CN1291046C - 20CrMnTi钢获得双峰晶粒尺寸分布超细晶组织的工艺方法 - Google Patents

20CrMnTi钢获得双峰晶粒尺寸分布超细晶组织的工艺方法 Download PDF

Info

Publication number
CN1291046C
CN1291046C CN 200410104244 CN200410104244A CN1291046C CN 1291046 C CN1291046 C CN 1291046C CN 200410104244 CN200410104244 CN 200410104244 CN 200410104244 A CN200410104244 A CN 200410104244A CN 1291046 C CN1291046 C CN 1291046C
Authority
CN
China
Prior art keywords
grain
steel
double peak
ultrafine
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200410104244
Other languages
English (en)
Other versions
CN1632138A (zh
Inventor
王天生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN 200410104244 priority Critical patent/CN1291046C/zh
Publication of CN1632138A publication Critical patent/CN1632138A/zh
Application granted granted Critical
Publication of CN1291046C publication Critical patent/CN1291046C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明公开一种20CrMnTi钢获得双峰晶粒尺寸分布超细晶组织的工艺方法,该方法通过一种控制工艺方法来获得一种超细晶组织,超细晶组织的特征在于:组织中晶粒尺寸的分布具有双峰特性,即获得直径为200~50nm晶粒的体积分数占50%,1~2μm晶粒的体积分数占30%,其余尺寸范围晶粒的体积分数占20%。本发明可用于生产具有较高延性的超细晶钢板材和带材。

Description

20CrMnTi钢获得双峰晶粒尺寸分布超细晶组织的工艺方法
技术领域
本发明涉及一种工程用钢的组织控制工艺技术领域。
背景技术
由于超细晶或纳米晶材料加工硬化能力低而使其室温均匀延伸率和总延伸率远低于其粗晶材料。王胜刚等人(五金科技,2003,(12):36)用深度扎制+400℃退火制备的纳米工业纯铁板的延伸率只有6%。Y.T.Zhu(J.Mater.Res.,2003,18:1908)在纳米结构Ti和H.Jin(Scripta Materialia,2004,50:1319)在超细晶Al-Mg合金的研究报道了它们在冷加工时极易出现塑性失稳。这极大地限制了超细或纳米晶材料作为结构材料的加工和实际应用。因此,探索更为适合于工业生产的大块超细/纳米晶钢材的方法以及提高其均匀延伸率是亟待解决的问题。近年来的研究表明,在超细晶组织中引入适量的相对粗大的晶粒,即造成双峰晶粒尺寸分布的晶粒结构,可以在强度损失很小的情况下极大提高延伸率。这种组织特征可能成为一种纳米结构金属获得均匀拉伸变形的方法(Y.M.Wang,E.Ma.Acta Mater,2004,52:1699),而且在纯Cu(Y.Wang,M.Chen,F.Zhou,E.Ma.Nature,2002,419:912)和Al合金(D.Witkins,Z.Lee,R.Rodrigues,S.Nutt,E.J.Lavernia.Scripta Materialia,2003,49:297)中得到了证实。到目前为止,还没见到在工程用钢中获得双峰晶粒尺寸分布的超细晶和纳米晶组织的工艺方法的报道。
发明内容
为了在很小损失强度的条件下大大提高超细晶钢的延展性,拓宽超细晶钢结构应用范围,本发明提供了一种在20CrMnTi钢中获得双峰晶粒尺寸分布超细晶组织的工艺方法,用该工艺方法处理的20CrMnTi钢具有强度高和延展性好的特性。本发明可用于生产具有较高延性的超细晶钢板材和带材。
本发明提供的在20CrMnTi钢中获得双峰晶粒尺寸分布超细晶组织的工艺方法是:在温变形或冷变形前,20CrMnTi钢加热到Ac1~Ac3+20℃温度范围内保温透烧,30~80%变形后立即淬火,获得马氏体+铁素体两相的预备组织;在700~350℃温度下单道次或多道次变形,总变形量在50%以上;或者在室温变形50%后,在350~700℃进行再结晶退火,退火时间为0.2~18小时。经上述处理,20CrMnTi钢获得具有双峰晶粒尺寸分布特性的组织,即获得直径为200~50nm晶粒的体积分数占50%,1~2μm晶粒的体积分数占30%,其余尺寸范围晶粒的体积分数占20%。从而在很小损失强度的条件下大大提高超细晶钢的延展性。
本发明的特点如下:
1、在超细晶钢中造成晶粒尺寸的不均匀或梯度的组织,而常规控制组织要求晶粒尺寸细小且均匀。
2、在Ac1~Ac3+20℃温度范围内形变淬火可以得到细化的铁素体+马氏体双相的预备组织,在变形后的再结晶退火过程中,由于两相化学成分的差异,造成再结晶动力学的差异,导致再结晶后两相晶粒尺寸的差异。原马氏体中含碳量高,变形后再结晶动力学过程慢,而且还会析出碳化物阻碍再结晶进行,最后原马氏体形成超细晶组织而原铁素体形成较为粗大晶粒组织,得到了双峰晶粒尺寸分布的组织。
本发明可以与控制温轧技术结合,经济地生产具有较高延性的超细晶钢板材和带材。
具体实施方式
实施例:将尺寸为φ12×16mm的20CrMnTi钢圆柱形试样,用Gleeble-3500热机械模拟试验机在770℃进行80%压缩变形,立即淬火,然后在液压机上进行40%室温压缩变形,再在550℃退火30min。处理后,用透射电镜观察微观组织,测定并统计晶粒尺寸分布,得到双峰晶粒尺寸分布的组织,其中200~50nm以下晶粒的体积分数占50%,1~2μm晶粒的体积分数占30%,其余尺寸范围晶粒的体积分数占20%。
用这种方法对20CrMnTi钢进行770℃压缩80%变形淬火+40%室温压缩变形+550℃×30min再结晶处理,获得了主要由直径为50~200nm和1~2μm的晶粒组成的双峰晶粒尺寸分布的组织。

Claims (1)

1.一种20CrMnTi钢获得双峰晶粒尺寸分布超细晶组织的工艺方法,其特征在于:
将20CrMnTi钢加热到770℃保温透烧,80%变形后立即淬火,经室温变形40%后,在550℃进行再结晶退火,退火时间为30min;经上述处理,20CrMnTi钢可以获得直径为200~50nm的体积分数占50%的晶粒,1~2μm晶粒的体积分数占30%,其余尺寸范围晶粒的体积分数占20%,即获得双峰晶粒尺寸分布超细晶组织。
CN 200410104244 2004-12-18 2004-12-18 20CrMnTi钢获得双峰晶粒尺寸分布超细晶组织的工艺方法 Expired - Fee Related CN1291046C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410104244 CN1291046C (zh) 2004-12-18 2004-12-18 20CrMnTi钢获得双峰晶粒尺寸分布超细晶组织的工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410104244 CN1291046C (zh) 2004-12-18 2004-12-18 20CrMnTi钢获得双峰晶粒尺寸分布超细晶组织的工艺方法

Publications (2)

Publication Number Publication Date
CN1632138A CN1632138A (zh) 2005-06-29
CN1291046C true CN1291046C (zh) 2006-12-20

Family

ID=34848209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410104244 Expired - Fee Related CN1291046C (zh) 2004-12-18 2004-12-18 20CrMnTi钢获得双峰晶粒尺寸分布超细晶组织的工艺方法

Country Status (1)

Country Link
CN (1) CN1291046C (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409367B2 (en) 2008-10-29 2013-04-02 The Hong Kong Polytechnic University Method of making a nanostructured austenitic steel sheet
US8752752B2 (en) 2009-03-09 2014-06-17 Hong Kong Polytechnic University Method of making a composite steel plate
CN101713046B (zh) * 2009-12-14 2013-09-18 钢铁研究总院 纳米析出相强化及控制的超细晶粒马氏体钢的制备方法
CN103255273A (zh) * 2013-05-20 2013-08-21 南京钢铁股份有限公司 一种提高管线钢板塑性的制造方法
CN106011422B (zh) * 2016-08-03 2018-01-30 唐山学院 具有双峰尺度铁素体组织的高强钢及其低成本制备方法
CN110055379A (zh) * 2019-06-03 2019-07-26 郑州航空工业管理学院 一种显微层片结构钢板的制备方法
CN111378824B (zh) * 2020-05-14 2020-12-08 东北大学 一种51CrV4亚共析精冲钢热加工工艺
CN112522618B (zh) * 2020-11-24 2022-02-18 首钢集团有限公司 一种全铁素体高强钢及其制备方法

Also Published As

Publication number Publication date
CN1632138A (zh) 2005-06-29

Similar Documents

Publication Publication Date Title
Peng et al. Plastic deformation and heat treatment of Mg-Li alloys: a review
Liu et al. Study on preparation and mechanical property of nanocrystalline NiAl intermetallic
CN107267838B (zh) 一种利用热磁耦合制备具有高强韧细晶高熵合金的方法
Lu et al. Enhanced mechanical properties and rolling formability of fine-grained Mg–Gd–Zn–Zr alloy produced by equal-channel angular pressing
US20120241054A1 (en) Fine grain niobium sheet via ingot metallurgy
CN104726803A (zh) 一种制备晶内含纳米尺寸析出相的纳米晶金属材料的方法
CN110343982A (zh) 一种纳米双峰异构铝镁合金制备方法
Zhang et al. Mechanical properties and microstructure evolution of a CrCoNi medium entropy alloy subjected to asymmetric cryorolling and subsequent annealing
Yu et al. Effect of swaging on microstructure and mechanical properties of liquid-phase sintered 93W-4.9 (Ni, Co)-2.1 Fe alloy
Fan et al. Effect of two-time spark plasma sintering on microstructure and mechanical properties of W–6Ni–4Mn alloy
Yu et al. High strength and toughness of Ti–6Al–4V sheets via cryorolling and short-period annealing
CN1291046C (zh) 20CrMnTi钢获得双峰晶粒尺寸分布超细晶组织的工艺方法
Sheng et al. Effect of extrusion process on microstructure and mechanical properties of Ni3Al-B-Cr alloy during self-propagation high-temperature synthesis
Yang et al. Post treatment of an additively manufactured composite consisting of 304L stainless steel and CoCrFeMnNi high-entropy alloy
Václavová et al. Ultra-fine grained microstructure of metastable beta Ti-15Mo alloy and its effects on the phase transformations
Xu et al. Multimodal grain structure and tensile properties of cold-rolled titanium after short-duration annealing
Ding et al. Mechanical properties and microstructural evolution of Mo–Co-co-strengthened W–Ni–Fe alloys by spark plasma sintering
Zhang et al. Elevated tensile properties of Ti-O alloy with a novel core-shell structure
Rana et al. Microstructure and mechanical properties of nanocrystalline high strength Al–Mg–Si (AA6061) alloy by high energy ball milling and spark plasma sintering
CN114318039B (zh) 三峰晶粒结构金属基复合材料的元素合金化制备方法
Shuai et al. Effect of annealing temperature on microstructure and mechanical properties of cold-rolled commercially pure titanium sheets
Yang et al. Microstructure and mechanical properties of a hot-hydrostatically extruded 93W–4.9 Ni–2.1 Fe alloy
CN112575236A (zh) 一种高氮高熵合金及其制备方法
CN101225459A (zh) 高塑性超细晶微合金低碳钢的制造方法
CN109732087B (zh) 一种粉末冶金Ti-Ta二元金属-金属基层状复合材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee