CN1300872C - Columnar structure LiCoO2 electrode material and its preparing process - Google Patents

Columnar structure LiCoO2 electrode material and its preparing process Download PDF

Info

Publication number
CN1300872C
CN1300872C CNB2005100117143A CN200510011714A CN1300872C CN 1300872 C CN1300872 C CN 1300872C CN B2005100117143 A CNB2005100117143 A CN B2005100117143A CN 200510011714 A CN200510011714 A CN 200510011714A CN 1300872 C CN1300872 C CN 1300872C
Authority
CN
China
Prior art keywords
transition metal
hours
main body
lithium
licoo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100117143A
Other languages
Chinese (zh)
Other versions
CN1702891A (en
Inventor
杨文胜
李秀梅
段雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CNB2005100117143A priority Critical patent/CN1300872C/en
Publication of CN1702891A publication Critical patent/CN1702891A/en
Application granted granted Critical
Publication of CN1300872C publication Critical patent/CN1300872C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a columnar structure LiCoO2 electrode material and a preparing method thereof, which belongs to the technical field of lithium ion battery materials and preparation thereof. The electrode material has the chemical components Li (1-2 beta) MbetaCoO2, Co and O are combined with each other by a covalent bond, and a main body veneer CoO2 is formed. Lithium ions and transition metal ions are positioned at a sandwich layer of a main body veneer and combined with the main body veneer by an ionic bond, and the main body veneer has negative electricity, so the present invention has a typical columnar structure of alpha-NaFeO2. The columnar structure LiCoO2 electrode material adopts a citric acid sol-gel method to prepare precursors of the columnar LiCoO2, parts of the lithium ions in the columnar LiCoO2 are replaced by transition metal ions Zn<2> or Cd<2>; then, the lithium ions and the transition metal ions are uniformly distributed at the sandwich layer of the main body veneer through roasting, the main body formed from the CoO2 and the columnar structure LiCoO2 is obtained. In the cycle process of the charge and the discharge, the present invention has the advantages of stable structure, favorable properties for preventing overcharging, high capacitance per unit volume and favorable electrochemical circular properties.

Description

A kind of columnar structure LiCoO 2 electrode material and preparation method thereof
Technical field
The invention belongs to lithium ion battery material and preparing technical field thereof, a kind of columnar structure LiCoO 2 electrode material and preparation method thereof particularly is provided, has replaced the columnar structure LiCoO 2 electrode material and the fused salt ion-exchange reactions preparation method thereof of lithium ion with doped transition metal ions.
Background technology
Has α-NaFeO 2The LiCoO of type layer structure 2Having excellent electrochemical properties the most in present various anode material for lithium-ion batteries, is the main positive electrode of commercialization lithium ion battery.But LiCoO 2Cost an arm and a leg actual specific capacity 120~140mAhg -1, only be its theoretical capacity (274mAhg -1) about 50%; LiCoO 2The anti-over-charging electrical property relatively poor, specific capacity reduces rapidly under higher charging voltage.For overcoming LiCoO 2The problem that exists, multiple modified measures and method have been taked in people's research.
It is to adopt Ni that present people study more method of modifying, Al, and Ti, multiple element such as Fe carries out doped and substituted to Co, in the hope of reaching the purpose of stabilizing material structure.As at document (1) Solid State Ionics, 2003, among the 159:241, people such as Chi-Hwan Han have synthesized Part of Co Al, the LiCo that Ni replaces 0.8M 0.2O 2(M=Al, Ni) compound, wherein LiCo 0.8Ni 0.2O 2Discharge capacity first reach 146mAh/g, 20 times circulation back capacity still remains on 130mAh/g.Many elements in the periodic table of elements have been used to the doped and substituted of Co, but except that the doped and substituted of only a few element (as Ni etc.) can not cause the reduction of reversible specific capacity first, the doped and substituted of other elements all can make its first reversible specific capacity reduce significantly, and the doped and substituted of elements such as Ni does not have obvious effect for the anti-over-charging electrical property that improves material.
Another important modification means are at LiCoO 2The surface coats Al 2O 3, P 2O 5, AlPO 4, materials such as MgO improve the pernicious interaction between electrode material and electrolyte, the dissolving that slows down cobalt.As at document (2) Solid State Ionics, 2002, among the 148:335, people such as Zhaoxiang Wang are at LiCoO 2The surface has coated MgO, Al 2O 3, SnO 2Deng metal oxide, wherein the product of MgO coating is 4.7V (vs.Li when charging by voltage +/ still have good electrochemistry cycle performance Li) time.But metal oxides such as MgO all are the non-electrochemical active material, it adds the reduction that affiliation causes the electrode material reversible capacity, in addition, therefore the method does not change the body construction of material, is that the raising of electrochemistry cycle performance and anti-over-charging performance there is no remarkable effect to the structural stability of electrode material.
Stratiform LiCoO 2In charging process, with laminate interlayer Li +Constantly deviating from of ion, repulsive force between the main body laminate strengthens, and the laminate spacing is constantly expanded, and when the laminate spacing increases to a certain degree (when promptly overcharging), laminate subsides, and irreversible transition takes place, and makes LiCoO 2Electrochemical specific capacity reduce rapidly.
Summary of the invention
The object of the present invention is to provide a kind of columnar structure LiCoO 2 electrode material and preparation method thereof, solved stratiform LiCoO 2What exist increases to a certain degree (when promptly overcharging) when the laminate spacing, and laminate subsides, and the generation irreversible transition makes LiCoO 2Electrochemical specific capacity reduce this problem rapidly.
Layer pole structure lithium cobaltate cathode material provided by the invention is with the part lithium ion Li in the stratiform cobalt acid lithium +Use transition metal ions Zn 2+Or Cd 2+Replace.Its chemical composition general formula is Li 1-2 βM βCoO 2, M is a kind of among transition metal Zn, the Cd in the formula, and 0.02≤β≤0.05; Cobalt and oxygen constitute CoO with covalent bonds 2Main body laminate, lithium ion and transition metal ions are positioned at body layer plate holder layer, combine with ionic bond with electronegative main body laminate, have typical α-NaFeO 2The type layer structure belongs to hexagonal crystal system, R 3m space group.
This layer post lithium cobaltate cathode material adopts fused salt ion-exchange reactions method to prepare.Promptly adopt the citric acid sol-gel process to prepare the stratiform cobalt acid lithium LiCoO of the tiny homogeneous of particle diameter earlier 2Presoma passes through the fused salt ion-exchange reactions then with the part lithium ion Li in the stratiform cobalt acid lithium +Use transition metal ions Zn 2+Or Cd 2+Replace, by the roasting homogeneous lithium ion and transition metal ions are evenly distributed on by CoO again 2The interlayer of the main body laminate that constitutes obtains layer post cobalt acid lithium Li thus 1-2 βM βCoO 2, wherein M is Zn, Cd.
Concrete processing step is as follows:
A is the mixed of 1.05~1.15/1/2.05~2.15 with lithium hydroxide, basic cobaltous carbonate and citric acid by Li/Co/ citric acid mol ratio, is dissolved in the deionized water, is made into Li +Concentration be 2~4molL -1Solution, in Rotary Evaporators, under the condition of 50~80 ℃ of temperature, 40~100rpm rotating speed, reacted 2~3 hours, form peony colloidal sol, be transferred in the vacuum drying chamber then, in 100~140 ℃ of vacuumizes 3~4 hours, obtain fluffy red xerogel, xerogel was obtained the floccule of pitchy in 2~5 hours 400~500 ℃ of preliminary treatment, be reentered in the Muffle furnace after the grinding, in 800~900 ℃ of following roastings 3~9 hours, obtain meeting the LiCoO of stoichiometric proportion and the tiny homogeneous of particle diameter 2
The LiCoO that B obtains steps A 2Is 1/5~1/15 mixed with having low-melting transition metal nitrate according to mol ratio, carries out the fused salt ion-exchange reactions being higher than under 10~30 ℃ of temperature of transition metal nitrate fusing point, and the reaction time is 0.5~3 hour; Used low-melting transition metal nitrate that has is: zinc nitrate hexahydrate Zn (NO 3) 26H 2O (36.4 ℃ of fusing points), four water cadmium nitrate Cd (NO 3) 24H 2A kind of among the O (59.4 ℃ of fusing points);
C has more than needed ion exchange product with the aprotic solvent flush away transition metal nitrate, vacuumize is 2~3 hours in 70~100 ℃ vacuum drying chamber; Used aprotic solvent is: acetone CH 3COCH 3, carbon tetrachloride CCl 4, cyclohexane C 6H 12In a kind of.
D with step C gained material with 2~10 ℃ of min -1Speed was warming up to 300~500 ℃ and constant temperature 5~20 hours, naturally cooled to room temperature then, obtained a layer post cobalt acid lithium electrode material.
The invention has the advantages that: this layer post lithium cobaltate cathode material in the charge and discharge cycles process, lithium ion Li +Can reversiblely take off embedding, and transition metal ions Zn 2+, Cd 2+Can not deviate from, play at the laminate interlayer and to stablize pillared effect, the architectural feature of maintenance electrode material, so a layer post cobalt acid lithium electrode material has more in the charge and discharge cycles process, and stable structure, better anti-over-charging electrical property, higher specific capacitance reach better electrochemistry cycle performance.
Embodiment
Embodiment 1:
With lithium hydroxide, basic cobaltous carbonate and citric acid is raw material, takes by weighing raw material and mixes in the ratio of Li/Co/ citric acid=1.05/1/2.05 (mol ratio), is dissolved in the deionized water, is made into Li +Concentration be 4molL -1Solution, (50 ℃, 100rpm) reaction is 2 hours in Rotary Evaporators, form peony colloidal sol, be transferred to then in the vacuum drying chamber,, obtain fluffy red xerogel in 100 ℃ of vacuumizes 4 hours, xerogel was obtained the floccule of pitchy in 2 hours 500 ℃ of preliminary treatment, be reentered into after the grinding in the Muffle furnace,, obtain meeting the LiCoO of stoichiometric proportion in 800 ℃ of following roastings 9 hours 2Product is as the presoma of fused salt ion-exchange reactions.
With zinc nitrate hexahydrate Zn (NO 3) 26H 2O and stratiform LiCoO 2Presoma is pressed the mixed of Zn/Li=5 (mol ratio), the reaction of heating and continuous stirring is 3 hours in 50 ℃ of water-baths, decompress filter and with acetone washing three times, filter cake was 70 ℃ of vacuumizes 3 hours, again 500 ℃ of roastings 5 hours, obtain product of the present invention, ICP and XRD test shows product consist of Li 0.95Zn 0.025CoO 2, belonging to hexagonal crystal system, Electrochemical results sees Table 1.
Embodiment 2:
With lithium hydroxide, basic cobaltous carbonate and citric acid is raw material, takes by weighing raw material and mixes in the ratio of Li/Co/ citric acid=1.1/1/2.1 (mol ratio), is dissolved in the deionized water, is made into Li +Concentration be 2molL -1Solution, (80 ℃, 60rpm) reaction is 3 hours in Rotary Evaporators, form peony colloidal sol, be transferred to then in the vacuum drying chamber,, obtain fluffy red xerogel in 140 ℃ of vacuumizes 3 hours, xerogel was obtained the floccule of pitchy in 5 hours 400 ℃ of preliminary treatment, be reentered into after the grinding in the Muffle furnace,, obtain meeting the LiCoO of stoichiometric proportion in 850 ℃ of following roastings 6 hours 2Product is as the presoma of fused salt ion-exchange reactions.
With zinc nitrate hexahydrate Zn (NO 3) 26H 2O and stratiform LiCoO 2Presoma is pressed the mixed of Zn/Li=15 (mol ratio), the reaction of heating and continuous stirring is 2 hours in 70 ℃ of water-baths, decompress filter and with acetone washing three times, filter cake was 100 ℃ of vacuumizes 2 hours, again 300 ℃ of roastings 20 hours, obtain product of the present invention, ICP and XRD test shows product consist of Li 0.90Zn 0.05CoO 2, belonging to hexagonal crystal system, Electrochemical results sees Table 1.
Embodiment 3:
With lithium hydroxide, basic cobaltous carbonate and citric acid is raw material, takes by weighing raw material and mixes in the ratio of Li/Co/ citric acid=1.15/1/2.15 (mol ratio), is dissolved in the deionized water, is made into Li +Concentration be 3molL -1Solution, (70 ℃, 60rpm) reaction is 3 hours in Rotary Evaporators, form peony colloidal sol, be transferred to then in the vacuum drying chamber,, obtain fluffy red xerogel in 120 ℃ of vacuumizes 4 hours, xerogel was obtained the floccule of pitchy in 4 hours 450 ℃ of preliminary treatment, be reentered into after the grinding in the Muffle furnace,, obtain meeting the LiCoO of stoichiometric proportion in 900 ℃ of following roastings 3 hours 2Product is as the presoma of fused salt ion-exchange reactions.
With four water cadmium nitrate Cd (NO 3) 24H 2O and stratiform LiCoO 2Presoma is pressed the mixed of Zn/Li=5 (mol ratio), the reaction of heating and continuous stirring is 2 hours in 70 ℃ of water-baths, decompress filter and with acetone washing three times, filter cake was 80 ℃ of vacuumizes 3 hours, again 400 ℃ of roastings 10 hours, obtain product of the present invention, ICP and XRD test shows product consist of Li 0.96Cd 0.02CoO 2, belonging to hexagonal crystal system, Electrochemical results sees Table 1.
Embodiment 4:
With lithium hydroxide, basic cobaltous carbonate and citric acid is raw material, takes by weighing raw material and mixes in the ratio of Li/Co/ citric acid=1.1/1/2.1 (mol ratio), is dissolved in the deionized water, is made into Li +Concentration be 4molL -1Solution, (60 ℃, 60rpm) reaction is 2 hours in Rotary Evaporators, form peony colloidal sol, be transferred to then in the vacuum drying chamber,, obtain fluffy red xerogel in 100 ℃ of vacuumizes 4 hours, xerogel was obtained the floccule of pitchy in 3 hours 450 ℃ of preliminary treatment, be reentered into after the grinding in the Muffle furnace,, obtain meeting the LiCoO of stoichiometric proportion in 850 ℃ of following roastings 6 hours 2Product is as the presoma of fused salt ion-exchange reactions.
With four water cadmium nitrate Cd (NO 3) 24H 2O and stratiform LiCoO 2Presoma is pressed the mixed of Zn/Li=15 (mol ratio), the reaction of heating and continuous stirring is 2 hours in 60 ℃ of water-baths, decompress filter and with acetone washing three times, filter cake was 90 ℃ of vacuumizes 2 hours, again 450 ℃ of roastings 10 hours, obtain product of the present invention, ICP and XRD test shows product consist of Li 0.9Cd 0.05CoO 2, belonging to hexagonal crystal system, Electrochemical results sees Table 1.
Adopt day island proper Tianjin ICPS-7500 type inductive coupling plasma emission spectrograph to measure the content of lithium, cobalt, zinc and cadmium in the product, day island proper Tianjin XRD-6000 type x-ray powder diffraction instrument (Cu K αRadiation, λ=1.5406 ) characterize product structure, the Mastersizer of Britain Ma Erwen company 2000 type laser particle size analyzers are measured the particle diameter and the distribution of product.Test result shows: adopt the citric acid sol-gel process to prepare and meet LiCoO 2The stratiform cobalt of stoichiometric proportion acid lithium presoma, the chemical composition of the product that obtains by fused salt ion-exchange reactions method is Li 1-2 βM βCoO 2(M=Zn, Cd); Presoma and ion-exchange afterproduct all belong to hexagonal crystal system, and have good crystal formation; Cobalt acid lithium presoma and the tiny homogeneous of ion-exchange afterproduct particle diameter, particle size distribution range 0.8~1.2 μ m, integrable cloth 1.0 μ m.
The synthetic layer post cobalt acid lithium Li of the inventive method will be adopted 1-2 βM βCoO 2(M=Zn, Cd) electrode material and commercially available acetylene black conductive agent and polytetrafluoroethylene binding agent mix by the mass fraction of (85: 10: 5), and the thickness of compressing tablet to 100 μ m, in 120 ℃ of vacuum (<1Pa) dry 24h.As to electrode, adopt Celgard 2400 barrier films, 1molL with metal lithium sheet -1LiPF 6+ EC+DMC (EC/DMC volume ratio 1: 1) is an electrolyte, at the German M. Braun Unlab of company type dry argon gas glove box (H 2O<1ppm, O 2<be assembled into Experimental cell in 1ppm), adopt the blue electric BTI1-10 type cell tester in Wuhan to carry out electrochemical property test.The chemical composition of the layer post cobalt acid lithium sample that obtains by the embodiment of the invention, the electro-chemical test condition, the reversible specific discharge capacity when reaching circulation 10,20,30 times first is shown in Table 1.Comparative sample adopts the synthetic stratiform cobalt acid lithium LiCoO of citric acid sol-gel process for the present invention 2Presoma.Also listed the Electrochemical results that has the sample of higher chemical property in the bibliographical information in the table 1.
The composition of table 1 electrode material and electrochemistry cycle performance
Sample Chemical composition Test condition Reversible capacity mAhg -1
First 10 20 30
Embodiment 1 Li 0.95Zn 0.025CoO 2 3.0~4.3V,0.2mA·cm -2 153 148 146 144
3.0~4.5V,0.2mA·cm -2 176 172 170 167
3.0~4.7V,0.2mA·cm -2 209 195 192 190
Embodiment 2 Li 0.90Zn 0.05CoO 2 3.0~4.5V,0.2mA·cm -2 176 170 168 165
3.0~4.7V,0.2mA·cm -2 212 206 199 195
Embodiment 3 Li 0.96Cd 0.02CoO 2 3.0~4.5V,0.2mA·cm -2 179 176 173 171
3.0~4.7V,0.2mA·cm -2 213 199 197 194
Embodiment 4 Li 0.9Cd 0.05CoO 2 3.0~4.5V,0.2mA·cm -2 177 171 166 165
3.0~4.7V,0.2mA·cm -2 215 205 199 195
Comparative sample LiCoO 2 3.0~4.3V,0.2mA·cm -2 147 144 142 140
3.0~4.5V,0.2mA·cm -2 178 166 154 145
3.0~4.7V,0.2mA·cm -2 210 171
Document (1) LiCoO 2 2.8~4.3V,70mA·g -1 139 122
LiCo 0.8Ni 0.2O 2 2.8~4.3V,70mA·g -1 146 132
Document (2) LiCoO 2 2.5~4.5V,0.1mA·cm -2 190 80
2.5~4.7V,0.1mA·cm -2 265 100
MgO-LiCoO 2 2.5~4.5V,0.1mA·cm -2 170 160
2.5~4.7V,0.1mA·cm -2 210 195
Remarkable result of the present invention as can be seen from Table 1 is: compare with adopting other element dopings replacement Co and surface coated method of modifying, the layer post cobalt acid lithium of the inventive method preparation can not cause the reduction of initial capacity, and has stable structure more, better anti-over-charging electrical property, higher specific capacitance and better electrochemistry cycle performance.

