CN1302614C - Power-consumption control system of small armature electric induction permanent magnet brush-less DC motor - Google Patents

Power-consumption control system of small armature electric induction permanent magnet brush-less DC motor Download PDF

Info

Publication number
CN1302614C
CN1302614C CNB2005100119736A CN200510011973A CN1302614C CN 1302614 C CN1302614 C CN 1302614C CN B2005100119736 A CNB2005100119736 A CN B2005100119736A CN 200510011973 A CN200510011973 A CN 200510011973A CN 1302614 C CN1302614 C CN 1302614C
Authority
CN
China
Prior art keywords
motor
permanent magnet
control system
direct current
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100119736A
Other languages
Chinese (zh)
Other versions
CN1710801A (en
Inventor
房建成
王志强
刘刚
田希晖
樊亚洪
孙津济
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Beijing University of Aeronautics and Astronautics
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CNB2005100119736A priority Critical patent/CN1302614C/en
Publication of CN1710801A publication Critical patent/CN1710801A/en
Application granted granted Critical
Publication of CN1302614C publication Critical patent/CN1302614C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The present invention relates to a low power consumption control system for a permanent magnet brushless DC motor with small armature inductance, which can be used as a low power consumption driving part for attitude control actuating devices of satellites and space stations. The low power consumption control system is mainly composed of a voltage reducing chopper, a permanent magnet brushless DC motor with small armature inductance, a three-phase inversion bridge, a digital controller, an energy consumption unit, etc. The peak value of the back electromotive force of a trapezoidal wave is detected, and after a proper constant value is added to the peak value, the obtained value is used as the reference input of the voltage reducing chopper. The input of the voltage reducing chopper is regulated in real time with the change of the rotary speed of the motor. The control system of the present invention effectively reduces iron loss during the dynamic speed rising process of the permanent magnet brushless DC motor and torque pulsation caused by PWM modulation, reduces armature reaction and electromagnetic interference and enhance the dynamic properties and the running efficiency of a fly reel driving system, so that the control system has important application value on spacecrafts with limited electric energy.

