CN1222674A - Ultraviolet Raman spectrometer - Google Patents

Ultraviolet Raman spectrometer Download PDF

Info

Publication number
CN1222674A
CN1222674A CN 98113710 CN98113710A CN1222674A CN 1222674 A CN1222674 A CN 1222674A CN 98113710 CN98113710 CN 98113710 CN 98113710 A CN98113710 A CN 98113710A CN 1222674 A CN1222674 A CN 1222674A
Authority
CN
China
Prior art keywords
light
laser
raman
raman spectrometer
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 98113710
Other languages
Chinese (zh)
Other versions
CN1101544C (en
Inventor
李�灿
辛勤
应品良
刘建科
熊光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN 98113710 priority Critical patent/CN1101544C/en
Publication of CN1222674A publication Critical patent/CN1222674A/en
Application granted granted Critical
Publication of CN1101544C publication Critical patent/CN1101544C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

Ultraviolet Raman spectrometer consists mainly of four parts of laser excited light source, optical path system, spectrometer system, and signal acquisition and data processing system. The excited light source is one 200-400 nm wavelength ultraviolet laser. The present invention can eliminate the interference of surface fluorescence so as to utilize the Raman spectrum in the research of catalyst surface.

Description

A kind of ultraviolet Raman spectrometer
The present invention relates to spectral analysis technique, a kind of ultraviolet Raman spectrometer is provided especially.
Raman scattering is the inelastically scattered a kind of phenomenon of light and material, Raman spectrum based on this phenomenon is modern important spectral technique, at catalytic chemistry, Surface Science, material science, have a wide range of applications in the multiple subject such as biological chemistry, rely on it can obtain the important information of related substance structure.In catalysis and Surface Science field, Raman spectrum can obtain about the structure of surface structure and surface species and the important information of co-ordination state, especially can carry out the original position research of industrial catalyst and the quick and micro kinetics research of catalytic surface reaction.Traditional Raman spectrum many with visible or near-infrared laser as excitation source, its Raman signal just in time drops on phosphor region, so in case have surface fluorescence just to be difficult to obtain Raman signal.How improving Raman spectrum, to make its its latent effect of performance in catalytic surface research be a great problem always, and Surface enhanced raman spectroscopy and near infrared FT-Raman spectrum once were used to overcome the interference of surface fluorescence, but failed fundamentally improving Raman spectrum.
The object of the present invention is to provide a kind of ultraviolet Raman spectrometer, it can overcome the interference of surface fluorescence, thereby makes Raman spectrum bring into play potential effect in the research of catalyst surface.
The invention provides a kind of ultraviolet Raman spectrometer, mainly constitute, it is characterized in that by laser excitation light source, light path system, beam splitting system, signals collecting and data handling system four major parts: adopt wavelength at the Ultra-Violet Laser of 200~400nm as excitation source.Because Ultra-Violet Laser can make the fluorescence of catalyst surface stronger, thereby in research in the past, nobody proposes to adopt Ultra-Violet Laser to make the excitation source of Raman spectrum, to overcome the interference of surface fluorescence to Raman spectrum.But in fact, after adopting Ultra-Violet Laser, thereby make Raman signal move the fluorescence interference of having avoided the visible range to the ultraviolet region as excitation source.After incident laser is transferred to the ultraviolet region from the visible range simultaneously, because shortened wavelengths also makes Raman scattering significantly strengthen.So the ultraviolet Raman not only can be avoided fluorescence interference but also sensitivity is increased substantially.Thereby obtain resonance Raman spectroscopy by regulating optical maser wavelength some molecular radical in can the selective excitation system, can high selectively obtain the structural information of a certain local part of molecule based on this.This advantage has clear superiority in the research of the big molecule of complexity, polymeric system, biomacromolecule.Simultaneously, the electronic of most of catalystic converter system drops on the ultraviolet region just, adopts Ultra-Violet Laser might excite the electronic state of system and produce resonance raman, makes Raman signal strengthen 10 2~10 6Thereby doubly further improve sensitivity.
In a word, the present invention has overcome technical prejudice and has 1. successfully avoided fluorescence interference, the helpless sample test of traditional Raman spectrum of making over becomes possibility, to tens kinds of up to a hundred various sample (solids, liquid) compare test, prove that the ultraviolet Raman can successfully avoid fluorescence interference; 2. sensitivity significantly improves, and for example, traditional Raman 100mw light source scan nearly one hour, and the ultraviolet Raman is only used the 5mw light source, and scannings in tens seconds can obtain the spectrum of same quality.
In addition, the scattered light of light path system is collected the design that part has adopted oval collection light microscopic among the present invention, promptly make the ellipsoidal surface catoptron in the part of elliptical shaft direction intercepting ellipsoidal surface, with two focuses of ellipse respectively as the excitation source of sample with collect the light focus point.This kind design one confrontational collection light microscopic adopts the mode of diaphotoscope, and the one, solved the low problem of quartz glass ultraviolet transmission rate, also make the collection optical efficiency bring up to 35% on the other hand, thereby further improved the sensitivity of instrument by being no more than 10%.
Ultraviolet Raman spectrometer of the present invention can be widely used in catalysis, material, environmental protection and biological field.
By embodiment in detail the present invention is described in detail below in conjunction with accompanying drawing.
Accompanying drawing 1 is the ultraviolet Raman spectrometer system layout.
Accompanying drawing 2 is that the light path synoptic diagram is collected in the ellipse garden of outside optical system.
Accompanying drawing 3 is three grating monochromator index paths.
Accompanying drawing 4 is computer control and data acquisition system (DAS) sketch.
Accompanying drawing 5 is the in-situ Raman spectrum tool.
Accompanying drawing 6 be benzene visible light Raman spectrogram (457.9nm, 10s).
Accompanying drawing 7 be benzene ultraviolet light Raman spectrogram (325.0nm, 100s).
Accompanying drawing 8 be teflon visible light Raman spectrogram (457.9nm, 100s).
Accompanying drawing 9 be teflon ultraviolet light Raman spectrogram (257.25nm, 10s).
Accompanying drawing 10 be USY visible light Raman spectrogram (457.9nm, 100s).
Accompanying drawing 11 be USY ultraviolet light Raman spectrogram (244.0nm, 100s).
Embodiment
As shown in Figure 1, ultraviolet Raman spectrometer is made of the Lights section, light path system, data acquisition and recording system three parts.
The Lights section has adopted the Inova 300 Fred ultraviolet lasers of three light source Coherent companies, the Ar of homemade He-Cd laser instrument and Spectra Physics company +Ion laser; The Inova300 Fred laser instrument of Coherent company can obtain several laser rays in the ultraviolet region; 257.2nm (100mW), 244.0nm (100mW), 28.9nm (10mW), and at 251.3nm, 248.2nm, 238.2nm also have considerable power output.Homemade He-Cd laser instrument can obtain the power output of 20mW at 325nm.And the output of 5mW can have been satisfied the needs of uv raman spectroscopy.The Ar of Spectra-Physics company +Ion laser can obtain the laser output of watt level in the visible range.Thereby can from the ultraviolet to the visible light, (carry out resonance Raman Spectroscopic Study of Cytochrome in 200~600nm) wide regions.
Light path system (2) is made of ellipse garden spherical mirror collection system and three grating monochromators, sees accompanying drawing 2, accompanying drawing 3.Will be near the focus of ellipse garden spherical mirror as LASER Light Source, spectrum tool just is arranged on here, and another focus is as collecting the light focus point.The scattered light of collecting enters three grating monochromators through lens focus, and the spectral limit taken the photograph of instrument is at 185~1000nm, front two grating G 1, G 2But filtering parasitic light and Rayleigh line, G 3, G 4, G 5Be used for beam split, three gratings can be adjusted to be applicable to different LASER Light Source.
Signal collection has adopted highly sensitive CCD detection device, can instantaneous acquired signal apace, and acquisition rate can reach Millisecond in theory, carries out data processing with the Pentium 133 computing machine, sees accompanying drawing 4.
Accompanying drawing 5 is the structure principle chart of in-situ Raman spectrum tool, and (1) is quartzy Raman optical window among the figure, and (2) are tubular furnace, and (3) are catalyzer, and (4) are the gas access, and (5) are gas vent, and (6) are the slip quartz ampoule, and (7) are O-ring seal.
Accompanying drawing 6~11 is respectively the visible light of benzene, teflon, VSY and the Raman spectrogram of ultraviolet light, and visible ultraviolet Raman has better resolution.

Claims (4)

1. a ultraviolet Raman spectrometer mainly is made of laser excitation light source, light path system, beam splitting system, signals collecting and data handling system four major parts, it is characterized in that: adopt wavelength at the Ultra-Violet Laser of 200~400nm as excitation source.
2. by the described ultraviolet Raman spectrometer of claim 1, it is characterized in that: the scattered light of light path system is collected part and is adopted oval design of collecting light microscopic, promptly in the part of elliptical shaft direction intercepting ellipsoidal surface as the ellipsoidal surface catoptron, with two focuses of ellipse respectively as the excitation source of sample with collect the light focus point.
3. by the described ultraviolet Raman spectrometer of claim 2, it is characterized in that: will be near the focus of ellipse garden spherical mirror as LASER Light Source, another focus is as the collection light focus point of sample.
4. by claim 1,2,3 described ultraviolet Raman spectrometers, it is characterized in that: additional visible light and near-infrared laser are as excitation source.
CN 98113710 1998-01-07 1998-01-07 Ultraviolet Raman spectrometer Expired - Lifetime CN1101544C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 98113710 CN1101544C (en) 1998-01-07 1998-01-07 Ultraviolet Raman spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 98113710 CN1101544C (en) 1998-01-07 1998-01-07 Ultraviolet Raman spectrometer

Publications (2)

Publication Number Publication Date
CN1222674A true CN1222674A (en) 1999-07-14
CN1101544C CN1101544C (en) 2003-02-12

Family

ID=5223417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 98113710 Expired - Lifetime CN1101544C (en) 1998-01-07 1998-01-07 Ultraviolet Raman spectrometer

Country Status (1)

Country Link
CN (1) CN1101544C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100405044C (en) * 2005-01-05 2008-07-23 中国科学院长春光学精密机械与物理研究所 Optical structure of vacuum ultraviolet and fluorescence spectrum instrument
CN101968381A (en) * 2009-06-11 2011-02-09 必达泰克光电设备(上海)有限公司 Raman spectroscopic apparatus and method for measuring raman spectrum containing fluorescent materials
CN103180774A (en) * 2010-09-09 2013-06-26 Limo专利管理有限及两合公司 Laser apparatus for producing linear intensity distribution in working plane
CN106442565A (en) * 2016-10-26 2017-02-22 中国科学院上海光学精密机械研究所 Surface defect detection apparatus with high-speed laser line scanning
CN107449767A (en) * 2016-06-01 2017-12-08 中国科学院大连化学物理研究所 A kind of ultraviolet Raman fiber optic probe
CN107505307A (en) * 2017-08-09 2017-12-22 成都艾立本科技有限公司 Full enclosed ellipsoidal surface mirror light path laser induced breakdown spectrograph system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100351624C (en) * 2005-01-13 2007-11-28 上海众毅工业控制技术有限公司 Dissolved gas analyzer of electric power transformer oil based on Raman technology
TWI472725B (en) * 2014-01-17 2015-02-11 Academia Sinica Lens-chromatism spectrum measurement device and spectrum measurement method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100405044C (en) * 2005-01-05 2008-07-23 中国科学院长春光学精密机械与物理研究所 Optical structure of vacuum ultraviolet and fluorescence spectrum instrument
CN101968381A (en) * 2009-06-11 2011-02-09 必达泰克光电设备(上海)有限公司 Raman spectroscopic apparatus and method for measuring raman spectrum containing fluorescent materials
CN103180774A (en) * 2010-09-09 2013-06-26 Limo专利管理有限及两合公司 Laser apparatus for producing linear intensity distribution in working plane
CN103180774B (en) * 2010-09-09 2016-09-21 Limo专利管理有限及两合公司 For producing the laser equipment of the intensity distributions of wire in working face
CN107449767A (en) * 2016-06-01 2017-12-08 中国科学院大连化学物理研究所 A kind of ultraviolet Raman fiber optic probe
CN106442565A (en) * 2016-10-26 2017-02-22 中国科学院上海光学精密机械研究所 Surface defect detection apparatus with high-speed laser line scanning
CN106442565B (en) * 2016-10-26 2019-06-21 中国科学院上海光学精密机械研究所 The surface defect detection apparatus of high-rate laser line scanning
CN107505307A (en) * 2017-08-09 2017-12-22 成都艾立本科技有限公司 Full enclosed ellipsoidal surface mirror light path laser induced breakdown spectrograph system
CN107505307B (en) * 2017-08-09 2020-11-27 成都艾立本科技有限公司 Full-surrounding type elliptical spherical mirror light path laser-induced breakdown spectrometer system

Also Published As

Publication number Publication date
CN1101544C (en) 2003-02-12

Similar Documents

Publication Publication Date Title
Zhu et al. Technical development of Raman spectroscopy: from instrumental to advanced combined technologies
Chase A new generation of Raman instrumentation
Carrabba et al. The utilization of a holographic Bragg diffraction filter for Rayleigh line rejection in Raman spectroscopy
DE69634270T2 (en) ON-LINE QUANTITATIVE ANALYSIS OF CHEMICAL COMPOSITIONS USING RAMAN SPECTROMETRY
Barbillat et al. Raman confocal microprobing, imaging and fibre‐optic remote sensing: A further step in molecular analysis
CN111650180B (en) Raman spectrum imaging system based on signal coding and space compression
US20070103680A1 (en) Method and device for chemical component spectrum analysis
CN111256821A (en) Dual-wavelength Raman-fluorescence combined spectrometer
Everall et al. Performance analysis of an integrated process Raman analyzer using a multiplexed transmission holographic grating, CCD detection, and confocal fiber-optic sampling
CN111413314A (en) Portable Raman spectrometer based on Bessel light
CN112414992A (en) Raman spectrum excitation enhancement module
CN1222674A (en) Ultraviolet Raman spectrometer
CN107576645A (en) A kind of Raman spectrum extraction system and method
CN110793954A (en) Portable Raman blood identification system based on echelle grating
CN113804671A (en) High-sensitivity Raman spectrum detection system
Schrader Raman spectroscopy in the near infrared–A most capable method of vibrational spectroscopy
CN112710647B (en) Optical fiber Raman probe for water pollution detection
CN212111146U (en) Portable Raman blood identification system based on echelle grating
CN211504404U (en) Dual-wavelength excitation acquisition system applied to spectrometer
Anderson et al. Threshold effects in light scattering from a binary diffraction grating
Greek et al. Rational design of fiber-optic probes for visible and pulsed-ultraviolet resonance Raman spectroscopy
CN112595416A (en) Broadband infrared spectrometer
CN101183070A (en) Bar-shape spectrophotometric device
CN213275352U (en) Raman signal collecting probe based on off-axis parabolic reflector
CN212059104U (en) Wide-spectrum high-sensitivity Raman spectrometer

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20030212