Claims (4)

1, a kind of columnar structure LiCoO 2 electrode material with doped transition metal ions replacement lithium ion, its chemical composition general formula is Li 1-2 βM βCoO 2, M is a kind of among transition metal Zn, the Cd in the formula, and 0.02≤β≤0.05; Cobalt and oxygen constitute CoO with covalent bonds 2Main body laminate, lithium ion and transition metal ions are positioned at body layer plate holder layer, combine with ionic bond with electronegative main body laminate, have typical α-NaFeO 2The type layer structure belongs to hexagonal crystal system, R 3m space group.
2, a kind of method for preparing the described columnar structure LiCoO 2 electrode material of claim 1 is characterized in that: adopt the preparation of fused salt ion-exchange reactions method, promptly adopt citric acid so-gel method to prepare the stratiform cobalt acid lithium LiCoO of the tiny homogeneous of particle diameter earlier 2Presoma passes through the fused salt ion-exchange reactions then with the part lithium ion Li in the stratiform cobalt acid lithium +Use transition metal ions Zn 2+Or Cd 2+Replace, by the roasting homogeneous lithium ion and transition metal ions are evenly distributed on by CoO again 2The interlayer of the main body laminate that constitutes obtains layer pole structure cobalt acid lithium Li thus 1-2 βM βCoO 2
3, in accordance with the method for claim 2, it is characterized in that: processing step is as follows:
A, be the mixed of 1.05~1.15/1/2.05~2.15 by Li/Co/ citric acid mol ratio, be dissolved in the deionized water, be made into Li lithium hydroxide, basic cobaltous carbonate and citric acid +Concentration be 2~4molL -1Solution, in Rotary Evaporators, under the condition of 50~80 ℃ of temperature, 40~100rpm rotating speed, reacted 2~3 hours, form peony colloidal sol, be transferred to then in the vacuum drying chamber,, obtain fluffy red xerogel in 100~140 ℃ of vacuumizes 3~4 hours, xerogel was obtained the floccule of pitchy in 2~5 hours 400~500 ℃ of preliminary treatment, be reentered into after the grinding in the Muffle furnace,, obtain meeting LiCoO in 800~900 ℃ of following roastings 3~9 hours 2The cobalt acid lithium of stoichiometric proportion and the tiny homogeneous of particle diameter;
B, the LiCoO that step a is obtained 2Is 1/5~1/15 mixed with having low-melting transition metal nitrate according to mol ratio, carries out the fused salt ion-exchange reactions under the temperature that is higher than 10~30 ℃ of transition metal nitrate fusing points, and the reaction time is 0.5~3 hour;
C, with ion exchange product with aprotic solvent flush away transition metal nitrate more than needed, vacuumize is 2~3 hours in 70~100 ℃ vacuum drying chamber;
D, with step c gained material with 2~10 ℃ of min -1Speed was warming up to 300~500 ℃ and constant temperature 5~20 hours, naturally cooled to room temperature then, obtained a layer post cobalt acid lithium Li 1-2 βM βCoO 2
4, according to claim 2 or 3 described methods, it is characterized in that: described have low-melting transition metal nitrate and be: zinc nitrate hexahydrate Zn (NO 3) 26H 2O, four water cadmium nitrate Cd (NO 3) 24H 2A kind of among the O; Described aprotic solvent is: acetone CH 3COCH 3, carbon tetrachloride CCl 4Or cyclohexane C 6H 12In a kind of.
CNB2005100117143A 2005-05-13 2005-05-13 Columnar structure LiCoO2 electrode material and its preparing process Expired - Fee Related CN1300872C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100117143A CN1300872C (en) 2005-05-13 2005-05-13 Columnar structure LiCoO2 electrode material and its preparing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100117143A CN1300872C (en) 2005-05-13 2005-05-13 Columnar structure LiCoO2 electrode material and its preparing process