Description

The small armature electric induction permanent magnet brush-less DC motor control system
Affiliated technical field
The present invention relates to the brushless, permanently excited direct current motor control system, be used for the control of the driver part of spacecraft attitude control executing mechanism such as satellite, space station.
Background technology
The driver part of the attitude control actuator of spacecraft such as satellite, space station requires low in energy consumption, so that make full use of the limited electric power energy of spacecraft.The driver part of present attitude control actuator, directly add in the three phase inverter bridge of forming by power device by constant direct current stream, by digitial controller sampling location signal, tach signal and current signal, adopt the pulse-width modulation PWM modulation system that motor is carried out speed governing, particularly for small armature electric induction permanent magnet brush-less DC motor.The driver part of this structure is because its DC side supply power voltage is constant, when back electromotive force is low, the voltage that is added in the armature two ends is bigger, thereby causes that armature supply produces very big pulsation, and the proportion that the eddy current loss of the motor that caused by the PWM modulation this moment accounts for the motor total losses is very big.For the eddy current loss that brushless, permanently excited direct current motor PWM modulation is caused reduces, have to increase inductance value, the reduction supply power voltage of stator armature, these methods have reduced the power factor and the dynamic response performance of motor.
Summary of the invention
The technical problem that the present invention solves is: overcome the deficiencies in the prior art, the control system that is used for the small armature inductance permanent-magnet brushless DC electric machine that a kind of eddy current loss is little, dynamic response performance is good is provided.
Technical solution of the present invention is: the small armature electric induction permanent magnet brush-less DC motor control system, comprise constant direct current source, three phase inverter bridge, small armature electric induction permanent magnet brush-less DC motor and digitial controller, it is characterized in that: between constant direct current source and three phase inverter bridge, be added with buck chopper device and energy consumption unit, the output voltage of buck chopper device offers three phase inverter bridge by the energy consumption unit, and brushless, permanently excited direct current motor is driven and speed governing; Position signalling output at small armature electric induction permanent magnet brush-less DC motor is added with the back electromotive force checkout gear, and the output of back electromotive force checkout gear is connected to digitial controller; Position detecting device is installed in the stator of brushless, permanently excited direct current motor, and the output of position detecting device is connected to digitial controller, is used for the motor rotor position signal is sampled; The constant direct current source offers constant voltage of buck chopper device, motor is in boosting velocity procedure, the back electromotive force checkout gear is sent detected back electromotive force peak value into digitial controller, import as the reference of buck chopper device after this back electromotive force peak value and the addition of a normal value, and the input of adjusting the buck chopper device along with the small armature electric induction permanent magnet brush-less DC motor change in rotational speed in real time is given, and brushless, permanently excited direct current motor is driven and speed governing.
Principle of the present invention is: because the size of the motor iron loss that PWM causes is directly proportional with the squared magnitude of pwm pulse, therefore, the pwm pulse amplitude when reducing speed governing just can effectively reduce the iron loss of motor.The present invention is in little armature brushless, permanently excited direct current motor boosting velocity procedure, utilize the back electromotive force checkout gear to detect certain phase stator armature back electromotive force peak value, this value is added the reference input voltage of a suitable constant as the buck chopper device, just make the output voltage of buck chopper device follow the peak value of brushless, permanently excited direct current motor emf phase and change, and the voltage of buck chopper device output is offered three phase inverter bridge carry out speed governing, this structure has reduced the amplitude of electric current PWM, thereby has reduced the eddy current loss of the brushless, permanently excited direct current motor that is caused by PWM effectively.The purpose that adds the energy consumption unit is when the chopper output voltage is too high behind electric motor starting, by this energy consumption unit too high voltage energy resource consumption to be fallen, to avoid that three phase inverter bridge is caused damage.
