CN1296680A - 混合皮蜂窝区通信*** - Google Patents

混合皮蜂窝区通信*** Download PDF

Info

Publication number
CN1296680A
CN1296680A CN99803666A CN99803666A CN1296680A CN 1296680 A CN1296680 A CN 1296680A CN 99803666 A CN99803666 A CN 99803666A CN 99803666 A CN99803666 A CN 99803666A CN 1296680 A CN1296680 A CN 1296680A
Authority
CN
China
Prior art keywords
communication
base station
transceiver
communication system
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN99803666A
Other languages
English (en)
Inventor
S·H·布卢姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Fiber Inc
Original Assignee
Air Fiber Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Fiber Inc filed Critical Air Fiber Inc
Publication of CN1296680A publication Critical patent/CN1296680A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1123Bidirectional transmission
    • H04B10/1125Bidirectional transmission using a single common optical path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)

Abstract

一种自由空间激光通信***。该***包括大量皮蜂窝区,每一皮蜂窝区包括一基站,提供与至少一个用户,但通常与许多用户的常规通信。每一基站至少包括2个激光收发信机,各收发信机具有自动对准用的指向机构。这些收发信机提供与其他基站的通信,中继其他基站之间的信息或对常规通信***发送信息。皮蜂窝区覆盖较小的地理范围,如100米左右。申请人已证实在此距离大气层的激光束衰减效应不严重。在一较佳实施例中,基站一般包括带有微处理器控制指向设备的4个激光收发信机,自动校准该指向设备,以指向其他基站;该基站还包括与用户通信的射频收发信机。本发明尤其适合提供几乎立即安装的通信***,以便和已经建立的垄断(或半垄断)的市内电话***竞争。本发明的***能在几小时或很少的几天内完成安装。该***能为市区提供其首套通信***,或在现有市内***因诸如自然灾害损坏时,在市内提供通信业务,或者迅速临时扩充现有通信容量。

