CN1307688C - 氙预无定形化植入法 - Google Patents

氙预无定形化植入法 Download PDF

Info

Publication number
CN1307688C
CN1307688C CNB028152212A CN02815221A CN1307688C CN 1307688 C CN1307688 C CN 1307688C CN B028152212 A CNB028152212 A CN B028152212A CN 02815221 A CN02815221 A CN 02815221A CN 1307688 C CN1307688 C CN 1307688C
Authority
CN
China
Prior art keywords
source
ion
amorphous domain
implanted
implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB028152212A
Other languages
English (en)
Other versions
CN1539160A (zh
Inventor
M·S·布诺斯基
C-H·恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Micro Devices Inc
Original Assignee
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Devices Inc filed Critical Advanced Micro Devices Inc
Publication of CN1539160A publication Critical patent/CN1539160A/zh
Application granted granted Critical
Publication of CN1307688C publication Critical patent/CN1307688C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2658Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

在形成源/漏极延伸区域(21)和源极/漏极区域(41)之前,利用植入Xe(15)将硅绝缘层基板(101)预无定形化,藉此消除或大幅降低浮体效应。另一方面包括在形成具有减少垂直与横向散布的浅层接面的源极/漏极延伸区域和源极/漏极区域之前,将Xe2 +离子植入到表体硅或SOI基板中,以产生无定形化的效果。

Description

氙预无定形化植入法
技术领域
一般而言,本发明关于制造半导体装置,特别是具有超浅层接面深度的高度小型化半导体。
背景技术
半导体制造技术历经不断的挑战,如设计尺寸持续地向下深入至次微米领域,例如制造具有大约及小于0.12微米之设计标准的装置。以有效方法准确形成具有高信赖度之超浅层接面深度(Xj)系成为十分具有挑战性的问题。
预无定形化技术,例如藉由离子植入硅(Si)或锗(Ge),以在掺杂物植入和退火之前定义源极/漏极区域的轮廓等已被用来降低穿隧效应(channeling effect)与减少瞬间增强扩散(transient enhanced diffusion,TED),并降低活化温度。然而,此种预无定形化(SPE)技术并非没有不利之处。例如,植入的Si和Ge离子容易漂移越过源极/漏极区域导致所谓之植入散布(implantation straggle),该散布包括垂直和水平两种,因而非常难以精确定义例如在400埃以下的超浅层源极/漏极延伸区域。
当设计尺寸下降至深次微米的范围时,沟道长度,亦即穿越沟道接面之间的距离,系逐渐成为临界尺寸,尤其当沟道长度降低至大约及小于1000埃时。接面位置的自然差异以及加工处理所引起的差异使得准确设计装置变得困难。从TED所引起掺杂轮廓的改变以及植入散布加重了设计上的问题。
传统硅绝缘层(SOI)型基板具有逐步形成和基本上包括一基板、一位于该基板上方埋入的氧化物层以及在该埋入氧化物层上为构成该晶体管之″主体″的半导体层。在此种SOI装置中,该主体浮动在其中,并未直接电性连接至该装置。当源极和漏极区域与该基板绝缘时,接面电容降低,亦即当源极和漏极其中之一或两者的电讯号改变时,会大幅减少对基板的电容偶合。当采用SOI基板促进电性绝缘时,电路中的某些电性组件可以彼此更紧密地放置,藉此缩小芯片尺寸。SOI结构也可提供更快速开闭的优点。此外,由于基板为埋入的氧化物所绝缘,因此栓锁作用(latchup)通常发生在CMOS装置,不存在于使用SOI基板的情况。在SOI装置中,静电电弧或等离子体电弧也会减少。
然而,制造半导体装置中使用SOI基板会带来缺点。显著的缺点称之为″浮体效应″(floating body effects)。例如,要花费相当长的时间来泄漏释出电荷(ejected charge)。其结果,可能产生瞬时双极效应(transientbipolar effect),其中会激活类似MOSFET的寄生偶极晶体管。此外,会产生磁滞效应(hysteresis effect)。
因此需要对于制造具有准确之超浅层接面的有效方法。而同样也需要制造以SOI基板为主,没有浮体效应而具有准确之超浅层接面的有效方法。
发明内容
本发明的优点是具有减少浮体效应的SOI结构的半导体装置的制造方法。
本发明的另一优点为制造具有超浅层接面的半导体装置,以及准确形成源极/漏极延伸区域和源极/漏极区域。
本发明的额外优点和其它特征将在以下的说明书中提到,就某种程度上而言,本领域技术人员经由参照下文或者可从本发明的实施中学习,而轻易了解本发明之额外优点和其它特征。本发明的优点可根据权利要求所特别指出得以了解及获得。
根据本发明,上述与其它优点在某种程度上可藉由制造半导体装置的方法来达成,该方法包括:形成包含较低硅基板;在基板上埋入的绝缘层;以及在绝缘层之上结晶硅上层的硅绝缘体(SOI)结构;将氙(Xe)离子植入到上硅层,在该层中形成从上表面向埋入的绝缘层延伸的无定形区域;离子植入掺杂杂质以形成源极/漏极延伸区域植入物和源极/漏极区域植入物;退火以活化浅层源极/漏极延伸区域和源极/漏极区域,并且使该无定形区域结晶。
本发明的实施方案包括:以氧化硅埋入的绝缘层形成SOI结构,以大约1×1014至大约5×1014离子/cm2的植入剂量及大约1KeV至大约200KeV的植入能量将氙离子植入。本发明的实施方案包括在大约500℃至大约650℃,例如大约550℃至大约600℃的温度退火,使源极/漏极延伸区域和源极/漏极区域活化,并且使得由Xe离子植入所形成的无定形区域再结晶。本发明的实施方案包含在形成源极/漏极区域之前形成源极/漏极延伸区域,并且还包含在形成源极/漏极延伸区域之前形成源极/漏极区域的可移除间隔片技术。
本发明另一方面为制造半导体装置的方法,该方法包括:提供一主要由氙二聚物(Xe2 +)所构成的离子束;将Xe2 +植入到结晶半导体基板,在该基板中形成无定形化的区域;将掺杂杂质离子植入到该无定形区域,形成源极/漏极延伸区域植入物,和源极/漏极区域植入物;以及退火以活化该源极/漏极延伸区域和源极/漏极区域并且使该无定形区域再结晶。
实施方案包含分析第一Xe离子束和选择性地从该离子束中提取Xe2 +束。本发明的实施方案包括将Xe2 +离子植入到包含表体硅和SOI基板的基板中,以预无定形化离子植入掺杂杂质之前的区域,然后在大约500℃至大约650℃的温度退火。本发明的实施方案包括将Xe2 +离子植入到表体硅基板中形成具有深度不超过大约250埃的无定形化区域,例如大约100埃至250埃,接着以大约500℃至650℃温度的中度退火形成源极/漏极延伸区域和源极/漏极区域。
本领域技术人员可从以下的详细说明,轻易了解本发明另外的优点,其中简单地藉由本发明最佳实施方案的图解,说明本发明的实施方案。应能了解本发明能实施其它不同的实施方案,其数种详述能实施明显不同方面的修饰,皆不背离本发明。因此,附图及说明将视为本质上示范的说明,并非作为限制之用。
附图说明
图1至图4说明根据本发明实施方案的方法的连续顺序阶段。
图5和图6说明根据本发明其它实施方案的方法的连续顺序阶段。
图7说明适合用于本发明实施方案的离子植入设备。
发明详述
本发明提供经由大幅减少垂直和横向散布以制造具有明确界定的超浅层接面的半导体装置,特别是具有SOI基板的半导体装置的可行方法。本发明也提供利用Xe离子植入,特别是经由离子植入Xe2 +以制造具有明确界定的超浅层接面的半导体装置的有效方法。本发明进一步提供可制造包含大幅降低浮体效应之SOI基板的半导体装置的方法。
采用Xe离子植入在形成源极/漏极延伸区域和源极/漏极区域之前预无定形化,造成有利于在SOI型结构中,降低浮体效应的确切机制仍无法确知。然而,相信结合相对Xe而言为高原子量和大离子体积的元素,例如Ge和Si,及较少的横向和垂直散布,有助于杂质活化且以某种方式使Xe包含于再结晶晶格中,以大致上消除或大幅降低浮体效应,而不会有一般由于离子植入的晶体损坏所造成过量的漏电流。
本发明的实施方案包括将Xe离子植入到SOI基板的上结晶层中,以预无定形化该上硅层,该SOI基板包括基板、埋入的绝缘层(如二氧化硅)与在该绝缘层之上的上结晶层。接着进行随后的离子植入和退火,利用在栅电极上的侧壁间隔片形成源极/漏极延伸区域和源极/漏极区域。在Xe离子植入之后的活化退火可以在比传统活化温度大约800℃至大约1,050℃,相对较低的温度大约500℃至大约650℃的有利条件下进行。因此,本发明的实施方案包含在形成源极/漏极区域之前或之后形成源极/漏极延伸区域。
本发明的实施方案包含在SOI基板的上结晶硅层之上形成栅电极结构,然后例如以大约1×1014至大约5×1014离子/cm2的植入剂量及大约1KeV至大约200KeV的植入能量(例如大约10KeV至大约130KeV),将Xe离子植入,以无定形化该上硅层向下达到埋入的绝缘层。
在图1-4中概要说明根据本发明实施方案的方法,其中以相似的参考数字表示相似的特征或组件。形成包括有基板10、埋入的绝缘层11(例如二氧化硅)、上结晶硅层12的SOI结构。该上结晶硅层12通常具有大约100埃至1000埃的厚度。在上硅层12之上隔着栅绝缘层13形成栅电极14。例如图1所示,进行Xe离子植入以预无定形化上硅层12的上面部分向下达到投影深度,在栅电极14每一侧上方形成无定形区域12A。本发明的实施方案包含预无定形化上硅层12直到大约400埃的深度,例如50至300埃,而且向下达到埋入的绝缘层11。
其后,如箭头20所示,进行杂质物种的离子植入,例如N型杂质,如砷或磷。一般而言,此等离子植入系以大约1×1014至大约5×1014离子/cm2的植入剂量及大约200KeV至大约10KeV的植入能量进行,以形成浅层源极/漏极延伸区域植入物。接着,例如在大约500℃至650℃(例如大约550℃至大约600℃)的温度进行退火,使源极/漏极延伸区域21活化,并且使无定形区域12A再结晶。该源极/漏极延伸区域21通常会从上硅层表面12延伸到大约50埃至大约300埃的深度。
然后,在栅电极14侧表面之上形成侧壁间隔片30,如图3所示。侧壁间隔片30可以包括例如二氧化硅或氮化硅的绝缘材料。再次进行Xe离子植入,如箭头30所示,以形成毗邻源极/漏极延伸区域21的无定形区域12B。此等Xe植入可以在先前图1所揭示的条件下进行。
其后,如图4所示,通常以大约1×1014至大约5×1014离子/cm2的植入剂量及大约10KeV至大约60KeV的植入能量,进行离子植入,例如箭头40所示,以形成源极/漏极区域植入物。接着例如在大约500℃至大约650℃的温度进行退火,以活化源极/漏极区域41,并且使无定形区域12B再结晶。在SOI结构上制造半导体装置中,Xe离子植入的用途有利于消除或大幅降低浮体效应,藉此改善装置的信赖性。在图1-4所示的实施方案中,在形成源极/漏极区域之前形成源极/漏极延伸区域。然而,考虑到有利于因Xe离子植入而导致的杂质活化所采用的极低退火温度,可以使用可移除间隔片技术,在形成源极/漏极延伸区域之前形成源极/漏极区域。在图5-6中概要说明此种实施方案,其中例如图1-4中所采用的组件和特征,相似的参考数字表示相似的特征和相似的组件。图5系形成包括基板10、埋入的绝缘层11和上结晶硅层12的SOI结构105。在上硅层12之上隔着栅绝缘层13形成栅电极14。然后在栅电极14和栅绝缘层13的侧表面之上形成侧壁间隔片15。随后进行Xe离子植入,使上结晶层12无定形化向下达到侧壁间隔片15相对侧上方之埋入的绝缘层11,接着藉由离子植入形成源极/漏极区域植入物,然后例如在大约500℃至大约650℃的温度退火,形成源极/漏极区域16。
其后,移除侧壁间隔片15,如图6所示,再次进行Xe离子植入,在上硅层12中形成上无定形区域向下达到投影深度,接着藉由杂质离子植入,形成源极/漏极延伸区域植入物。本发明的实施方案包含形成无定形区域直到大约400埃的深度(例如大约50埃至大约300埃),而且向下达到埋入的绝缘层11。然后例如在大约500℃至大约650℃的温度进行退火,使源极/漏极延伸区域20活化,并且使无定形区域再结晶,形成如图6所示的结构。
本发明之另一方面包括经由离子植入氙二聚物(Xe2 +)预无定形化,藉此使得超浅层接面深度以及经过精确控制的源极/漏极延伸区域和源极/漏极区域得以形成。在低吸引电压下,从Xe源提取Xe2 +,并藉由离子植入装置内的检偏镜磁铁进行分析。根据本发明的实施方案,Xe2 +作为预无定形化的用途不仅包含SOI结构而且还包含传统的基板结构,例如表体硅结构。
在图7中概要说明用来实施包括Xe2 +离子植入的本发明实施方案的离子植入***的顶视平面图。如图所示,该离子植入***70包含来源腔室72、检偏镜磁铁74、加速器76和末端站78。提取电源供应器80电性连接至容纳于来源腔室内72的提取电极81以及离子来源(未显示)。加速电源供应器82电性分别连接至加速器76的相对两端的加速电极83和84。
在操作过程中,提取电极81从来源腔室72中提取入射离子束85。藉由检偏镜磁铁74分析入射离子束85,其中从离子束85中选择所要的离子种类。分析磁铁74释出经过分析的离子束86,并且将该离子束导向位于电极83的隙缝87。检偏镜磁铁74从入射离子束85中,除了一种所要的离子束以外,过滤掉全部的离子束。检偏镜磁铁74内部所产生的磁场会造成当离子束85之中的各个离子通过检偏镜磁铁74时,沿着拱形轨道行进。已知离子的轨道半径依该离子的质量和速度,以及检偏镜磁铁74内部的磁场强度而定。检偏镜磁铁74内部的机械阻碍会阻挡不具有能通过检偏镜磁铁74出口的适当曲率轨道的所有离子。因此,只有所要的离子(Xe2 +)能离开检偏镜磁铁74,而形成经过分析的离子束86。
进入入口隙缝87后,藉由加速器76加速经过分析的离子束86,并导向末端站78。一般认为工业用的离子植入***通常包含附加的聚焦***使该离子束在离开加速器76之后适当地聚焦。一般也认为可能有许多种不同的末端站结构,依照该离子植入***所能形成的特定离子束而定。
虽然藉由提取电极81可进行起始加速,但是可以藉由加速器76进一步地加速达到依所需要的植入深度而决定之特定的能量位准Xe2 +的提取电压通常在大约10KeV至大约80KeV(例如大约20KeV至大约50KeV)的范围。
在进行离子植入的过程中,将例如表体硅基板88的基板放置在末端站78内部,对准经过分析的离子束86。在实际进行离子植入之前,将末端站78抽真空,以便从硅基板88附近移除周围的气体。在Xe2 +植入的过程中,经过分析的离子束86通过电极84中的隙缝89离开。隙缝89可容许末端站78和加速器76之间进行气体传递。
根据本发明的实施方案,利用将提取电压操作在大约10KeV至大约50KeV之低值或更低值,可以最清晰地得到由Xe来源所产生的最大光谱。
图7所示基板88可为任何种类传统的基板,包含表体硅基板。采用Xe2 +使表体硅基板无定形化,形成源极/漏极延伸区域和源极/漏极区域的顺序与图1-4或图5和6所说明的顺序可以平行。一般认为图7所示的基板88亦可为SOI结构,并且可以使用Xe2 +进行与图1-4或图5和6中所说明的实施方案有关的Xe2 +离子植入。在实施Xe2 +离子植入的过程中,可以使用比实施Xe离子植入时,由于植入能量会分配给两个离子之较低的植入能量。因此,使用Xe2 +预无定形化时,可以有效地采用大约1KeV至大约200KeV的能量。
本发明能制造具有实际上不含或大幅降低浮体效应,并且能准确地将源极/漏极延伸区域和源极/漏极区域定位及定义尺寸之SOI结构的半导体装置。本发明也提供在具有例如小于大约400埃,不超过大约250埃的超浅层接面表体硅基板中能形成准确地将源极/漏极延伸区域和源极/漏极区域定位及定义尺寸的有效方法。利用Xe离子植入作为预无定形化能够优异地活化掺杂杂质,藉此提高装置的信赖性以及改善晶片对晶片的均匀度。
本发明具有在各种半导体装置制造上的产业应用性。本发明特别适合用来制造具有次微米特征的半导体装置。
在前述说明中提出许多明确的详细说明,例如特定材料、结构、化学药品、制程等,以提供对于本发明较佳之理解。然而,不需要藉由特别提出详细说明便能实施本发明。在其它情形中,并不详细叙述众所周知的工艺和材料,以避免不必要地模糊本发明。
在本发明揭示中仅表示及叙述本发明较佳实施方案及本发明的多种用途的少数实施例。据了解本发明可以用于其它各种组合和环境,并且可以在本文所示进步性概念的范畴内进行改变或修饰。

Claims (10)

1.一种半导体装置的制造方法,该方法包括:
形成一种硅绝缘层(SOI)结构(101),其包括:
位于底部的硅基板(10);
在基板上埋入的绝缘层(11);以及
位于该绝缘层上之上结晶硅(12)层;
然后,将氙(Xe)离子(15)植入到上硅层(12),以形成无定形区域(12A),该无定形区域(12A)从上表面向埋入的绝缘层(11)延伸;
然后,植入离子掺杂杂质(20),以形成源极/漏极延伸区域的植入物;
然后,退火以活化浅层源极/漏极延伸区域(21),并且使无定形区域(12A)再结晶;
然后,将氙离子(30)植入上硅层,以形成无定形区域(12B),该无定形区域(12B)从上表面向埋入的绝缘层(11)延伸;
然后,植入离子掺杂杂质(40),以形成源极/漏极区域植入物,其与所述的植入离子掺杂杂质(20)以形成源极/漏极延伸区域植入物的步骤是分开进行的;以及,
然后,退火以活化源极/漏极区域(41),并且使无定形区域(12B)再结晶。
2.根据权利要求1所述的方法,其中
以大约1×1014至大约5×1014离子/cm2的植入剂量及大约3KeV至大约150KeV的植入能量将氙离子(15,30)植入;以及
在大约500℃至大约650℃的温度退火,将源极/漏极延伸区域(21)和源极/漏极区域(41)活化,并且使无定形区域(12A,12B)再结晶。
3.根据权利要求1所述的方法,其中
在上硅层(12)之上隔着栅绝缘层(13)形成栅电极(14);以及
在形成所述的源极/漏极延伸区域(21)之后以及在植入氙离子(30)以在临近源极/漏极延伸区域(21)的上硅层中形成所述的无定形区域(12B)之前,在栅电极(14)侧面上形成侧壁间隔片(30)()。
4.根据权利要求1所述的方法,其中
在上硅层(12)之上隔着栅绝缘层(13)形成栅电极(14);在将掺杂杂质(40)植入到上硅层的无定形区域以形成所述的源极/漏极区域植入物之前,在栅电极(14)的侧面上形成侧壁间隔片(15);
在将氙离子(15)植入所述的上硅层以形成无定形区域(12A)以及将所述的掺杂杂质(20)植入以形成源极/漏极延伸区域植入物之前,去除所述的侧壁间隔片(15)。
5.根据权利要求1所述的方法,其中所述的氙离子包括主要由氙离子二聚物Xe2+所构成的离子束。
6.一种制造半导体装置的方法,该方法包括:
提供主要由氙二聚物(Xe2 +)所构成的离子束;
然后,将Xe2 +植入到结晶半导体基板(10),以使在该基板中的区域(12A,12B)无定形化;
然后,将离子掺杂杂质(20,40)植入到该无定形区域,以形成源极/漏极延伸区域植入物和源极/漏极区域植入物;以及
然后,退火以活化该源极/漏极延伸区域和源极/漏极区域,并且使该无定形区域再结晶。
7.根据权利要求6所述的方法,其中
提供主要由Xe2 +所构成的离子束;
从离子源提取第一Xe离子束;
分析该Xe离子束;
从该第一离子束选择单一带电的Xe2 +,形成主要由Xe2 +所构成的离子束;以及
在大约500℃至大约650℃的温度退火,使源极/漏极延伸区域和源极/漏极区域活化,并且使无定形区域再结晶。
8.根据权利要求6所述的方法,其中
将Xe2 +植入到结晶基板中以形成无定形区域,该无定形区域从该基板上表面延伸至不超过大约400埃的深度;
将掺杂杂质植入到经无定形化的区域,以形成源极/漏极区域植入物;
在大约500℃至大约650℃的温度退火,使源极/漏极延伸区域活化。
9.根据权利要求6所述的方法,进一步包括在该基板(10)上表面之上隔着栅绝缘层(13)形成栅电极(14);
将离子掺杂杂质植入到该无定形区域,以形成源极/漏极延伸区域植入物;
退火以活化该源极/漏极延伸区域,并且使该无定形区域再结晶;
在源极/漏极延伸区域上方的栅电极侧表面上形成侧壁间隔片(30);
植入Xe2 +,以形成毗邻该源极/漏极延伸区域的无定形区域;
将离子掺杂杂质植入到该无定形区域,形成源极/漏极区域植入物;以及
在大约500℃至大约650℃的温度退火,形成源极/漏极区域,并且使该无定形区域再结晶。
10.根据权利要求6所述的方法,进一步包括:
在基板(10)上表面之上隔着栅绝缘层(13)形成栅电极(14);
在栅电极侧表面形成侧壁间隔片(15);
将离子掺杂杂质植入到无定形区域,以形成隔开的源极/漏极区域植入物;
退火以活化源极/漏极区域,并且使该无定形区域再结晶;
移除该侧壁间隔片;
将Xe2 +植入到该基板,以无定形化栅电极侧表面和源极/漏极区域之间的区域;
将离子掺杂杂质植入到经无定形化的区域,以形成源极/漏极延伸区域植入物;以及
在大约500℃至大约650℃的温度退火,使源极/漏极延伸区域活化并且使该无定形区域再结晶。
CNB028152212A 2001-08-01 2002-04-05 氙预无定形化植入法 Expired - Lifetime CN1307688C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/918,794 2001-08-01
US09/918,794 US6624037B2 (en) 2001-08-01 2001-08-01 XE preamorphizing implantation

Publications (2)

Publication Number Publication Date
CN1539160A CN1539160A (zh) 2004-10-20
CN1307688C true CN1307688C (zh) 2007-03-28

Family

ID=25440981

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028152212A Expired - Lifetime CN1307688C (zh) 2001-08-01 2002-04-05 氙预无定形化植入法

Country Status (8)

Country Link
US (1) US6624037B2 (zh)
EP (2) EP1511071A3 (zh)
JP (1) JP4526819B2 (zh)
KR (1) KR100880687B1 (zh)
CN (1) CN1307688C (zh)
DE (1) DE60222675T2 (zh)
TW (1) TWI228276B (zh)
WO (1) WO2003012844A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1309989B1 (en) * 2000-08-16 2007-01-10 Massachusetts Institute Of Technology Process for producing semiconductor article using graded expitaxial growth
US6940089B2 (en) * 2001-04-04 2005-09-06 Massachusetts Institute Of Technology Semiconductor device structure
US6864516B2 (en) 2002-02-28 2005-03-08 Advanced Micro Devices, Inc. SOI MOSFET junction degradation using multiple buried amorphous layers
US20030227057A1 (en) * 2002-06-07 2003-12-11 Lochtefeld Anthony J. Strained-semiconductor-on-insulator device structures
US7074623B2 (en) * 2002-06-07 2006-07-11 Amberwave Systems Corporation Methods of forming strained-semiconductor-on-insulator finFET device structures
US6995430B2 (en) * 2002-06-07 2006-02-07 Amberwave Systems Corporation Strained-semiconductor-on-insulator device structures
US7335545B2 (en) * 2002-06-07 2008-02-26 Amberwave Systems Corporation Control of strain in device layers by prevention of relaxation
DE10240422B4 (de) * 2002-09-02 2010-02-18 Advanced Micro Devices, Inc., Sunnyvale Verfahren zur Herstellung eines Halbleiterelements mit einer Leitungsstruktur mit vergrößertem Metallsilizidbereich
US6767809B2 (en) * 2002-11-19 2004-07-27 Silterra Malayisa Sdn. Bhd. Method of forming ultra shallow junctions
US6743689B1 (en) * 2003-01-14 2004-06-01 Advanced Micro Devices, Inc. Method of fabrication SOI devices with accurately defined monocrystalline source/drain extensions
EP1577932A3 (en) * 2004-03-16 2006-05-10 Interuniversitair Microelektronica Centrum Method of manufacturing a semiconductor on a silicon on insulator (SOI) substrate using solid epitaxial regrowth (SPER) and semiconductor device made thereby
TWI279852B (en) * 2004-03-16 2007-04-21 Imec Inter Uni Micro Electr Method of manufacturing a semiconductor on a silicon on insulator (SOI) substrate using solid epitaxial regrowth (SPER) and semiconductor device made thereby
TWI248681B (en) * 2004-03-29 2006-02-01 Imec Inter Uni Micro Electr Method for fabricating self-aligned source and drain contacts in a double gate FET with controlled manufacturing of a thin Si or non-Si channel
JP3737504B2 (ja) * 2004-03-31 2006-01-18 松下電器産業株式会社 半導体装置の製造方法
JP4907063B2 (ja) * 2004-05-25 2012-03-28 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7253071B2 (en) * 2004-06-02 2007-08-07 Taiwan Semiconductor Manufacturing Company Methods for enhancing the formation of nickel mono-silicide by reducing the formation of nickel di-silicide
US7157355B2 (en) 2004-06-30 2007-01-02 Freescale Smeiconductor, Inc. Method of making a semiconductor device having a strained semiconductor layer
WO2006033041A1 (en) * 2004-09-22 2006-03-30 Koninklijke Philips Electronics N.V. Integrated circuit fabrication using solid phase epitaxy and silicon on insulator technology
KR100571424B1 (ko) * 2004-12-30 2006-04-14 동부아남반도체 주식회사 이중 스텝 소오스/드레인 이온 주입에 의한 안정한트랜지스터 형성 방법
JP4923419B2 (ja) * 2005-03-15 2012-04-25 富士通セミコンダクター株式会社 半導体装置の製造方法
WO2007035398A2 (en) * 2005-09-15 2007-03-29 Amberwave Systems Corporation Control of strain in device layers by selective relaxation and prevention of relaxation
JP2007188940A (ja) * 2006-01-11 2007-07-26 Hitachi Displays Ltd 表示装置の製造方法
US20070246750A1 (en) * 2006-04-19 2007-10-25 Toshiba America Electronics Components, Inc. Control of body potential of partially-depleted field-effect transistors
DE102006019935B4 (de) * 2006-04-28 2011-01-13 Advanced Micro Devices, Inc., Sunnyvale SOI-Transistor mit reduziertem Körperpotential und ein Verfahren zur Herstellung
JP2008041988A (ja) * 2006-08-08 2008-02-21 Hiroshima Univ ゲルマニウム(Ge)半導体デバイス製造方法。
US20080099841A1 (en) * 2006-10-31 2008-05-01 International Business Machines Corporation Method and structure for reducing soi device floating body effects without junction leakage
US9171936B2 (en) * 2006-12-06 2015-10-27 Cypress Semiconductor Corporation Barrier region underlying source/drain regions for dual-bit memory devices
US7442614B1 (en) 2008-03-21 2008-10-28 International Business Machines Corporation Silicon on insulator devices having body-tied-to-source and methods of making
US9461169B2 (en) 2010-05-28 2016-10-04 Globalfoundries Inc. Device and method for fabricating thin semiconductor channel and buried strain memorization layer
US8536032B2 (en) * 2011-06-08 2013-09-17 International Business Machines Corporation Formation of embedded stressor through ion implantation
US8748285B2 (en) 2011-11-28 2014-06-10 International Business Machines Corporation Noble gas implantation region in top silicon layer of semiconductor-on-insulator substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584026A (en) * 1984-07-25 1986-04-22 Rca Corporation Ion-implantation of phosphorus, arsenic or boron by pre-amorphizing with fluorine ions
US5953615A (en) * 1999-01-27 1999-09-14 Advance Micro Devices Pre-amorphization process for source/drain junction
US6225176B1 (en) * 1999-02-22 2001-05-01 Advanced Micro Devices, Inc. Step drain and source junction formation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574805A (ja) * 1991-09-13 1993-03-26 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
EP0622834A3 (en) * 1993-04-30 1998-02-11 International Business Machines Corporation Method to prevent latch-up and improve breakdown voltage in SOI MOSFETS
US6074937A (en) 1997-12-18 2000-06-13 Advanced Micro Devices, Inc. End-of-range damage suppression for ultra-shallow junction formation
US6191012B1 (en) 1998-12-03 2001-02-20 Advanced Micro Devices Method for forming a shallow junction in a semiconductor device using antimony dimer
JP2001068669A (ja) * 1999-08-30 2001-03-16 Sony Corp 半導体装置の製造方法
US6403433B1 (en) * 1999-09-16 2002-06-11 Advanced Micro Devices, Inc. Source/drain doping technique for ultra-thin-body SOI MOS transistors
KR100916656B1 (ko) * 2002-10-22 2009-09-08 삼성전자주식회사 레이저 조사 장치 및 이를 이용한 다결정 규소 박막트랜지스터의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584026A (en) * 1984-07-25 1986-04-22 Rca Corporation Ion-implantation of phosphorus, arsenic or boron by pre-amorphizing with fluorine ions
US5953615A (en) * 1999-01-27 1999-09-14 Advance Micro Devices Pre-amorphization process for source/drain junction
US6225176B1 (en) * 1999-02-22 2001-05-01 Advanced Micro Devices, Inc. Step drain and source junction formation

Also Published As

Publication number Publication date
EP1511071A3 (en) 2009-01-14
CN1539160A (zh) 2004-10-20
WO2003012844A1 (en) 2003-02-13
EP1511071A2 (en) 2005-03-02
KR100880687B1 (ko) 2009-01-30
TWI228276B (en) 2005-02-21
JP4526819B2 (ja) 2010-08-18
US20030027381A1 (en) 2003-02-06
EP1419521B1 (en) 2007-09-26
US6624037B2 (en) 2003-09-23
DE60222675D1 (de) 2007-11-08
EP1419521A1 (en) 2004-05-19
DE60222675T2 (de) 2008-06-19
JP2004537856A (ja) 2004-12-16
KR20040026701A (ko) 2004-03-31

Similar Documents

Publication Publication Date Title
CN1307688C (zh) 氙预无定形化植入法
US7951657B2 (en) Method of forming a planar field effect transistor with embedded and faceted source/drain stressors on a silicon-on-insulator (S0I) wafer, a planar field effect transistor structure and a design structure for the planar field effect transistor
US5899732A (en) Method of implanting silicon through a polysilicon gate for punchthrough control of a semiconductor device
US5212397A (en) BiCMOS device having an SOI substrate and process for making the same
KR100926390B1 (ko) 초 미세 접합부 형성 방법
WO1987004860A1 (en) Partially dielectrically isolated semiconductor devices
EP1008170A1 (en) Method of controlling dopant concentrations by implanting gettering atoms
US6218251B1 (en) Asymmetrical IGFET devices with spacers formed by HDP techniques
US7659169B2 (en) Semiconductor device and method of manufacturing thereof
US6506654B1 (en) Source-side stacking fault body-tie for partially-depleted SOI MOSFET hysteresis control
CN1316569C (zh) 低温的掺杂后活化工艺
US7091097B1 (en) End-of-range defect minimization in semiconductor device
US6459141B2 (en) Method and apparatus for suppressing the channeling effect in high energy deep well implantation
US7060547B2 (en) Method for forming a junction region of a semiconductor device
US11315825B2 (en) Semiconductor structures including stacked depleted and high resistivity regions
US8664746B2 (en) Gettering method for dielectrically isolated devices
CN112349730A (zh) 在一个或多个埋置多晶层上方的鳍式场效应晶体管
US6806147B1 (en) Method and apparatus for suppressing the channeling effect in high energy deep well implantation
US7348229B2 (en) Method of manufacturing a semiconductor device and semiconductor device obtained with such a method
WO2006033041A1 (en) Integrated circuit fabrication using solid phase epitaxy and silicon on insulator technology
CN101777496B (zh) nMOS晶体管的制造方法
CN112652663A (zh) Mos晶体管及利用离子注入提高源漏掺杂浓度的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20070328

CX01 Expiry of patent term