The present invention's advantage compared with prior art is: the peak value that has adopted dynamic tracking brushless, permanently excited direct current motor emf phase, and offer suitable input voltage of three phase inverter bridge by FEEDBACK CONTROL to the buck chopper device, under the prerequisite that guarantees the brushless, permanently excited direct current motor speed adjusting performance, the amplitude that has reduced PWM changes, make the eddy current loss of the brushless, permanently excited direct current motor that causes by the PWM modulation reduce greatly, and reduced to modulate the torque pulsation that causes, thereby guaranteed that brushless, permanently excited direct current motor armature winding can operate under the comparatively ideal temperature in vacuum environment by PWM.Simultaneously, saved the electric power energy of spacecraft.
Description of drawings
Fig. 1 is a theory diagram of the present invention;
Fig. 2 is the digitial controller theory diagram of Fig. 1;
Fig. 3 is computing of the present invention and control flow chart.
Embodiment
As shown in Figure 1, the present invention is made up of constant direct current source 1, buck chopper device 2, energy consumption unit 3, three phase inverter bridge 4, trapezoidal wave back-emf brushless, permanently excited direct current motor 5, back electromotive force checkout gear 6, digitial controller 7, and constant direct current source 1 offers 2 one constant voltages of buck chopper device.Motor is in boosting velocity procedure, and back electromotive force checkout gear 6 is sent to digitial controller 7 with detected back electromotive force peak value, imports as the reference of buck chopper device after this value and a suitable normal value addition.The output voltage of buck chopper device 2 offers three phase inverter bridge 4, and brushless, permanently excited direct current motor 5 is driven and speed governing.In brushless, permanently excited direct current motor 5 boosting velocity procedures, the back electromotive force peak change of following brushless, permanently excited direct current motor 5 of the output voltage linearity of buck chopper device 2 and changing.
As shown in Figure 1, buck chopper device 2 comprises one from the switch-off power device, recover power diode, filter inductance and electrochemical capacitor soon, the drain electrode of switch-off power device connects DC power supply, source electrode connects the negative electrode of fast recovery power diode and the input of filter inductance, the positive pole of the output termination electrochemical capacitor of filter inductance, the equal ground connection of negative pole of recovering the negative pole and the electrochemical capacitor of power diode soon.Recently control the output voltage of buck chopper device from the duty of the PWM of switch-off power device triggering gate pole by adjusting.Energy consumption unit 3 comprises one from switch-off power device and a power resistor being connected in series with it.When the motor load anticlimax, need start energy consumption resistance, with the guaranteed output balance.Three phase inverter bridge 4 comprises six from the switch-off power device, the commutation and the speed governing of control motor.Permanent-magnet brushless DC electric machine stator armature winding is a three-phase Y connection.
Back electromotive force checkout gear 6 is made up of Hall voltage transducer, low pass filter.The Hall voltage sensor string is received in the C phase winding of position signalling output of brushless, permanently excited direct current motor, the low-pass filter of output termination of Hall voltage transducer, and the A/D ALT-CH alternate channel of digitial controller is received in the output of low pass filter.
As shown in Figure 2, digitial controller of the present invention adopts TMS320F2812, it is made up of CPU, memory, digital I/O, PWM generation module and analog-to-digital conversion module, and analog-to-digital conversion module is sampled to back electromotive force peak value, armature supply, chopper output voltage, motor rotor position signal.Back electromotive force peak value after the sampling adds 20% set-point as the chopper output voltage of supply voltage, and armature supply is used to control the torque of motor after filtering, and rotor-position signal generates commutation signal by logical operation.Generate 8 road pwm signals after computing, wherein PWM1~PWM6 is used for the control that control, PWM8 that brushless, permanently excited direct current motor 5 controls and speed governing, PWM7 be used for buck chopper device 2 are used for energy consumption unit 3.
Position detecting device is made up of hall position sensor and shaping circuit, and the square-wave signal of hall position sensor output is connected to the I/O pin of digitial controller after shaping.
Utilize Hall voltage sensor phase stator armature back electromotive force peak value, this value is added the reference input voltage of a suitable constant (be generally DC power supply voltage 20%) as the buck chopper device, just make the output voltage of buck chopper device follow the peak value of brushless, permanently excited direct current motor emf phase and change, and the output of the voltage of buck chopper device is offered three phase inverter bridge carry out speed governing.

Claims (6)

1, small armature electric induction permanent magnet brush-less DC motor control system, comprise constant direct current source, three phase inverter bridge, small armature electric induction permanent magnet brush-less DC motor and digitial controller, it is characterized in that: between constant direct current source and three phase inverter bridge, be added with buck chopper device and energy consumption unit, the output voltage of buck chopper device offers three phase inverter bridge by the energy consumption unit, and brushless, permanently excited direct current motor is driven and speed governing; Position signalling output at small armature electric induction permanent magnet brush-less DC motor is added with the back electromotive force checkout gear, and the output of back electromotive force checkout gear is connected to digitial controller; Position detecting device is installed in the stator of brushless, permanently excited direct current motor, and the output of position detecting device is connected to digitial controller, is used for the motor rotor position signal is sampled; The constant direct current source offers constant voltage of buck chopper device, motor is in boosting velocity procedure, the back electromotive force checkout gear is sent detected back electromotive force peak value into digitial controller, import as the reference of buck chopper device after this back electromotive force peak value and the addition of a normal value, and the input of adjusting the buck chopper device along with the small armature electric induction permanent magnet brush-less DC motor change in rotational speed in real time is given, and brushless, permanently excited direct current motor is driven and speed governing.
2, small armature electric induction permanent magnet brush-less DC motor control system according to claim 1, it is characterized in that: described digitial controller is by CPU, memory, numeral I/O, PWM generation module and analog-to-digital conversion module are formed, analog-to-digital conversion module is to the back electromotive force peak value, armature supply, the chopper output voltage, the motor rotor position signal is sampled, generate 8 road pwm signals after computing and control, wherein the 1 road pwm signal to the 6 road pwm signals are used for the control and the speed governing of brushless, permanently excited direct current motor, the 7 road pwm signal is used for the control of buck chopper device, the 8 road pwm signal is used for the control of energy consumption unit.
3, small armature electric induction permanent magnet brush-less DC motor control system according to claim 1, it is characterized in that: described buck chopper device (1) comprises one from the switch-off power device, recover power diode, filter inductance and electrochemical capacitor soon, connect the output of direct current steady power supply from the drain electrode of switch-off power device, source electrode connects the negative electrode of fast recovery diode and the input of filter inductance, the minus earth of diode, the positive pole of the output termination electrochemical capacitor of filter inductance, the minus earth of electrochemical capacitor.
4, small armature electric induction permanent magnet brush-less DC motor control system according to claim 1 is characterized in that: described energy consumption unit comprises one from switch-off power device and a power resistor being connected in series with it.
5, small armature electric induction permanent magnet brush-less DC motor control system according to claim 1, it is characterized in that: described back electromotive force checkout gear is made up of Hall voltage transducer, low pass filter, the Hall voltage transducer is added on the position signalling output of brushless, permanently excited direct current motor, the low-pass filter of output termination of Hall voltage transducer, the output of low pass filter are received the A/D ALT-CH alternate channel of digitial controller.
6, small armature electric induction permanent magnet brush-less DC motor control system according to claim 1, it is characterized in that: described position detecting device is made up of hall position sensor and shaping circuit, and the square-wave signal of hall position sensor output is connected to the I/O pin of digitial controller after shaping.
CNB2005100119736A 2005-06-21 2005-06-21 Power-consumption control system of small armature electric induction permanent magnet brush-less DC motor Expired - Fee Related CN1302614C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100119736A CN1302614C (en) 2005-06-21 2005-06-21 Power-consumption control system of small armature electric induction permanent magnet brush-less DC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100119736A CN1302614C (en) 2005-06-21 2005-06-21 Power-consumption control system of small armature electric induction permanent magnet brush-less DC motor

Publications (2)

Publication Number Publication Date
CN1710801A CN1710801A (en) 2005-12-21
CN1302614C true CN1302614C (en) 2007-02-28

Family

ID=35706994

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100119736A Expired - Fee Related CN1302614C (en) 2005-06-21 2005-06-21 Power-consumption control system of small armature electric induction permanent magnet brush-less DC motor

Country Status (1)

Country Link
CN (1) CN1302614C (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159422A (en) * 2007-10-16 2008-04-09 李平 Permanent-magnet DC motor drive control system with approximate constant power pulling motor characteristics
WO2011054151A1 (en) * 2009-11-06 2011-05-12 深圳市博巨兴实业发展有限公司 Control system for brushless dc fan
CN101739013B (en) * 2009-12-22 2011-07-27 北京航空航天大学 Digital control system for satellite aerial directing mechanism
CN101753082A (en) * 2010-02-04 2010-06-23 李红旗 DC machine actiyator
CN101908854A (en) * 2010-08-24 2010-12-08 南京新乐能电子科技有限公司 DC motor speed-regulating controller
CN101917153B (en) * 2010-08-24 2012-07-25 浙江凯能科技有限公司 Intelligent motor control system
CN102790568B (en) * 2012-08-01 2014-10-15 北京海斯德电机技术有限公司 Soft start control system for high-speed brushless DC motor
CN102857162B (en) * 2012-09-11 2015-04-15 宜昌清江电气有限公司 Main circuit and control method of high-current brushless direct-current motor
TWI472145B (en) * 2012-09-28 2015-02-01 Ind Tech Res Inst Motor controller with reverse connection protection and motor driving device
CN104300854A (en) * 2014-11-07 2015-01-21 黑龙江省科学院科技孵化中心 Brushless direct current motor drive circuit based on Buck convertor
CN104410341A (en) * 2014-11-27 2015-03-11 江苏科技大学 Low-speed torque ripple restraining device and restraining method based on direct current voltage adjustment
CN105259502A (en) * 2015-10-16 2016-01-20 沈阳兴华航空电器有限责任公司 Brushless DC motor testing device
CN105259503A (en) * 2015-10-16 2016-01-20 沈阳兴华航空电器有限责任公司 General brushless motor test device
CN106655974A (en) * 2017-03-21 2017-05-10 沈阳工业大学 Input power adjusting device and method suitable for motor operating mechanism
CN108768224A (en) * 2018-06-14 2018-11-06 东华大学 A kind of torque fluctuations method caused by reduction brshless DC motor commutation process
CN114389489B (en) * 2020-10-22 2023-07-18 北京机械设备研究所 Brushless direct current motor driving system for space flywheel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726543A (en) * 1995-08-23 1998-03-10 Samsung Electronics Co., Ltd. Sensorless, brushless DC motor start-up circuit using intermittently-accelerated-rate clock
JP2001178184A (en) * 1999-12-16 2001-06-29 Matsushita Electric Ind Co Ltd Inverter deice and electric washing machine incorporating the same
JP2003219676A (en) * 2002-01-23 2003-07-31 Matsushita Electric Ind Co Ltd Motor driving device and washing machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726543A (en) * 1995-08-23 1998-03-10 Samsung Electronics Co., Ltd. Sensorless, brushless DC motor start-up circuit using intermittently-accelerated-rate clock
JP2001178184A (en) * 1999-12-16 2001-06-29 Matsushita Electric Ind Co Ltd Inverter deice and electric washing machine incorporating the same
JP2003219676A (en) * 2002-01-23 2003-07-31 Matsushita Electric Ind Co Ltd Motor driving device and washing machine

Also Published As

Publication number Publication date
CN1710801A (en) 2005-12-21

Similar Documents

Publication Publication Date Title
CN1302614C (en) Power-consumption control system of small armature electric induction permanent magnet brush-less DC motor
TWI424679B (en) Sensorless motor control method with energy recovery ability
CN109450340B (en) Control method of excitation double salient pole motor field failure fault-tolerant power generation system
CN102790568B (en) Soft start control system for high-speed brushless DC motor
CN106849779B (en) Switched reluctance machines dead-beat current PWM duty cycle control method
CN102611369B (en) Speed-regulating system for switched reluctance motor specially used for electric vehicle
CN101388631A (en) Magnetic suspension counteraction flyback motor control system
CN103078590B (en) Control device for motor-generator
CN101789737A (en) Brshless DC motor inhibiting electromagnetic torque pulsation method and device
CN110247591B (en) Two-step electro-magnetic doubly salient motor rotor initial position estimation method
CN107171602B (en) A kind of PWM control method of brshless DC motor regenerative braking operation
CN103391034B (en) The electric automobile hub control method of disk type coreless Permanent Magnet Synchronous Motor Controller
CN101364781A (en) Position-sensorless control device for wide speed regulating range brushless DC motor without filter
CN201813339U (en) Brushless direct current (DC) motor control system based on digital signal processor (DSP)
Wahyu et al. PWM Control Strategy of Regenerative Braking to Maximize The Charging Current into The Battery in SRM Drive
CN103248298A (en) Driving method for DC motor
CN202679294U (en) Actuating device of brushless continuous current motor
CN203057050U (en) Electromagnetic torque ripple inhibition device for brushless direct current motor
Nugroho et al. Regenerative Braking with Duty Cycle Settings for Brushless DC Motor
CN204168103U (en) A kind of electric exciting brushless direct current machine
CN203574575U (en) Electric vehicle speed control device
CN209767421U (en) Generator voltage regulation control system
CN203352516U (en) Disc-type iron-core-free permanent magnet synchronous motor controller for electric automobile wheel hub
CN108683381B (en) Motor and drive control circuit thereof
CN104184375B (en) Control device of switched reluctance motor and control method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070228

Termination date: 20180621