Description

混合皮蜂窝区通信***
本发明涉及通信***,尤其涉及自由空间光通信***。
背景技术
过去若干年间,电信业务***性发展。电信业难于满足需求。国际、国内和地区性电信技术主要包括:(1)用扭绞线、同轴电缆、光纤、微波***和射频(RF)网提供话音、数据和传真传输的电话网;(2)通过RF传输提供电视的电视网、通过光纤和同轴电缆***提供电视的有线电视***,以及互联网通信***。目前也通过卫星***提供电视、电话和数据通信。已提供包括高速数据、图像和视频通信的非话音通信,对数据速率通信的需求比对话音通信的需求高。
无线电通信允许用户移动。不需要连接通信设备的昂贵布线。无线电通信的问题是可用的无线电带宽有限。解决无线电带宽有限的一种方案是建立许多分开的地理区,以在许多这样分开的蜂窝区反复使用可获得的带宽。采用相同带宽的大量蜂窝区能极大地增加给定带宽的用户数。蜂窝区数量越大,***数越多。这是目前普及的蜂窝区电话***的基础理论。
以往,一般在管制垄断的基础上运营电话和电报***。然而,目前美国的联邦、州和本地政府鼓励竞争提供这些业务。市内电话电报公司不愿意别的公司分享其安装的基础设施或要对别的公司高收费,而且安装新电缆或光纤一般很昂贵,且不易控制。在许多发展中国家,没有敷设值得注意的有线通信基础设施,而安装该设施昂贵且不易控制。某些运动竞赛,诸如***和美国超级橄榄球赛(Super Bowl),产生在一个地区大量扩充通信的暂时要求。大冰暴或台风等自然灾害会中断现有的通信,需要临时通信设备,直到能修复现有的***。
提供自由空间光通信的技术已公知。(参见David L.Begley著“自由空间激光通信简史”,载于David L.Begley编《自由空间激光通信文选》,1991年SPIE光通信工程出版社出版。)已建议自由空间激光通信用于卫星对卫星通信。这是因为激光束能在地球大气层上提供大带宽、长距离有效通信。然而,由于雨、雾、雪等大气条件对接收的负面影响,一般没有认真考虑将自由空间激光通信用于广大地面通信。需要的是一种能方便、有效安装且无显著失控的本地通信***。
发明概要
本发明提供一种自由空间激光通信***,该***包括大量皮蜂窝区。每一皮蜂窝区包括一基站,提供与至少1个用户,但通常与许多用户的常规通信。每一基站至少包括2个激光收发信机,各收发信机具有自动对准用的指向机构。这些收发信机提供与其他基站的通信,中继其他基站之间的信息,或对常规通信***发送信息。皮蜂窝区覆盖较小的地理范围,如100米左右。申请人已证实在此距离大气层的激光束衰减效应不严重。在一较佳实施例中,基站一般包括带有微处理器控制指向设备的4个激光收发信机,自动校准该指向设备,以指向其他基站;该基站还包括与用户通信的射频(RF)收发信机。
本发明尤其适合提供能几乎立即安装的通信***,以便和已建立的垄断(或半垄断)市内电话***竞争。本发明的***能在几小时或很少的几天内完成安装。该***能为市区提供其首套通信***,或在现有市内***因诸如自然灾害而损坏时,在市区提供通信业务,或者迅速临时扩充现有通信容量。
附图概述
图1A、1B和1C为皮蜂窝区图。
图2为皮蜂窝区基站方框图。
图3为示出较佳嵌套万向支架的作用的皮蜂窝区基站示意图。
图4为示出基站各单元相对位置的本申请人所设计原型基站的图。
图5示出相邻建筑物之间建立的光通信链路。
图6示出雾的光衰减。
图7为浓雾时误码率曲线,该误码率为100米~115米范围的距离的函数。
图8示出雨的衰减。
图9为说明电杆在大风中偏斜的曲线。
图10示出与光波长有函数关系的发射。
图11示出相对噪声与距离有函数关系的激光功率。
图12示出雪的衰减。
图13示出长、短距离的特性起伏效应。
图14示出基于本发明的区域通信***。
图15为示出4个互连皮蜂窝区的图。
图16说明一较佳实施例中ATM交换机的重要性。
图17为本发明一较佳实施例的扫描跟踪硬件的方框图。
图18A、图18B和18C示出一较佳实施例的激光收发信机的光单元。
图19为新基站校准说明图。
图20A~20H说明本发明一较佳实施例的较佳软件。
较佳实施例的详细说明
参照附图说明本发明较佳实施例。皮蜂窝区
本发明较佳实施例的主要单元是皮蜂窝区。此较佳实施例包含大量皮蜂窝区。每一皮蜂窝区包含一个基站和至少1个用户,但通常为几个用户到大量用户。图1A画出包含基站2和1个用户4-1的皮蜂窝区。该用户可获得分配给基站的全部20MHz带宽。图1B画出有4个用户的基站,这些用户共用20MHz带宽,因而如果全部用户同时使用此***,则平均带宽极限为约5MHz。若如图1C所示有100用户,则平均带宽极限为200KHz。每个用户4通过共用分配给基站2的无线电带宽,与基站2通信。仅有少量用户,则每一用户可获得基站可用带宽的很大部分。音频电话通信只需要约10KHz,但其他类型的通信需要比较大的带宽。例如,一条良好的双向视频通信链路需要约20MHz,而满意地双向链路可用约2MHz提供。基站
可参照图2说明本较佳实施例的典型皮蜂窝区基站的各单元。以基站包含RF收发信机13、分别具有水平和垂直指向设备11的4个激光收发信机10、控制指向设备用的微处理器22、在RF收发信机和4个激光收发信机之间交换数字数据的分组交换机12,以及电源。图3为图2方框图所示基站的示意图。图4为申请人所设计原型基站的图。图4示出从页面指出的收发信机10A、指入页面的收发信机10B,以及分别指向左面和右面的收发信机10C和10D。16表示水平-垂直万向支架。80表示10A的通信和信标接收机。82表示10A的信标激光发射机,84表示10A的通信激光发射机。18和20表示射频天线。30表示10B的垂直驱动电机。激光收发信机
本实施例中,每一基站装有4个激光收发信机10。可从市场购得适当的激光收发信机,如加州San Diego的Astro Terra公司制造的4英寸直径激光通信收发信机(T-4型,以155Mb/Sec工作)。图18A、18B和18C说明申请人所设计原型收发信机的光单元。本实施例中,图18A所示的通信发射机包含通过60mm直径的f/2单线透镜发射的日立公司780nm、40mW峰功率、2mrad发散角的二极管激光器。图18B所示的信标发射机包含EGG的810nm、20W脉冲功率、0.1%占空度的二极管激光器和进行2度发散发射的100mm焦距圆柱透镜。信标/通信接收机包含60mm直径的f/2单线汇聚透镜和传递780nm通信信号的2向色光分束器,该信号用Hamamatsu的500微米直径PIN二极管和622Mb/Sec、3dB带宽的外部前置放大器组件收集。分束器将80nm信标光束反射到带外部前置放大器和1mm工作区的Hamamatsu的扇形光电二极管上。每一激光收发信机装在嵌套万向支架上。万向支架做成各收发信机可按垂直轴移动+/-30度,并可按水平轴移动360度。通过图3中所示的电机和蜗轮传动驱动件30以及弯曲枢轴31达到上述移动。如图3所示,通过将一水平轴套在另一水平轴旁边,就象模拟手表的2根针那样,获得水平移动。于是,通过协调嵌套水平万向支架轴的移动,各收发信机能在水平方位360度移动,因而不受装在同一平面上的收发信机影响。通过将收发信机装在2个不同的平面,由于能将任何收发信机对准另一建筑物上的相同基站,光跨接链路有多重冗余。由微处理器22控制万向支架的移动。每一激光收发信机包含4英寸望远镜、接收输入激光通信信号的检测器组件,以及发送激光脉冲的激光发射机。以622Mb/sec的速率用此收发信机收、发信息。后面将说明,通过在扇形光二极管上集中相邻收发信机的信标信号,使各激光收发信机对准。在睛朗的空中,图10所示波长0.810微米的激光发射信号几乎100%发射。后文讨论其他大气条件下的发射。射频收发信机
本实施例中,图15称为“RF基站”的射频收发信机工作在PCS频道,带宽约20MHz,中心频率1.9GHz。本实施例中,我们选用16正交调幅(QAM)信令方式。可根据能从信噪比获得的Eb/No计算差错概率。对本实施例而言,基站和移动单元之间的最大距离为100米。从诸如NorTel、Nokia或Ericcson等厂家提供的市场现货供应的无线电设备能方便地获得下列参数。基站等效全向辐射功率(EIRP)为17dBW,其天线增益为20dB,发射功率为0.5W。移动接收机天线增益为3dB。***总损耗为6dB。移动***接收机噪声为5dB。移动***接收机天线温度为290K,其带宽为20MHz。
自由空间损耗为: Lp = - 20 log [ 0.16 4 π ( 100 ) ] = - 78 dB
接收功率为:
pR=-78+17+3-6=-38dBW
等效温度为:Te=290K(Nf-1)=627K
噪声功率为:
PN=KTeBw=1.38×10-23(627+290)·(20×106)=-127dBW
SNR等于Pr/Pn,为88dB。因而,Eb/No为: Eb No = 88 dB 2 log 2 4 ≡ 5 × 10 5
于是,差错概率为: Pe = 1 log 2 4 · 3 4 · erfc ( ( Eb No ) 1 2 ( log 2 4 ) 1 2 3 ) = 0
对自由空间路径而言,本实施例中无线电链路没有差错。本领域的技术人员显然知道此频率通过建筑物的墙和楼面时,无线电信号显著衰减。由于此衰减高度依赖于具体物质和方向,将用计算机模拟程序(诸如ATT的WISE)计算任何所选建筑物的整个传播特性。分组交换机
图2所示分组交换机12为Fore Systems公司的Fore Runner LE155。该机有12个155 Mb/sec端口,本实施例用其中的5个,采用SONET/SDH格式,并用附加的Fore Thought(也属于Fore Systems公司)网络互联软件在ATM协议下操作此交换机。图2所示分组交换机与4个激光通信收发信机和射频收发信机13接口,以便能充分交换任何给定基站的激光信号和射频信号,并在基站之间传送数据分组。射频收发信机13通过射频接收天线20,接收与用户4的射频发射机所发无线电波对应的电信号。射频收发信机13也通过射频发射天线18,发射电信号给用户的射频接收装置。微处理器和指向设备
本实施例的微处理器为奔腾PC。对微处理器编程,以便校正本基站的激光收发信机10,使其对准其他基站的相同激光收发信机。可参照图5说明此校准过程,该图画出分别在屋顶有基站的4个相互隔开约100米的建筑物1。微处理器22根据预定的算法启动第1链路3,其中光栅扫描给定收发信机的水平+/-45度、垂直+/-20度的10象限。扫描速度设定为水平方向0.5度/sec,垂直方向则按每次水平扫描0.5度递增,以便覆盖整个扇区。可在4小时内扫描整个扇区。可在背景光电平低的晚上方便地完成扫描。白天扫描,则每一基站共4个的校准光源可在每一扇区使用发射成π立体弧度的10瓦明亮LED光源。如果能在晚上进行校准,则可用功率低得多的LED。在图2示出这些光源,但图3中未示出。对0.99的捕获概率,光源对背景的SNR约需10,可用5nm干扰滤光镜实现。全部4个收发信机并行进行此过程。用户射频通信
本较佳实施例所服务的用户通常用射频通信装置与皮蜂窝区基站通信。较佳的无线电装置为Radio LAN2 7401/7402 PC卡。这是高性能的单片无线LAN适配器,设计成满足要求连接LAN的移动用户的需要。此装置采用跳频扩展频谱技术,与大范围网络通信***兼容。此特定装置以1.5Mbps的数据速率工作。可从加州Sunnyvale的Radio LAN公司购得此装置。软件
图20A~20F提供图4所示皮蜂窝区基站的捕获跟踪***用的软件流程控制例概况。斜长方形框代表用户输入,菱形框代表判决和方形框代表动作。图20A的软件提供各轴比例常数、积分常数和微分常数的变换法。图20B的软件提供***用鼠标点击从开环到闭环达到光跟踪模式的能力。图20C示出控制器从成比例到成比例+速度,再到成比例+速度+加速度改变控制准则的能力。图20D概括说明用户能为任一轴选择步进规模并闭合伺服环的能力。图20E示出***能扫描预定的不确定区域,对上述门限数据校验四传感器组,并且检测到信标信号时进入跟踪模式的能力。图20F示出使编码计数器归零以开始校准的能力。图20G示出使用户可选距离和时间段步进移动的能力。图20H示出***能从编码器的差错精确找到归属位置,而不用限定开关的能力。性能计算
申请人已进行模拟计算,证实本发明的可行性,以作为提供比其他***好的许多优点的可竞争通信***。模型
皮蜂窝区基站能建立连接其他混合皮蜂窝区基站的光通信链路,如图5所示。通过光通信链路3,皮蜂窝网用安装电缆和光纤网费用的一小部分,以大于现有铜线的速度,提供对数据、多媒体和话音业务的无线接入。
如图5所示,短激光通信链路3(115米)的密集网连接混合皮蜂窝区基站。这些链路短,顾及所得性能优越(利用度基本上是100%),尽管有雾或其他大气扰动。为了正确运行,链路必须相互对准,然而,其容限为链路能不难抵御诸如强风等严重的机械扰动。
借助光通信链路3,能以多次接力的布局,在一系列基站2之间中继任何皮蜂窝区所产生(或对其传送)的业务,最后在市内端局进入(或离开)有线网络。
在较佳实施例中,各混合皮蜂窝区的无线电波印迹(覆盖区)非常小(即直径约115米),仅有少量用户共用其带宽,因而每一用户享受该特定区域的宽带无线业务(其速率取决于用户数和基站的可用带宽,通常约为200Kb/sec~20Mb/sec)。往往通过重复使用无线电频谱,克服频谱利用度有限的问题。更重要的是,由于每一基站得到激光通信链路的服务,不需要埋设新电缆设备,并回避已有铜线的容量限制。激光通信链路没有得到FCC的执照,能载送155~622Mb/sec的速率,足以用每一用户分配20Mb/sec的速率提供对整个网络的宽带接入。
图5为分别在屋顶安装混合皮蜂窝基站2的4个建筑物1的图。用包含基站间链路跨接功能的激光通信收发信机连接这些基站。建筑物内连接到用户的下行链路,用扩频RF收发信机以1.9GHz的标称频率进行工作。下行链路与电话机、计算机和HDTV通信。光收发信机提供建筑物间跨接数据的手段,使建筑物一起组成网络。每一基站2提供从任何建筑物1将数据多段接力到端局的手段,并可在端局转接到公用交换电话网(PSTN),以分配到广大的区域。较坏情况的BER-浓雾
通过计算每一链路的接收功率决定此***的预测误码率(RER)。对20mW的发射功率和2mrad的光束发射,可按不同气候条件计算BER作为距离的函数。对850nm波长,最坏衰减状况出现在浓雾时,如图6所示,对40米可见度(即罕见的浓雾状况),衰减大约为392dB/km(e-90.42/km)。于是,此状态下的接收功率为: P R = 20 mW 0.008 m 2 ( 0.002 rad ) 2 ( 100 m ) 2 π 4 · 1 2 · e ( - 90.42 / km ) ( 0.1 km ) = 2.6 × 10 - 7 W
同样,通过利用0.2W/m^2/nm/sr的太阳在地球表面的辐照度平均值,能估算背景功率。于是,背景光的值: P R = 0.2 W m 2 · nm · sr · 0.008 m 2 · 10 nm · ( 0.002 rad ) 2 · 1 2 = 3.2 × 10 - 8 W
因此,100米处估计信号对背景的比率在雾最浓时约为8。在115米处信号对背景的比率约为2。申请人所估计此较坏大气条件下100米~115米范围的误码率在图7中给出。这样,估计的较坏情况BER,在100米处约为1×10-15,在115米处则接近0.1。使用雪崩光电二极管检波器,此BER在115米处可降到10-9。虽然有些***要求BER低于10-14,但我们认为BER低于1×10-9已能满足。上述计算假设0和1的概率相等,而且对每一接收信号值采用最佳门限值。调制方式为通断键控(OOK),直接检波。其他大气条件
此实施例对ATM协议,在各种气候条件下以可接受的BER进行工作,其距离长达115米,超过所设计无线电蜂窝区直径15米。图8示出各种降雨率(和等效降雪率)的雨和雪的衰减预测值。在每小时4英寸的降雨率时,最大雨衰减为20dB/km,比降雾时100米范围的衰减小3个数量级。雪的衰减比最坏情况下的雾在100米范围的衰减小,因而雨、雪两种情况下的BER性能均优于图7对雾所示的性能。激光对人眼安全
激光通信收发信机在光孔处强度降低到小于ANSI的Z.131.1-1986要求的2mW/cm2,对人眼安全。特性起伏变化
考虑的另一大气效应是折射率沿传播路径变化引起的特性起伏变化。这些起伏变化的规模与波长的平方根乘距离范围的积成正比,因而本实施例中在100米的范围其直径约为1cm。这意味着激光通信收发信机平均有50个起伏变化,远少于预计的特性起伏所造成的信号变化(预计的起伏数约为此平均起伏数的100倍)。预计的特性起伏变化概率密度为:
对此路径,方差约为0.032,意味着所得概率分布近似高斯分布,其中心约在平均发射信号强度处,标准偏差取决于泊松统计(近似为所接收1个脉冲中光子数的平方根)。因此,以上所用BER方程有效,本实施例中特性起伏变化可忽略。折射率沿传播路径的变化
可从下式计算折射率沿传播路径变化引起的光束漂移预测值:
上述算出漂移角度约为100微弪,比发射光束发射角小19倍,不影响本
实施例。支承电杆的偏斜
这里介绍的实施例以不同的距离,在街道上或建筑物屋顶上,将收发信机装在电杆上。从下式可计算15 lbs/in^2强台风中电杆的最大偏斜: θ max = 1 6 15 lb / in 2 · 10 in · L 3 3 × 10 7 lb / in 2 π 4 ( 10 in ) 4 其中,电杆直径为10英寸,本实施例中用的两种电杆材料为铝和钢。图9示出长度为0~500英寸的电杆的预测最大偏移。我们的实施例中,电杆不长于25英尺。两种材料情况下,最大偏斜均为光束发散的一小部分,因而风不影响本实施例所述装置的校准。热效应
下式给出安装收发信机的建筑物的非对称热扩散引起的热效应: Δθ = 10 - 5 · ΔT 3 L