Publications (2)

Publication Number Publication Date
CN1702891A CN1702891A (en) 2005-11-30
CN1300872C true CN1300872C (en) 2007-02-14

Family

ID=35632482

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100117143A Expired - Fee Related CN1300872C (en) 2005-05-13 2005-05-13 Columnar structure LiCoO2 electrode material and its preparing process

Country Status (1)

Country Link
CN (1) CN1300872C (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185133B (en) * 2011-04-15 2014-04-16 福建师范大学 Method for preparing lithium cobalt oxide anode of silicon-based film lithium ion battery by using wet chemical-surface deposition method
US20130101893A1 (en) * 2011-10-25 2013-04-25 Apple Inc. High-voltage lithium-polymer batteries for portable electronic devices
TWI634695B (en) 2013-03-12 2018-09-01 美商蘋果公司 High voltage, high volumetric energy density li-ion battery using advanced cathode materials
US9716265B2 (en) 2014-08-01 2017-07-25 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries
WO2017058650A1 (en) 2015-09-30 2017-04-06 Hongli Dai Cathode-active materials, their precursors, and methods of preparation
US20180114983A9 (en) 2016-03-14 2018-04-26 Apple Inc. Cathode active materials for lithium-ion batteries
CN112158891B (en) 2016-09-20 2023-03-31 苹果公司 Cathode active material having improved particle morphology
US10597307B2 (en) 2016-09-21 2020-03-24 Apple Inc. Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same
CN109786738B (en) * 2017-11-15 2021-02-12 华为技术有限公司 High-voltage lithium cobalt oxide cathode material, preparation method thereof and lithium ion battery
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368750B1 (en) * 1998-07-13 2002-04-09 Ngk Insulators, Ltd. Lithium secondary battery
JP2002141063A (en) * 2000-11-02 2002-05-17 Toyota Central Res & Dev Lab Inc Lithium secondary battery
CN1389939A (en) * 2001-06-04 2003-01-08 中国科学院成都有机化学研究所 Method of synthesizing LiCo1-xMxO2 as positive electrode material for lithium ion accmulator
JP2003221234A (en) * 2001-11-22 2003-08-05 Nippon Chem Ind Co Ltd Lithium-cobalt composite oxide, method of manufacturing it, cathode active material for lithium secondary battery and lithium secondary battery
CN1506312A (en) * 2002-12-11 2004-06-23 中国科学院成都有机化学研究所 Prepn process of submicron level positive pole material for lithium ion cell
CN1508894A (en) * 2002-12-16 2004-06-30 中国科学院成都有机化学研究所 Positive electrode material for lithium ion cell and synthesizing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368750B1 (en) * 1998-07-13 2002-04-09 Ngk Insulators, Ltd. Lithium secondary battery
JP2002141063A (en) * 2000-11-02 2002-05-17 Toyota Central Res & Dev Lab Inc Lithium secondary battery
CN1389939A (en) * 2001-06-04 2003-01-08 中国科学院成都有机化学研究所 Method of synthesizing LiCo1-xMxO2 as positive electrode material for lithium ion accmulator
JP2003221234A (en) * 2001-11-22 2003-08-05 Nippon Chem Ind Co Ltd Lithium-cobalt composite oxide, method of manufacturing it, cathode active material for lithium secondary battery and lithium secondary battery
CN1506312A (en) * 2002-12-11 2004-06-23 中国科学院成都有机化学研究所 Prepn process of submicron level positive pole material for lithium ion cell
CN1508894A (en) * 2002-12-16 2004-06-30 中国科学院成都有机化学研究所 Positive electrode material for lithium ion cell and synthesizing method thereof

Also Published As

Publication number Publication date
CN1702891A (en) 2005-11-30

Similar Documents

Publication Publication Date Title
CN1300872C (en) Columnar structure LiCoO2 electrode material and its preparing process
Chen et al. Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material for Li-ion batteries
CN102683669B (en) Anode material for lithium-ion batteries and preparation method thereof
Li et al. High-performance lithium-rich layered oxide materials: Effects of chelating agents on microstructure and electrochemical properties
CN102683667B (en) Lithium-manganese-aluminum oxygen anode material and preparation method thereof
Liu et al. Highly enhanced electrochemical performances of LiNi0. 815Co0. 15Al0. 035O2 by coating via conductively LiTiO2 for lithium-ion batteries
CN1719639A (en) Method ofr prpearing high-lithium ion content laminated lithium manganate anode material
Wu et al. Enhanced electrochemical performances of LiNi0. 5Mn1. 5O4 spinel in half-cell and full-cell via yttrium doping
Zhang et al. Boosted electrochemical performance of LiNi0. 5Mn1. 5O4 via synergistic modification of Li+-Conductive Li2ZrO3 coating layer and superficial Zr-doping
CN1719642A (en) Spinel type composite metal oxide electrode material and preparing process thereof
Zhang et al. Enhanced high-voltage cycling stability and rate capability of magnesium and titanium co-doped lithium cobalt oxides for lithium-ion batteries
CN113809329B (en) Modified positive electrode for high-voltage lithium ion battery and preparation method thereof
CN107666010B (en) Lithium ion battery solid electrolyte, preparation method thereof and lithium ion battery
CN115207341A (en) Preparation method of high-entropy oxide sodium-ion battery positive electrode material
CN105932251B (en) A kind of preparation method and applications of metal oxide coated lithium ion battery positive electrode
Wang et al. Effects of fast lithium-ion conductive coating layer on the nickel rich layered oxide cathode material
CN111697204B (en) Lithium lanthanum zirconium oxide/lithium cobaltate composite material and preparation method and application thereof
CN101847717A (en) Preparation method of lithium titanate composite negative electrode materials used by lithium ion batteries
Liu et al. Investigation the electrochemical performance of layered cathode material Li1. 2Ni0. 2Mn0. 6O2 coated with Li4Ti5O12
CN104681808A (en) Method for preparing strontium salt doped lithium nickel manganese oxide cathode material of lithium ion battery
CN115939370A (en) Sodium ion positive electrode material, preparation method thereof and secondary battery
CN117080418B (en) Sodium ion battery positive electrode material, preparation method thereof, positive plate, sodium ion battery and electric equipment
Wu et al. Nanocoating of Ce-tannic acid metal-organic coordination complex: surface modification of layered Li 1.2 Mn 0.6 Ni 0.2 O 2 by CeO 2 coating for lithium-ion batteries
CN1316652C (en) Cobalt acid lithium battery material adulterated alkaline-earth metal between layers and its preparing method
CN114524468A (en) Preparation method of modified single-crystal ultrahigh-nickel quaternary NCMA positive electrode material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee