电池设备的起动的、融化在燃料电池(1)中的已凝固的水的方法,上述燃料电池设备包括一个燃料电池堆(2),其中又包括多个层状的燃料电池(1),每一个燃料电池(1)在一块电解质膜(8A)的两侧各有一个阳极(9A)和一个阴极(9B),本方法包括:
检测燃料电池(1)的温度;以及
当温度低于水的凝固点时,通过在该燃料电池(1)的阳极(9A)和阴极(9B)之间施加一个直流电压,使凝固的水进行电解而产热,从而使凝固的水融化。
2.根据权利要求1所规定的融化方法,其中,该设备包括一个二次电池(13),它有一个正电极和一个负电极,用以提供直流电压,并且本方法还包括将阳极(9A)连接到正电极,以及将阴极(9B)连接到负电极,使凝固的水进行电解。
3.根据权利要求2所规定的融化方法,其中,本方法还包括向阳极(9A)提供氢,以便跟通过凝固的水的电解而在阳极(9A)处产生的氧相结合而形成水。
4.根据权利要求2所规定的融化方法,其中,本方法还包括向阴极(9B)提供氧,以便跟通过凝固的水的电解而在阴极(9B)处产生的氢相结合而形成水。
5.根据权利要求1至权利要求4中任何一项所规定的融化方法,其中,被施加到阳极(9A)和阴极(9B)之间的电压对应于为进行阳极(9A)和阴极(9B)之间的水的电解所需电压以及与阳极(9A)和阴极(9B)之间的电阻对应的电压降之和。
6.根据权利要求1至权利要求4中任何一项所规定的融化方法,其中,该设备还包括一个第二燃料电池堆(2),并且本方法还包括在已经完成在第一燃料电池堆(2)中凝固的水的融化之后,通过使用由第一燃料电池堆(2)所产生的电力来使在第二燃料电池堆(2)中的凝固的水融化。
7.根据权利要求1、3或者权利要求4中任何一项所规定的融化方法,其中,燃料电池(1)使用向阳极(9A)提供的氢以及向阴极(9B)提供的氧来产生电力,该设备包括一个二次电池(13),它有一个正电极和一个负电极,用以提供直流电压,并且本方法还包括交替地重复进行直流电压施加过程和电力产生过程,前者通过将阳极(9A)连接到负电极,以及将阴极(9B)连接到正电极,使凝固的水进行电解,在阳极(9A)和阴极(9B)之间施加一个直流电压,后者向阳极(9A)提供氢,同时向阴极(9B)提供氧。
8.根据权利要求7所规定的融化方法,其中,随着时间的推移,介于直流电压施加过程和电力产生过程之间的交替频率有所增加。
9.根据权利要求1所规定的融化方法,其中,该设备包括一个二次电池(13),它有一个正电极和一个负电极,用以提供直流电压,并且本方法还包括重复进行一个氧/氢产生过程以及一个氢/氧产生过程,在氧/氢产生过程中,将阳极(9A)连接到正电极,以及将阴极(9B)连接到负电极,使凝固的水进行电解,以便在阳极(9A)产生氧,并在阴极(9B)产生氢;在氢/氧产生过程中,将阳极(9A)连接到负电极,以及将阴极(9B)连接到正电极,使凝固的水进行电解,以便在阳极(9A)产生氢,并在阴极(9B)产生氧。
10.根据权利要求9所规定的融化方法,其中,本方法还包括向阳极(9A)提供氢,同时向阴极(9B)提供氧,以便使氢/氧产生过程的时长短于氧/氢产生过程的时长。
11.根据权利要求9或权利要求10所规定的融化方法,其中,本方法还包括向阳极(9A)提供氢,同时向阴极(9B)提供氧,并根据所经过的时间来改变氢/氧产生过程的时长。
CNB028028074A 2001-12-27 2002-11-12 燃料电池设备的加热 Expired - Fee Related CN1309110C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP396587/2001 2001-12-27
JP396579/2001 2001-12-27
JP2001396579A JP3661643B2 (ja) 2001-12-27 2001-12-27 燃料電池システム
JP2001396587A JP3659225B2 (ja) 2001-12-27 2001-12-27 燃料電池システム

Publications (2)

Publication Number Publication Date
CN1636295A CN1636295A (zh) 2005-07-06
CN1309110C true CN1309110C (zh) 2007-04-04

Family

ID=26625319

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028028074A Expired - Fee Related CN1309110C (zh) 2001-12-27 2002-11-12 燃料电池设备的加热

Country Status (6)

Country Link
US (1) US7108928B2 (zh)
EP (1) EP1459404B1 (zh)
KR (1) KR100511572B1 (zh)
CN (1) CN1309110C (zh)
DE (1) DE60215700T2 (zh)
WO (1) WO2003061045A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112553A (zh) * 2014-12-19 2017-08-29 米其林集团总公司 用于控制燃料电池的方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166479A (ja) * 2003-12-03 2005-06-23 Nissan Motor Co Ltd 燃料電池システム
US20050227126A1 (en) * 2004-04-08 2005-10-13 Ener1, Inc. Method and apparatus for cold-starting a PEM fuel cell (PEMFC), and PEM fuel cell system
DE102005012617B4 (de) * 2005-03-18 2006-12-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Heizung einer Brennstoffzelle oder eines Brennstoffzellenstacks
WO2009073452A1 (en) * 2007-11-30 2009-06-11 Bdf Ip Holdings Ltd. Recovering performance loss in fuel cells
WO2010120565A2 (en) * 2009-03-31 2010-10-21 Enerfuel, Inc. Method and apparatus for pem fuel cell freezing protection
KR101124990B1 (ko) * 2009-09-11 2012-03-27 현대자동차주식회사 연료전지 셧다운 방법
DE102011114731A1 (de) 2011-10-01 2013-04-04 Daimler Ag Verfahren zum Trocknen einer Brennstoffzelle
DE102011114733A1 (de) 2011-10-01 2013-04-04 Daimler Ag Verfahren zum Starten einer Brennstoffzelle
US20140255814A1 (en) 2013-03-11 2014-09-11 Ford Global Technologies, Llc Fuel Cell Purge Line System
US9595725B2 (en) 2013-05-03 2017-03-14 Ford Global Technologies, Llc Heated ejector assembly for a fuel cell
FR3030895B1 (fr) * 2014-12-19 2017-01-13 Michelin & Cie Systeme a pile a combustible
DE102017011925A1 (de) 2017-12-18 2019-06-19 Daimler Ag Verfahren zum Starten einer Brennstoffzelle
CN109088082A (zh) * 2018-08-21 2018-12-25 上海大学 一种金属堆燃料电池低温启动热控制***及运行方法
CN109273799A (zh) * 2018-09-29 2019-01-25 大连中比动力电池有限公司 一种锂电池低温启动***及低温启动方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798186A (en) * 1996-06-07 1998-08-25 Ballard Power Systems Inc. Method and apparatus for commencing operation of a fuel cell electric power generation system below the freezing temperature of water
JP2000315514A (ja) * 1999-05-06 2000-11-14 Nissan Motor Co Ltd 燃料電池システム解凍装置
JP2001189164A (ja) * 1999-12-22 2001-07-10 General Motors Corp <Gm> Pem燃料電池の低温始動

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329089B1 (en) * 1997-12-23 2001-12-11 Ballard Power Systems Inc. Method and apparatus for increasing the temperature of a fuel cell
CN1343379A (zh) * 1999-03-09 2002-04-03 西门子公司 冷起动性能得以改进的燃料电池组和用于冷起动一个燃料电池组的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798186A (en) * 1996-06-07 1998-08-25 Ballard Power Systems Inc. Method and apparatus for commencing operation of a fuel cell electric power generation system below the freezing temperature of water
JP2000315514A (ja) * 1999-05-06 2000-11-14 Nissan Motor Co Ltd 燃料電池システム解凍装置
JP2001189164A (ja) * 1999-12-22 2001-07-10 General Motors Corp <Gm> Pem燃料電池の低温始動

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112553A (zh) * 2014-12-19 2017-08-29 米其林集团总公司 用于控制燃料电池的方法
CN107112553B (zh) * 2014-12-19 2021-03-12 米其林集团总公司 用于控制燃料电池的方法

Also Published As

Publication number Publication date
KR20030071784A (ko) 2003-09-06
EP1459404B1 (en) 2006-10-25
CN1636295A (zh) 2005-07-06
DE60215700D1 (de) 2006-12-07
US20040013915A1 (en) 2004-01-22
WO2003061045A3 (en) 2004-04-22
WO2003061045A2 (en) 2003-07-24
KR100511572B1 (ko) 2005-09-05
EP1459404A2 (en) 2004-09-22
DE60215700T2 (de) 2007-02-08
US7108928B2 (en) 2006-09-19

Similar Documents

Publication Publication Date Title
CN1309110C (zh) 燃料电池设备的加热
CN1113420C (zh) 燃料电池的活化方法
EP3947779B1 (en) Electrolysis system with controlled thermal profile
CN1735991A (zh) 固体聚合物电解质燃料电池***及其操作方法
CN1089062A (zh) 利用空气电极供电的电化学设备
JP3872791B2 (ja) 燃料電池の間欠的冷却法
CN101165958A (zh) 燃料电池***及运行该***的方法
US8192876B2 (en) Method for operating a fuel cell system in a mode of reduced power output
EP3017089A1 (en) Hydrogen system and method of operation
WO2020138338A1 (ja) 燃料電池の活性化方法及び活性化装置
CN1801516A (zh) 燃料电池的活化方法
CN105392925B (zh) 氢气回收设备和操作方法
JP2012153965A (ja) 高圧水電解装置の運転方法
JP2006040868A (ja) 燃料電池の特性復帰方法および特性復帰装置
JP2008533675A (ja) 燃料電池または燃料電池スタックを加熱する装置および方法
JP3661643B2 (ja) 燃料電池システム
JP3659225B2 (ja) 燃料電池システム
JPS63237363A (ja) メタノ−ル燃料電池
US11791483B2 (en) Method for starting a fuel cell device under frost starting conditions and a fuel cell device and motor vehicle
KR20240102799A (ko) 수전해 시스템
KR20240115126A (ko) 수전해 장치의 저전류밀도 구동 방법
CN1713431A (zh) 燃料电池的特性恢复方法和特性恢复装置
CN1713430A (zh) 燃料电池的老化方法和老化装置
JP2010180451A (ja) 水電解装置の運転方法
JP2008226630A (ja) 燃料電池の運転方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070404

Termination date: 20091214