对于50摄氏度的温度变化,5层建筑物的偏移角小于100微弪,与发射光束发散相比,此数值可忽略。无线电链路
本实施例中的可用频谱为PCS频道,带宽约为20MHz,中心频率1.9GHz。本实施例中,我们选用16正交调幅(QAM)信令方式。可根据能从信噪比获得的Eb/No计算差错概率。对本实施例而言,基站和移动单元之间的最大距离为100米。从诸如NorTel、Nokia或Ericcson等厂家提供的市场现货供应的无线电设备能方便地获得下列参数。基站等效全向辐射功率(EIRP)为17dBW,其无线增益为20dB,发射功率为0.5W。移动接收机天线增益为3dB。***总损耗为6dB。移动***接收机噪声系数为5dB。移动***接收机天线温度为290K,其带宽为20MHz。
自由空间损耗为: Lp = - 20 log [ 0.16 4 π ( 100 ) ] = - 78 dB 接收功率为:pR=-78+17+3-6=-38BW等效温度为:Te=290K(Nf-1)=627K噪声功率为:PN=KTeBw=1.38×10-23·(627+290)·(20×106)=-127dBWSNR等于Pr/Pn,为63dB。因而,Eb/No为: Eb No = 63 dB 2 log 2 4 ≡ 5 × 10 5 于是,差错概率为: p e = 1 log 2 4 · 3 4 · erfc ( ( Eb No ) 1 2 ( log 2 4 ) 1 2 3 ) = 0
对自由空间路径而言,本实施例中无线电链路没有差错。本领域的技术人员显然知道此频道通过建筑物的墙和楼面时无线电信号显著衰减。由于此衰减高度依赖于具体物质和方向,将用计算机模拟程序(诸如ATT的WISE)计算任何所选建筑物的整个传播特性。路由选择
多次接力结构已为多波长光纤网领域所熟知,但用在这里是新颖的。本实施例采用递归网格(准直角网)进行多次接力有两点好处。一是便于增添新基站,仅影响一条光链路。另一是路由算法有可伸缩性,这意味着建立新虚拟连接的多次接力路由涉及的计算复杂度与网格中的节点数成正比。图15示出4个皮蜂窝区61、62、63和64,各区通过光相互连接。
图14中示出一较佳通信***。此***采用3层无线电蜂窝区。即,皮蜂窝区、标准蜂窝区和特大蜂窝区,如图14所示。皮蜂窝区已在上文说明。第2层的蜂窝区,申请人称为标准蜂窝区。由一标准蜂窝区覆盖几英里或几十英里的区域,以及从零到几千个数量可变的皮蜂窝区。每一标准蜂窝区有一连接端局交换机的标准蜂窝区基站。标准蜂窝区基站为处于其覆盖区而设有得到皮蜂窝区服务的用户提供射频通信。标准蜂窝区基站还为其标准蜂窝区内所有皮蜂窝区直接或间接提供光通信,并对端局交换机提供通信。到端局交换机的通信通道足以处理通信业务。可为自由空间光通信通道,也可为常规通信能道,即光纤。跟踪和捕获
图16示出概括说明所建议皮蜂窝区***的基站设备的高层次方框图。此设备包括若干光收发射机、无线电和基带设备、小型电子分组交换机(如ATM交换机)和小型控制处理器,该处理器管理基站,并起网络控制***中本地控制设备的作用。无线电设备包括对交换机收、发信号并对天线发、收这些信号所需的各种装置。需要分组交换机,以便每一基站除了起到光纤网络上所载通信业务的源和宿的作用外,还能将数据分组从一光纤链路中继到另一链路(接力)。在建立连接时选择路由,以维持保证的业务质量(QOS),从而使每一数据分组到达核心网的入/出端口,或终接于基站。
本实施例的每一基站包含4条激光通信跨接链路。建立此***时,用户必须将其装置安装在稳定的平台上,并提供电源,从而该装置将自己校正每一光跨接链路,以对准基站网中正确的相邻节点。这要求跨接链路具有受扫描的相关实际区域,还需要跟踪传感器、信标激光、用于确定连接那一基站的一些网络智能,以及网络建全和监视通信。
图17示出操作图4所示基站用的申请人所设计较佳实施例的扫描跟踪硬件的方框图。第一激光通信跨接链路可水平移动约360度,垂直移动正或负30度。通过使用图中所示新颖的嵌套万向支架的方法,在紧凑的封装中可完成上述动作。每一激光头具有脉冲信标激光发射器,其发散角为10度,以便有效搜索,同时保持足够的余量以便雾最浓时工作。四传感器组也位于激光头,以便从对端装置接收跟踪信标激光能量。四传感器组具有2度的视野,以便使背景光的干扰最小。该传感器组与微处理器接口,此微处理器计算差错信号,并对每一轴驱动万向支架电机,以便使闭合***跟踪环路的差错最少。
潜在的搜索条件是2×2度接收机视野,且每一搜索单元停留时间为1秒,不确定区域为π立体弧度。这等于搜索时间为2718秒,或略为长于45分钟。存在2718个停留单元,总的可能出错告警数为2717。无出错告警且成功检测的概率由下式给出:
Pacq=Pdetect·(1-Pfalse)N-1其中,N=2718,Pdetect和Pfalse则从链路估算算出。成功检测或出错告警的概率由下式给出: P dctect ( R , V t ) = Q ( V t - U one ( R ) σ one ( R ) ) P false ( V t ) = Q ( V t - U zero σ zero ) 其中,Vt为决定是否存在信标信号的最佳门限;Vone/zero为检测器产生的电压,是范围的函数;σone/zero为电压标准偏差。Q为涉及计算高斯分布下的相对面积的差错函数的“Q函数”。此***的信标激光为脉冲信号,其峰值输出功率为19瓦,占空度为0.07%,对人眼安全。范围为100米,衰减条件是浓雾时392dB/km,接收光孔直径约为2英寸。这给出Pdetect的值为0.994,Pfalse的值为8.6×10-7,将其代入上述公式后,可得对该基站体积一次扫描的成功捕获概率为0.992。
上述讨论假设对端基站已经指向一般没有问题的新基站。此对端基站也必须扫描假设的新基站体积(在□立体弧度内)。扫描算法的关键在于决定基站扫描不确定区域的速率。由于信标发射机的发散为10度,该发射机能比接收机更快地覆盖不确定区域。如果对信标发射基站而言,停留时间为每单元0.25秒,则信标以短于30秒的时间扫描整个不确定区。在最坏的情况下,接收机会在每一区域停留发射机扫描的全部30秒时间,从而保证成功捕获。最坏情况的总捕获时间为约21小时。这保证不包含非所需的振荡扫描运动,即各***不会同时检测相同的点,并永远扫描各自相关的区域。最佳算法可能处于接收机扫描较快处中间某处,很少机会不赶上发射机,但总的捕获时间大为减少。如果每一基站按照本身和及其相邻基站的近似地理坐标编排,就能较快捕获。
一旦收发信机相互捕获并闭合跟踪环路,即可将信标通道用于低速率通信。可在数据通信通道独立交换基站健全状况、网络拥塞和基站ID的信息。
实际上,如果由于检波器和激光器失效,而丢失通信通道,基站也还会传送网络状态的信息给其他基站,以提高网络健全性和可靠性。因为信标激光是脉冲信号,所以采用脉冲位置调制方式。申请人估计采用这种方法可在信标通道获得4800bps的数据速率。此速率足以在节点之间传送网络健全情况、拥塞和状态的信息。
净信标激光通道用于通信的另一主要优点是能将一个字的数据传给相邻基站,使该基站将该字再发送回到其信息源,并测量经历的时间。这样,可给出与现有链路所发编码信息组合的范围信息,使后续的搜索和捕获显著加快。图19示出具有6个基站的网络,其中5个现有的用圆圈表示,第6个新基站用十字框表示。一旦新基站(D)闭合与网络中任何现有基站(本例中为B和C)连接的链路,信标通道就能发送角度和范围信息,使新基站能立即闭合与现有网络连接的所有所需链路。单板微处理器能方便地进行几何计算。假设基站在安装时对标称重力调整到水平。网络拥塞信息也使多次接力算法得到改进和简化。多次接力是重要的,它使得甚短自由空间光链路的使用能确保不受大气扰动影响且链路利用度高。分组交换机的规模至少为5×5,即5条输入/输出路径,以便能支持无线电接口收发的信号外,还能支持至少4个光收发信机。此交换机是电子式的,和多数多次接力装置中一样,都首先将光信号和无线电信号变换成基带电子信号。
多次接力结构在波长复用光纤网络领域已熟知,但将其用于自由空间光网络是新颖的,其思想是通过自由空间光链路连接基站,避免市内有线线路成为易阻塞处。实际光网络互连模式可包括递归网络,即直角网,其中允许接入站嵌进子层,能方便地添加新站,最多只影响一条已有的链路。递归网格的优点还有与可伸缩路由算法兼容,意味着建立新虚拟连接的多次接力路由所涉及的计算复杂度与网格中节点数成正比,即每一节点计算复杂度与网格中节点数无关。
虽然以上说明中包含许多特性,但这些特性不构成对本发明范围的限制。例如皮蜂窝区间的有些链路可为常规通信链路,如扭绞线、同轴电缆或光纤,而不用自由空间光通信链路。用户和基站之间的有些链路也可为射频链路外的常规通信链路。例如,办公楼中的所有用户可通过同轴电缆或扭绞线,利用楼中现有通信设备连接到楼顶上的基站。还可方便地先建立本申请所述的通信***,然后逐渐将基站间的链路从自由空间光链路变换为光纤。因此,本发明的范围应由所附权利要求及其合法等同决定,而不由给出的实例决定。

Claims (17)

1.一种通信***,包括多个皮蜂窝区,每一皮蜂窝区包括一个基站和所述通信***的至少一个用户,其特征在于,每一基站包含:
A.至少2个光通信收发信机,用于建立与至少2个其他基站连接的光通信链路,每一所述收发信机包含指向机构,用于校正所述收发信机,使其对准所述至少2个其他基站中的另一个收发信机;
B.用户连接装置,用于与所述皮蜂窝区中的至少一个用户通信;
所述多个皮蜂窝区定义为约1000平方米至约100000平方米范围的地理区域,所述基站相互隔开约30米至约300米。
2.如权利要求1所述的通信***,其特征在于,所述用户通信装置为射频收发信机。
3.如权利要求1所述的通信***,其特征在于,所述用户通信装置包括同轴电缆连接。
4.如权利要求1所述的通信***,其特征在于,所述用户通信装置包括扭绞线连接。
5.如权利要求1所述的通信***,其特征在于,所述用户通信装置包括光纤连接。
6.如权利要求1所述的通信***,其特征在于,所述指向机构是微处理器控制的。
7.如权利要求1所述的通信***,其特征在于,所述基站还包含至少一个校准光源。
8.如权利要求4所述的通信***,其特征在于,所述至少一个校准光源为LED光源。
9.如权利要求4所述的通信***,其特征在于,所述至少一个校准光源为激光源。
10.如权利要求1所述的通信***,其特征在于,所述基站还包含分组交换机。
11.如权利要求1所述的装置,其特征在于,所述至少一个光通信收发信机为4个光通信收发信机。
12.如权利要求2所述的装置,其特征在于,所述指向机构包括嵌套万向支架。
13.如权利要求8所述的装置,其特征在于,所述指向机构还包括组合电机、蜗轮驱动件和弯曲枢轴。
14.如权利要求1所述的装置,其特征在于,所述校准装置包括置入每一所述至少一个光通信收发信机中的CCD摄像机。
15.如权利要求1所述的装置,其特征在于,还包括扇形检测器。
16.如权利要求1所述的装置,其特征在于,所述射频收发信机包含发射天线和接收天线。
17.一种皮蜂窝区基站,用于为皮蜂窝区的用户提供通信,其特征在于,所述基站包含:
A.射频收发信机;
B.多个激光收发信机;
C.多个指向机构,用于对所述激光收发信机进行指向;
D.微处理器,用于控制所述指向机构;
E.分组交换机,用于控制所述射频收发信机和所述多个激光收发信机之间的信息流。
CN99803666A 1998-03-05 1999-02-25 混合皮蜂窝区通信*** Pending CN1296680A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/035,370 US6323980B1 (en) 1998-03-05 1998-03-05 Hybrid picocell communication system
US09/035,370 1998-03-05

Publications (1)

Publication Number Publication Date
CN1296680A true CN1296680A (zh) 2001-05-23

Family

ID=21882254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99803666A Pending CN1296680A (zh) 1998-03-05 1999-02-25 混合皮蜂窝区通信***

Country Status (8)

Country Link
US (1) US6323980B1 (zh)
EP (1) EP1060582A1 (zh)
JP (1) JP2002506318A (zh)
CN (1) CN1296680A (zh)
AU (1) AU749110B2 (zh)
CA (1) CA2322300A1 (zh)
MX (1) MXPA00008626A (zh)
WO (1) WO1999045665A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105657707A (zh) * 2014-12-01 2016-06-08 英飞凌科技股份有限公司 接入控制设备和收发机设备
CN106257846A (zh) * 2015-06-22 2016-12-28 波音公司 具有弯管通道和导引通道的自由空间光学通信网络
CN108235331A (zh) * 2016-12-22 2018-06-29 天津大学(青岛)海洋工程研究院有限公司 一种海上高速蜂窝移动通信网络的组网方法
CN112291001A (zh) * 2020-10-23 2021-01-29 军事科学院***工程研究院网络信息研究所 电光双载波互校验自由空间通信方法
CN113038489A (zh) * 2021-03-19 2021-06-25 中国联合网络通信集团有限公司 网络设备的配置方法和装置

Families Citing this family (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7787647B2 (en) 1997-01-13 2010-08-31 Micro Ear Technology, Inc. Portable system for programming hearing aids
US6498668B1 (en) * 1999-03-11 2002-12-24 Astroterra Corporation Alignment system for laser communication beam
US6522440B1 (en) * 1999-04-28 2003-02-18 Trw Inc. Inter-satellite optical link track sensor
US6469815B1 (en) * 1999-04-28 2002-10-22 Trw Inc. Inter-satellite optical link acquisition sensor
US6681116B1 (en) * 1999-05-03 2004-01-20 Sprint Communications Company, L.P. Communication system
US6616352B1 (en) * 1999-06-10 2003-09-09 Canon Kabushiki Kaisha Optical transmission apparatus and bidirectional optical space transmission system using the same
US6763195B1 (en) 2000-01-13 2004-07-13 Lightpointe Communications, Inc. Hybrid wireless optical and radio frequency communication link
US7970950B1 (en) * 2007-04-09 2011-06-28 G&H Nevada—Tek High-speed data transfer in a networked server environment via laser communication
US7219165B1 (en) * 2000-01-14 2007-05-15 G&H Nevada Tek High-speed data transfer in a networked server environment via laser communication
EP1252799B2 (en) * 2000-01-20 2022-11-02 Starkey Laboratories, Inc. Method and apparatus for fitting hearing aids
US6788898B1 (en) * 2000-04-14 2004-09-07 At&T Corp. Optical/radio local access network
US20050229003A1 (en) 2004-04-09 2005-10-13 Miles Paschini System and method for distributing personal identification numbers over a computer network
US7295777B1 (en) * 2000-08-17 2007-11-13 At&T Corp. Optical/radio local access network
US7095957B1 (en) * 2000-08-17 2006-08-22 At&T Corp. Optical/radio local access network
US20020051269A1 (en) * 2000-09-29 2002-05-02 Shlomo Margalit Reconfigurable over-the-air optical data transmission system
US20020071160A1 (en) * 2000-10-16 2002-06-13 Andrew Pavelchek Establishment and maintenance of optical links between optical transceiver nodes in free-space optical communications networks
US6813505B2 (en) * 2001-01-05 2004-11-02 Skyworks Solutions, Inc. Efficient and flexible communication device and system with base-to-base communication
EP1233551B1 (en) * 2001-02-15 2005-08-03 NTT DoCoMo, Inc. Optical transmitting/receiving method and system, and optical communication network
US20020122230A1 (en) * 2001-03-05 2002-09-05 Hossein Izadpanah Hybrid RF and optical wireless communication link and network structure incorporating it therein
US6978093B2 (en) * 2001-03-09 2005-12-20 Lightpointe Communications, Inc. Free space optical communication network
US20020131130A1 (en) * 2001-03-09 2002-09-19 Lightpointe Communications, Inc. Multi-tenant unit optical network
US6925260B1 (en) * 2001-03-13 2005-08-02 Terabeam Corporation Window-mounted positionable collector
US6889009B2 (en) * 2001-04-16 2005-05-03 Lightpointe Communications, Inc. Integrated environmental control and management system for free-space optical communication systems
US6721658B2 (en) * 2001-06-14 2004-04-13 The Johns Hopkins University Integrated navigation and communication system for use in distributed spacecraft systems
US7409159B2 (en) * 2001-06-29 2008-08-05 Hrl Laboratories, Llc Wireless wavelength division multiplexed system
US20030027597A1 (en) * 2001-07-31 2003-02-06 Lagrotta James T. Use of over-the-air optical link within a geographically distributed base station
US7155129B2 (en) * 2002-01-07 2006-12-26 Xerox Corporation Steerable free space optical interconnect apparatus
US6831921B2 (en) 2002-03-27 2004-12-14 James A. Higgins Wireless internet access system
US20050201342A1 (en) * 2002-03-27 2005-09-15 Randy Wilkinson Wireless access point network and management protocol
US7867092B2 (en) * 2002-04-08 2011-01-11 Igt Gaming apparatus with an optical wireless system
WO2003087887A2 (en) * 2002-04-10 2003-10-23 Crinis Networks, Inc. Wireless optical system and method for point-to-point high bandwidth communication
JP3660990B2 (ja) * 2002-05-14 2005-06-15 独立行政法人情報通信研究機構 光空間伝搬特性の評価方法
US6771932B2 (en) * 2002-05-24 2004-08-03 Omnilux, Inc. Method and system for automatically determining lines of sight between nodes
US7142786B2 (en) * 2002-06-03 2006-11-28 Clearmesh Networks, Inc. Wireless infrared network transceiver
US7236705B2 (en) * 2002-06-03 2007-06-26 Clearmesh Networks, Inc. Methods and systems for aligning and maintaining alignment of point-to-point transceivers in a network
US20060165416A1 (en) * 2002-06-03 2006-07-27 Carter Moursund Wireless infrared network transceiver and methods and systems for operating same
US20040001720A1 (en) * 2002-06-27 2004-01-01 Krill Jerry A. Satellite-based mobile communication system
US7379088B2 (en) * 2002-07-01 2008-05-27 The Johns Hopkins University System and method for real-time image control and processing for use in wide area space based surveillance
US7106973B2 (en) * 2002-08-13 2006-09-12 Lightpointe Communications, Inc. Apparatus and method for use in free-space optical communication comprising optically aligned components integrated on circuit boards
US10205721B2 (en) 2002-12-10 2019-02-12 Ewi Holdings, Inc. System and method for distributing personal identification numbers over a computer network
US20040120717A1 (en) * 2002-12-18 2004-06-24 Lightpointe Communications, Inc. Extended source free-space optical communication system
US7120363B2 (en) * 2002-12-20 2006-10-10 Lightpointe Communications, Inc. Method and apparatus for maintaining optical alignment for free-space optical communication
US7286766B2 (en) * 2003-01-16 2007-10-23 Aoptix Technologies, Inc. Free space optical communication system with power level management
US20040141753A1 (en) * 2003-01-21 2004-07-22 Lightpointe Communications, Inc. Apparatus and method for tracking in free-space optical communication systems
US7133618B2 (en) * 2003-04-14 2006-11-07 Texas Instruments Incorporated Method of aligning optical wireless transceivers comprising distinct mirrors for transmitting and receiving
US7071908B2 (en) * 2003-05-20 2006-07-04 Kagutech, Ltd. Digital backplane
WO2004107280A2 (en) 2003-05-28 2004-12-09 Ewi Holdings, Inc. System and method for electronic prepaid account replenishment
US20060018663A1 (en) * 2003-05-30 2006-01-26 Omnilux, Inc. Acquisition of a wireless network node
US20050068902A1 (en) * 2003-07-09 2005-03-31 Kamlesh Rath Scalable broadband wireless mesh access network
US7424225B1 (en) * 2003-11-17 2008-09-09 Bbn Technologies Corp. Systems and methods for implementing contention-based optical channel access
US7522628B1 (en) 2003-11-17 2009-04-21 Bbn Technologies Corp. Systems and methods for implementing coordinated optical channel access
US7457545B2 (en) * 2004-02-12 2008-11-25 Northrop Grumman Corporation Process for controlling a Hartmann wavefront sensor (WFS) in an adaptive optic (AO) system
US7343099B2 (en) * 2004-02-12 2008-03-11 Metrologic Instruments, Inc. Free space optical (FSO) laser communication system employing fade mitigation measures based on laser beam speckle tracking and locking principles
US11599873B2 (en) 2010-01-08 2023-03-07 Blackhawk Network, Inc. Systems and methods for proxy card and/or wallet redemption card transactions
US11475436B2 (en) 2010-01-08 2022-10-18 Blackhawk Network, Inc. System and method for providing a security code
US7280644B2 (en) 2004-12-07 2007-10-09 Ewi Holdings, Inc. Transaction processing platform for faciliating electronic distribution of plural prepaid services
US20050271128A1 (en) * 2004-06-02 2005-12-08 Williams Jeffery D Distributed SCADA system for remote monitoring and control of access points utilizing an intelligent uninterruptible power supply system for a WISP network
US8009990B1 (en) * 2005-06-02 2011-08-30 Rockwell Collins, Inc. Optical phased array
US20070292136A1 (en) 2006-06-16 2007-12-20 Michael Sauer Transponder for a radio-over-fiber optical fiber cable
US10296895B2 (en) 2010-01-08 2019-05-21 Blackhawk Network, Inc. System for processing, activating and redeeming value added prepaid cards
US7627250B2 (en) * 2006-08-16 2009-12-01 Corning Cable Systems Llc Radio-over-fiber transponder with a dual-band patch antenna system
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
CA2601662A1 (en) 2006-09-18 2008-03-18 Matthias Mullenborn Wireless interface for programming hearing assistance devices
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
DE602006013488D1 (de) * 2006-12-04 2010-05-20 Oerlikon Space Ag Bidirektionales, optisches Kommunikationssystem und entsprechendes Verfahren
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US20100054746A1 (en) * 2007-07-24 2010-03-04 Eric Raymond Logan Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8116632B2 (en) 2007-11-30 2012-02-14 Raytheon Company Space-time division multiple-access laser communications system
DE102007061676B4 (de) * 2007-12-18 2010-01-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur optischen Freiraum-Datenübertragung und System zur Durchführung des Verfahrens
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
TW200928412A (en) * 2007-12-21 2009-07-01 Luff Technology Co Ltd Communication method for many-to-many cross-positioning
US8442403B2 (en) * 2008-03-02 2013-05-14 Lumenetix, Inc. Lighting and control systems and methods
WO2010024810A1 (en) * 2008-08-28 2010-03-04 Amperion Inc. Hybrid networks
AU2010210771B2 (en) 2009-02-03 2015-09-17 Corning Cable Systems Llc Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
JP2012517190A (ja) 2009-02-03 2012-07-26 コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー 光ファイバベースの分散型アンテナシステム、構成要素、及びそのモニタリング及び構成のための関連の方法
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
JP2012521707A (ja) * 2009-03-26 2012-09-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ネットワーク化された制御システムの通信メッシュネットワーク構造のためのメッシュノード
US9356695B2 (en) * 2009-03-26 2016-05-31 Robert Bosch Gmbh Automatically aligning photobeam arrangement
US9590733B2 (en) * 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US8280259B2 (en) 2009-11-13 2012-10-02 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
MX2012007926A (es) 2010-01-08 2012-08-03 Blackhawk Network Inc Un sistema para procesar, activar y reembolsar tarjetas prepagadas de valor agregado.
US10037526B2 (en) 2010-01-08 2018-07-31 Blackhawk Network, Inc. System for payment via electronic wallet
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
AU2011232897B2 (en) 2010-03-31 2015-11-05 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US20110268446A1 (en) 2010-05-02 2011-11-03 Cune William P Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US8570914B2 (en) 2010-08-09 2013-10-29 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
EP2606707A1 (en) 2010-08-16 2013-06-26 Corning Cable Systems LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
KR101903963B1 (ko) * 2010-08-27 2018-10-05 블랙호크 네트워크, 아이엔씨. 저축 특징을 갖는 선불 카드
US9252874B2 (en) 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
WO2012115843A1 (en) 2011-02-21 2012-08-30 Corning Cable Systems Llc Providing digital data services as electrical signals and radio-frequency (rf) communications over optical fiber in distributed communications systems, and related components and methods
JP2012209812A (ja) * 2011-03-30 2012-10-25 Nec Corp 伝送装置
EP2702780A4 (en) 2011-04-29 2014-11-12 Corning Cable Sys Llc SYSTEMS, METHODS AND DEVICES FOR INCREASING HIGH-FREQUENCY (HF) PERFORMANCE IN DISTRIBUTED ANTENNA SYSTEMS
CN103548290B (zh) 2011-04-29 2016-08-31 康宁光缆***有限责任公司 判定分布式天线***中的通信传播延迟及相关组件、***与方法
EP2523369A1 (en) 2011-05-12 2012-11-14 Mikko Väänänen Broadband base station comprising means for free space optical communications
EP2832012A1 (en) 2012-03-30 2015-02-04 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods
US11042870B2 (en) 2012-04-04 2021-06-22 Blackhawk Network, Inc. System and method for using intelligent codes to add a stored-value card to an electronic wallet
US9781553B2 (en) 2012-04-24 2017-10-03 Corning Optical Communications LLC Location based services in a distributed communication system, and related components and methods
EP2842245A1 (en) 2012-04-25 2015-03-04 Corning Optical Communications LLC Distributed antenna system architectures
WO2013181247A1 (en) 2012-05-29 2013-12-05 Corning Cable Systems Llc Ultrasound-based localization of client devices with inertial navigation supplement in distributed communication systems and related devices and methods
EP2883416A1 (en) 2012-08-07 2015-06-17 Corning Optical Communications Wireless Ltd. Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
JP6132712B2 (ja) * 2012-11-13 2017-05-24 三菱電機株式会社 信号受信装置及び信号受信方法
CA2892013C (en) 2012-11-20 2022-11-22 Blackhawk Network, Inc. System and method for using intelligent codes in conjunction with stored-value cards
EP2926466A1 (en) 2012-11-29 2015-10-07 Corning Optical Communications LLC HYBRID INTRA-CELL / INTER-CELL REMOTE UNIT ANTENNA BONDING IN MULTIPLE-INPUT, MULTIPLE-OUTPUT (MIMO) DISTRIBUTED ANTENNA SYSTEMS (DASs)
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9158864B2 (en) 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US9264137B2 (en) * 2013-03-02 2016-02-16 Aoptix Technologies, Inc. Rapid in-the-field auto-alignment for radio frequency and free-space optical data communication transceivers
US10411812B1 (en) * 2013-03-15 2019-09-10 Forrest Rose Optical interconnect computing module tolerant to changes in position and orientation
EP3008828B1 (en) 2013-06-12 2017-08-09 Corning Optical Communications Wireless Ltd. Time-division duplexing (tdd) in distributed communications systems, including distributed antenna systems (dass)
WO2014199384A1 (en) 2013-06-12 2014-12-18 Corning Optical Communications Wireless, Ltd. Voltage controlled optical directional coupler
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US10291329B2 (en) * 2013-12-20 2019-05-14 Infineon Technologies Ag Exchanging information between time-of-flight ranging devices
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US10778334B2 (en) * 2014-06-06 2020-09-15 Vivint, Inc. Fiber/wireless hybrid solution
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
WO2016071902A1 (en) 2014-11-03 2016-05-12 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (rf) isolation in multiple-input multiple-output (mimo) antenna arrangement
WO2016075696A1 (en) 2014-11-13 2016-05-19 Corning Optical Communications Wireless Ltd. Analog distributed antenna systems (dass) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (rf) communications signals
US10177846B2 (en) 2014-12-01 2019-01-08 Infineon Technologies Ag Transceiver device, access control devices, a transmitter device and a receiver device
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
WO2016098109A1 (en) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Digital interface modules (dims) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
WO2016098111A1 (en) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Digital- analog interface modules (da!ms) for flexibly.distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
US20160249365A1 (en) 2015-02-19 2016-08-25 Corning Optical Communications Wireless Ltd. Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das)
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
WO2017127421A1 (en) * 2016-01-18 2017-07-27 Qoscience, Inc. Method and apparatus for the detection of distortion or corruption of cellular communication signals
US10187153B2 (en) * 2016-03-07 2019-01-22 8 Rivers Capital, Llc Modular, wireless optical antenna
US9648580B1 (en) 2016-03-23 2017-05-09 Corning Optical Communications Wireless Ltd Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US10225006B1 (en) * 2018-04-23 2019-03-05 X Development Llc Method for transmitting an FSOC supervisor channel
EP3928442A4 (en) * 2019-02-21 2022-12-07 Dialight Corporation LIFI NETWORK AND ASSOCIATED PROCESS
DE102019208986B4 (de) * 2019-06-19 2023-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und netzwerk zur drahtlosen, optischen kommunikation
US11647315B2 (en) * 2021-09-23 2023-05-09 Scidatek Inc. Optical routing system for free space optical communication
US20240063909A1 (en) * 2022-08-18 2024-02-22 At&T Mobility Ii Llc Mobile telecommunications network access point configuration and fiber routing configuration for customer premises equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730310A (en) * 1985-05-03 1988-03-08 American Telephone And Telegraph Company Terrestrial communications system
US4789983A (en) * 1987-03-05 1988-12-06 American Telephone And Telegraph Company, At&T Bell Laboratories Wireless network for wideband indoor communications
US5264955A (en) * 1989-01-09 1993-11-23 Canon Kabushiki Kaisha Optical space communication apparatus
JPH0530044A (ja) 1991-07-25 1993-02-05 Kokusai Denshin Denwa Co Ltd <Kdd> 光通信方式
SG52337A1 (en) 1991-11-15 1998-09-28 Csir Telecommunications network
US5710652A (en) * 1992-08-27 1998-01-20 Trex Communications Laser communication transceiver and system
US6049593A (en) 1997-01-17 2000-04-11 Acampora; Anthony Hybrid universal broadband telecommunications using small radio cells interconnected by free-space optical links
US5844705A (en) 1997-02-13 1998-12-01 At&T Corp Wireless communications systems employing free-space optical communications links

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105657707A (zh) * 2014-12-01 2016-06-08 英飞凌科技股份有限公司 接入控制设备和收发机设备
CN105657707B (zh) * 2014-12-01 2019-06-04 英飞凌科技股份有限公司 接入控制设备和收发机设备
CN106257846A (zh) * 2015-06-22 2016-12-28 波音公司 具有弯管通道和导引通道的自由空间光学通信网络
CN108235331A (zh) * 2016-12-22 2018-06-29 天津大学(青岛)海洋工程研究院有限公司 一种海上高速蜂窝移动通信网络的组网方法
CN112291001A (zh) * 2020-10-23 2021-01-29 军事科学院***工程研究院网络信息研究所 电光双载波互校验自由空间通信方法
CN113038489A (zh) * 2021-03-19 2021-06-25 中国联合网络通信集团有限公司 网络设备的配置方法和装置
CN113038489B (zh) * 2021-03-19 2022-11-22 中国联合网络通信集团有限公司 网络设备的配置方法和装置

Also Published As

Publication number Publication date
WO1999045665A1 (en) 1999-09-10
EP1060582A1 (en) 2000-12-20
AU2973899A (en) 1999-09-20
MXPA00008626A (es) 2003-07-14
AU749110B2 (en) 2002-06-20
JP2002506318A (ja) 2002-02-26
CA2322300A1 (en) 1999-09-10
US6323980B1 (en) 2001-11-27

Similar Documents

Publication Publication Date Title
CN1296680A (zh) 混合皮蜂窝区通信***
EP1410534B1 (en) System and method for mass broadband communications
Majumdar et al. Optical networks, last mile access and applications
Sadiku et al. Free space optical communications: an overview
JP2002516050A (ja) 自由空間光学リンクによって相互接続された小型無線セルを用いたハイブリッド汎用広帯域遠隔通信
US11128374B2 (en) Fully photonic wireless broadband base station
WO1998032250A9 (en) Hybrid universal broadband telecommunications using small radio cells interconnected by free-space optical links
Smyth et al. Optical wireless: a prognosis
US20020171897A1 (en) System and method for a high-speed, customizible subscriber network using optical wireless links
Acampora et al. UniNet: a hybrid approach for universal broadband access using small radio cells interconnected by free-space optical links
Singh et al. A literature review of free space optical communication systems under hybrid technique
Leitgeb et al. High reliable optical wireless links for the last mile access
Schulz et al. All-indoor optical customer premises equipment for fixed wireless access
AU2002345193A1 (en) System and method for mass broadband communications
Ciaccio The pursuit of knowledge is never-ending. The day you stop seeking knowledge is the day you stop growing.
Tchantchane ASSESSING FREE SPACE OPTICAL DEVICE PERFORMANCE AS A FUNCTION OF ENVIRONMENT DEPLOYED AT THE UNIVERSITY OF WOLLONGONG IN DUBAI Brian Cabije1
Willebrand et al. Local multipoint distribution system (LDMS) versus free-space optical (FSO) networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication