CN1185742C - 燃料电池*** - Google Patents

燃料电池*** Download PDF

Info

Publication number
CN1185742C
CN1185742C CNB008117225A CN00811722A CN1185742C CN 1185742 C CN1185742 C CN 1185742C CN B008117225 A CNB008117225 A CN B008117225A CN 00811722 A CN00811722 A CN 00811722A CN 1185742 C CN1185742 C CN 1185742C
Authority
CN
China
Prior art keywords
fuel
steam
reformer
methane
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB008117225A
Other languages
English (en)
Other versions
CN1370333A (zh
Inventor
卡尔·弗杰
卡里克·阿麦德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chaozhou Three Circle Group Co Ltd
Original Assignee
Ceramic Fuel Cells Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3816410&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1185742(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ceramic Fuel Cells Ltd filed Critical Ceramic Fuel Cells Ltd
Publication of CN1370333A publication Critical patent/CN1370333A/zh
Application granted granted Critical
Publication of CN1185742C publication Critical patent/CN1185742C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1035Catalyst coated on equipment surfaces, e.g. reactor walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1094Promotors or activators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

一种在燃料电池(14)中发电的方法,其包括在预重整炉中温度不高于500℃的条件下使高级碳(C2+)烃类燃料与蒸气预重整炉(10)中的蒸气发生反应,生成包括氢和通过湿量法测得体积约不低于20%的甲烷的燃料流,将燃料流和氧化剂输送到高温燃料电池(14)中,在此对甲烷进行重整,并通过在燃料电池阳极上使燃料流发生反应和在燃料电池的阴极上使氧化剂发生反应来发电。

Description

燃料电池***
技术领域
本发明涉及燃料电池,具体涉及向燃料电池电能发生***的燃料供应。
背景技术
燃料电池通过一种电化学过程将气态燃料(例如氢气、天然气和气态煤)直接转化成电能。当供给燃料和氧化剂(通常是空气)时,燃料电池可以连续产生电能。典型的燃料电池是由连接着两个电极(主要是导电体)的电解质(离子导体,H+、O2-、CO3 2-等)组成。当通过外部负载短接电池时,燃料在阳极发生氧化,导致电子释放出来,这些电子流过外部负载并在阴极还原氧。外部电路中的电荷流被电解质中的离子电流平衡。由此,来自空气或其他氧化剂的氧在阴极发生裂解,转化成氧离子,所述氧离子通过电解质薄膜迁移,并在阳极/电解质界面上与燃料发生反应。在负载条件下由单个电池输出的电压接近0.6至1.0V DC,能获得的电流密度范围为100至1000mAcm-2
已经提出了几种不同类型的燃料电池。其中,固体氧化物燃料电池(SOFC)被认为是最有效、最通用的发电***,特别对于分散型发电来说更是如此,其具有低污染、高效率、高功率密度和燃料适应性。SOFC可在高温下工作,例如700-1000℃。其他在高温下工作的燃料电池包括熔融碳酸盐燃料电池,其要求最低温度为650℃。然而,SOFC是本发明的主要兴趣所在,在此进一步的讨论将主要涉及于此,试图对其不作任何方式的限制。
许多SOFC结构正处于发展之中,其包括管状、整体式和平面式设计。平面和平板式设计正广泛地得到研究。通过内部连接或气体分离器将单个平面SOFC连接成多电池单元,有时称为燃料电池组。例如可通过在气体分离器中设置气体流动通道来在气体分离器与对应电极之间设置气体流路。在一个燃料电池组中,各部件——电解质/电极叠片和气体分离器都是独立制造的,然后它们被组装到一起。由于这种设置,对于气体燃料和氧化剂,可以使用外部与内部的顺流、逆流和交叉流歧管装置选件。
传统上,已经将氢用作燃料电池的燃料,其中氢通常被水蒸气湿润。但是,为了经济可行性,燃料必须尽可能便宜。一种相对便宜的氢源是天然气,其主要是含有一小部分重质烃(C2+)的甲烷。在蒸气重整反应中天然气通常转化成氢,但该反应是吸热的,并由于甲烷的稳定性,为实现基本转化其需要重整温度至少约为650℃,为实现完全转化还需要更高温度。当高温燃料电池***产生必须要除去的热量时,在至少约650℃的所需水平下将热能从燃料电池传递到蒸气重整炉中的热交换器非常昂贵。因此,由蒸气重整天然气产生的氢不是一种廉价的燃料源。
在EP-A-0435724中已经公开了一种燃料电池发电的方案,其中在蒸气预重整炉中将烃类燃料转化成包含氢的燃料电池燃料流。预重整炉中的温度描述为700到850℃,所得气体产物的成分为65-80vol%的H2、5-20vol%的CO、5-25vol%的CO2
在US-A-5,302,470中公开了另一个这样的方案,其中据说蒸气预重整反应可在与那些已知的蒸气重整反应条件类似的条件下进行:例如,进口温度约为450到650℃,出口温度约为650到900℃,压力约为0到10kg/cm2.G,由此产生了主要由氢组成的燃料电池燃料流,并通过一氧化碳转换炉将该燃料流输送到燃料电池的阳极。
除了天然气外,在上述两个方案中建议使用的烃类燃料包括甲醇、煤油、石脑油、LPG和民用燃气。
已经提出利用天然气作为高温平面燃料电池组的燃料源,并在电池组内至少约650℃的温度下利用催化活化阳极对天然气进行蒸气重整来缓解前述使甲烷基本上完全发生蒸气预重整的成本问题。然而,由于甲烷蒸气重整反应的吸热特性,燃料流中太多的甲烷将导致燃料电池组过冷。为缓解该问题,已经将燃料流限制为甲烷最多约占25%,同时在接近700℃的高温下在燃料电池组上游使天然气经过部分蒸气预重整。
在EP-A-0673074中描述了另一种在燃料电池中利用烃类燃料发电的方法,这些烃类燃料例如气化煤、天然气、丙烷、石脑油或其它轻质烃、煤油、柴油或燃料油。正如在其说明中所描述的,该方法包括,在开始将约5到20%烃类燃料中的乙烷和高级烃转化成甲烷、氢和碳的氧化物,并完成测量该小部分中由甲烷预重整成的碳的氧化物和氢后,在至少500℃的温度下对该小部分中的烃类燃料进行蒸气预重整。在该较低温度下的蒸气预重整缓解了预重整炉中的碳沉积问题。然后将带有蒸气预重整部分的烃类燃料提供给燃料电池组的燃料入口通道,该通道涂覆或含有一种催化剂,用于在700-800℃下将甲烷和其余的烃类燃料蒸气重整成氢或碳的氧化物,然后将它们输送到燃料电池组的阳极。
据说,在燃料进口通道内残留的烃类燃料的间接内部蒸气重整能允许使用燃料进口通道内的重整催化剂,其与镍金属陶瓷阳极相比,几乎不可能由高级烃的内部蒸气重整产生积碳或碳沉积。可以确信的是,为了相对提高进入燃料电池组的燃料流中的氢含量以便当燃料在电池组中进行内部重整时减少积碳,将所述温度范围内进行的烃类燃料的蒸气预重整限制为燃料的5到20%。
发明内容
依照本发明提供了一种在燃料电池中发电的方法,所述方法包括,在预重整炉中温度不高于500℃的条件下使至少具有2个碳原子的烃类燃料与蒸气预重整炉中的蒸气发生反应,以生成包括氢和通过湿量法测得体积不低于20%的甲烷的燃料流,以及将燃料流和氧化剂输送到高温燃料电池中,在此对甲烷进行重整,并通过在燃料电池阳极上使燃料流发生反应和在燃料电池的阴极上使氧化剂发生反应来发电。
通过本发明,可将非常广泛的燃料源用于燃料电池,而不仅仅包括甲烷和/或氢,这些燃料源包括乙烷和诸如丙烷、丁烷的液态高级烃、液化石油气(LPG)、汽油(石油)、柴油、煤油、燃油、喷气式飞机油、石脑油以及它们的混合物,同时由于不需要在蒸气预重整炉中重整任何甲烷,因此可以使用不高于500℃的较低温度来完成高级烃类燃料源的蒸气预重整。这就允许使用的较小预重整反应器,结合降低了的最大操作温度500℃,我们就能采用简化的、由此使价格更便宜的预重整***。该低温蒸气预重整也减少了预重整炉中的碳沉积。
蒸气预重整可在大气压下方便地实施,但如果需要也可以采用高压,例如压力高达10kgcm-2G。
燃料源可包括低级烃,例如甲烷,但优选的是让高级烃构成燃料源的主要成分。首选的燃料选自LPG、汽油(石油)和柴油。
优选在不高于约450℃的温度下进行高级烃燃料源的蒸气预重整,更优选的是在约250到450℃的范围内实施,这取决于燃料和其它工艺参数,最优选的是在约300到400℃的范围内实施。
在反应过程中,蒸气预重整炉中较低的最大温度倾向于在重整催化剂作用下促进甲烷的形成:
于是,甲烷这样形成:通过高级烃的蒸气重整形成一氧化碳、二氧化碳和氢气,它们再进一步反应生成甲烷。由此至少在某种程度上可以认为整个蒸气预重整过程是甲烷生成过程。
在一个实施例中,在300到400℃的条件下,丙烷,C3H8,LPG的主要成分,可发生蒸气预重整,生成CH4,CO,CO2和H2。然后在阳极的氧化反应过程中该燃料流中的CH4在燃料电池内存在蒸气的条件下发生内部重整,产生废气CO2和H2O。燃料电池中的温度应当至少为650℃,为保证甲烷的基本完全重整,优选至少为700℃。在SOFC中,温度可能至少为700℃,以便有可能实现甲烷的完全重整。
通常,这样实施蒸气预重整过程:使C2+烃类燃料存留在重整催化剂上达足够长时间,以保证至少基本上完全转化C2+烃,例如使其低于来自预重整炉的燃油流体积的约0.1%。当在阳极上重整高级烃时这能够减少碳沉积。然而,在燃油流中可能存在一些C2+烃,优选的是蒸气预重整过程中C2+烃的转化率为97.5%或更高。更为优选的是,按照湿量法测量,在到达阳极的燃料流中存在的C2+烃不超过约0.5vol%。可以确信的是,在阳极含相当大比例甲烷的燃料流反应能从燃料电池产生比仅反应氢更高的电压,由此提高了燃料电池的效率。
通过湿量法测量,通常燃料流的甲烷含量按体积至少为25%,优选按体积至少约为40%,更为优选的是,按体积约为50%,最优选按体积约为60%。在一个优选实施例中,除了可能的水分外,CH4构成了进入燃料电池的燃料流的主要成分。
作为吸热的甲烷内蒸气重整反应的结果,这些甲烷含量具有引起燃料电池过冷的可能性。在整个陶瓷SOFC燃料电池组中,由于陶瓷材料的低热传导性,尤其可能会遇到该问题,但是可以通过将金属或金属成分结合到燃料电池组中来缓解该问题,例如可将其用作各燃料电池之间的气体分离器,以此来改善整个电池组的热传导性。可选择的是,或此外,可以利用其它方式来缓解每个燃料电池组件燃料入口缘处的过冷,这包括对燃料流进行预热。
有利的是,在本发明的方法中可将燃料电池的废热回收到蒸气预重整炉中,重整炉优选绝热地工作。由于预重整炉仅需在500℃的最大温度下工作,因此将废热传递给重整炉的热交换器可以是相对简单的结构,它由成本相对较低的材料制成。
已经提出了多种不同的蒸气重整炉,预重整炉可采用其中的任何一种,记住最大工作温度为500℃以及预重整炉可有效地作为甲烷发生器的事实。普通的预重整催化剂是镍基的,但它也可以包括例如铂、铑、其它贵金属或其中任意几种的混合物。
通常,为了减少硫使预重整催化剂和/或阳极发生中毒,重质烃燃料要通过蒸气预重整炉上游的除硫步骤。重质烃燃料的除硫是公知的,在此就不对其作进一步描述了。
优选地,燃料电池中的阳极包含镍材料,例如镍/氧化锆金属陶瓷,它可用于催化燃料电池中的重整反应。燃料电池及其相关组件可采用任何适当形式,只要它能在至少650℃的温度下工作就可以,以便在内部重整反应过程中至少能基本上转化甲烷。在我们的国际专利申请PCT/AU96/00140、PCT/AU96/00594、PCT/AU98/00437、PCT/AU98/00719和PCT/AU98/00956中仅通过举例方式描述了几种不同的平面SOFC部件和***、SOHC和材料,在此通过参考将其结合进来,其还包括各自对应的US国家阶段专利5942349和专利申请09/155061、09/445735、09/486501和09/554709。在我们的国际专利申请PCT/AU99/01140、PCT/AU00/00630和PCT/AU00/00631中出现了其它的公开。
通常来说,要向其输送燃料流的燃料电池可以是也要向其输送燃料流的多燃料电池中的一个,在平面SOFC情况下,其通常被称为燃料电池组。然而,本发明也扩展到利用单个燃料电池进行的过程。
一般来说,在蒸气与碳(S/C)的比大于2时实施烃的蒸气重整。然而,在本发明中,这会导致燃料被蒸气显著稀释,由此会降低燃烧值。例如,对于丁烷(C4H10),为了使S/C比为2,必需将8体积份的蒸气加到1体积份的燃油中。对于柴油(C10),必需将20份蒸气加到1份燃油中,以便使S/C值达到2,结果出现强烈的燃料稀释,这导致发电量不足。因此优选的是,预重整炉中的S/C比值低于1.5,更为优选的是低于1.25,最优选是低于1。
通过在预重整炉中采用的温和条件(温度不高于500℃)可以缓解在所建议的较低蒸气与碳比值中潜在的碳沉积问题。如果在非常低的蒸气与碳比值条件下实施预重整,可以将附加的蒸气导入到进入燃料电池的燃料流中。有利的是,可以通过循环回收一部分阳极排气流来实现蒸气的添加。
可以分别从表1和2给出的、在确定最大温度处进行重整的LPG和汽油的热动平衡克分子成分看到预重整炉中较低的S/C比值和较低温度的优点,其中S/C是蒸气与烃碳的比。例如,对于每摩尔LPG,S/C等于1等效于3.15摩尔蒸气,对于每摩尔汽油,其相当于7.93摩尔蒸气。
表1
重整后LPG的克分子成分(假设是85%的丙烷,15%的丁烷)
 温度  200℃  250℃
 S/C  0.5 1.0 1.5  2.0  2.5  0.5   1.0   1.5  2.0   2.5
 CH4C2 4H2OH2COCO2  0.7133     0.4965      0.3807       0.3085      0.25914.0E-06    1.1E-06     5.7E-07      2.4E-08     3.1E-120.1347     0.3923      0.5306       0.6169      0.67590.0041     0.0069      0.0080       0.0086      0.00903.2E-05    1.3E-05     8.9E-06      6.6E-06     5.3E-060.1479     0.1042      0.0807       0.0660      0.0560  0.7091       0.4909      0.3749     0.3028       0.25366.9E-06      1.9E-06     9.8E-07    8.8E-08      3.1E-120.1310       0.3845      0.5206     0.6057       0.66370.0107       0.0182      0.0210     0.0224       0.02340.0002       8.7E-05     5.8E-05    4.4E-05      3.6E-050.1490       0.1064      0.0834     0.0690       0.0592
 总计  1.0000     1.0000      1.0000       1.0000      1.0000  1.0000       1.0000      1.0000     1.0000       1.0000
 温度  300℃  350℃
 S/C  0.5 1.0 1.5  2.0  2.5  0.5   1.0   1.5   2.0   2.5
 CH4C2 +H2OH2COCO2  0.7007     0.4797      0.3635       0.2918      0.24301.1E.05    3.0E-06     1.5E-06      9.1E-07     3.1E-120.1239     0.3691      0.5013       0.5839      0.64050.0238     0.0403      0.0463       0.0493      0.05100.0010     0.0004      0.0003       0 0002      0.00020.1506     0.1105      0.0886       0.0748      0.0653  0.6855       0.4606      0.3448      0.2738      0.22581.6E-05      4.3E-06     2.1E-06     1.3E-06     3.0E-120.1127       0.3437      0.4694      0.5486      0.60310.0458       0.0772      0.0880      0 0930      0.09560.0040       0.001 7     0.0012      0.0009      0.00080.1520       0.1168      0.0966      0.0837      0.0747
 总计  1.0000     1.0000      1.0000       1.0000      1.0000  1.0000       1.0000      1.0000      1.0000      1.0000
表1(续)
 温度     400℃     450℃
 S/C     0.5   1.0  1.5  2.0   2.5     0.5   1.0  1.5  2.0  2.5
 CH4C2 +H2OH2COCO2     0.6602    0.4318     0.3172      0.2478       0.20132.3E-05   5.8E-06    2.8E-06     1.6E-06      2.9E-120.0981    0.3076     0.4243      0.4989       0.55100.0783    0.1307     0.1475      0.1547       0.15790.0131    0.0058     0.0041      0.0032       0.00270.1503    0.1242     0.1069      0.0954       0.0871     0.6196    0.3919     0.2804      0.2139      0.16992.9E-05   7.2E-06    3.3E-06     2.8E-12     2.8E-120.0824    0.2627     0.3683      0.4375      0.48690.1228    0.1995     0.2229      0.2318      0.23490.0352    0.0166     0.0119      0.0096      0.00820.1399    0.1292     0.1165      0.1072      0.1001
 总计     1.0000    1.0000     1.0000      1.0000       1.0000     1.0000    1.0000     1.0000      1.0000      1.0000
 温度     500℃     550℃
 S/C     0.5   1.0  1.5  2.0   2.5     0.5   1.0  1.5  2.0  2.5
 CH4C2 +H2OH2COCO2     0.5584    0.3395     0.2343      0.1727       0.13253.3E-05   7.9E-06    3.4E-06     1.8E-06      2.6E-120.0671    0.2137     0.3062      0.3698       0.41710.1816    0.2802     0.3091      0.3186       0.32030.0772    0.0407     0.0300      0.0243       0.02070.1157    0.1259     0.1204      0.1146       0.1094     0.4784    0.2744     0.1797      0.1257      0.09133.3E-05   7.5E-06    2.9E-06     1.4E-06     2.4E-120.0511    0.1652     0.2446      0.3031      0.34920.2544    0.3680     0.3993      0.4070      0.40530.1361    0.0832     0.0632      0.0517      0.04380.0800    0.1092     0.1132      0.1125      0.1103
 总计     1.0000    1.0000     1.0000      1.0000       1.0000     1.0000    1.0000     1.0000      1.0000      1.0000
表1(续)
 温度  600℃  700℃
S/C 0.5 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5
 CH4C2 +H2OH2COCO2  0.3942       0.2018         0.1211       0.0776     0.05153.1E.05      5.9E-06        2.0E-06      2.3E-12    2.3E-120.0334       0.1206         0.1896       0.2455     0.29320.3318       0.4563         0.4850       0.4869     0.47780.1970       0.1401         0.1100       0.0902     0.07560.0435       0.0812         0.0943       0.0997     0.1018  0.0825      0.0314      0.0142       0.00722.0E-06     3.5E-12     2.0E-12      2.1E-120.0533      0.1185      0.1845       0.24560.5955      0.6031      0.5773       0.54380.2395      0.1949      0.1561       0.12600.02925     0.0521      0.0679       0.0774
 总计  1.0000       1.0000         1.0000       1.0000     1.0000  1.0000      1.0000      1.0000       1.0000
 温度  700℃(cont.)  750℃
 S/C  3.0   3.5  1.0   1.5  2.0  2.5   3.0   3.5
 CH4C2 +H2OH2COCO2  0.0040       0.00232.2E-12      2.2E-120.3005       0.34920.5099       0.47810.1030       0.08550.0826       0.0849  0 0486              0.0118      0.0045      0.0021       0.0011      0.00071.4E-11             1.9E-12     2.0E-12     2.1E-12      2.2E-12     2.2E-120.0331              0.1054      0.1798      0.2459       0.3033      0.35330.6362              0.6265      0.5865      0.5456       0.5083      0.47460.2666              0.2158      0.1708      0.1374       0.1125      0.09370.0155              0.0405      0.0584      0.0690       0.0748      0.0777
 总计  1.0000       1.0000  1.0000              1.0000      1.0000      1.0000       1.0000      1.0000
表2
重整后汽油的克分子成分(假设0.3%的C8H18n-辛烷和7%C6H12:CH2(抗爆剂))
  温度   200℃   250℃
  S/C   0.5   1.0   1.5   2.0   2.5   0.5  1.0   1.5  2.0   2.5
  CH4C2 +H2OH2COCO2   0.7361      0.5000      0.3786      0.3046      0.25487.2E-06     1.3E-06     4.9E-07     3.4E-07     1.4E-070.0554      0.3584      0.5142      0.6092      0.67315.5E-11     5.1E-11     5.0E-11     4.9E-11     4.8E-116.5E-05     1.7E-05     1.2E-05     8.3E-06     7.1E-060.2084      0.1416      0.1072      0.0862      0.0721   0.7320     0.4919       0.3701     0.2962       0.24661.3E-05    2.2E-06      1.0E-06    3.2E-12      3.2E-120.0523     0.3476       0.4998     0.5925       0.65500.0063     0.0160       0.0191     0.0207       0.02170.0004     0.0001       7.3E-05    5.5E-05      4.4E-050.2090     0.1444       0.1109     0.095        0.0767
  总计   1.0000      1.0000      1.0000      1.0000      1.0000   1.0000     1.0000       1.0000     1.0000       1.0000
  温度   300℃   350℃
S/C 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5
  CH4C2 +H2OH2COCO2   0.7262      0.4819      03598       0.2861      0.23672.0E-05     3.4E-06     1.6E-06     9.5E-07     3.1E-120.0491      0.3343      0.4822      0.5724      0.63330.0139      0.0357      0.0424      0.0457      0.04760.0021      0.0006      0.0004      0.0003      0.00020.2087      0.1475      0.1152      0.0955      0.0822   0.7144     0.4644       0.3422     0.2691       0.22043.0E-05    4.9E-06      2.3E-06    1.3E-06      3.1E-120.0449     0.3122       0.4530     0.5393       0.59780.0271     0.0690       0.0814     0.0871       0.09020.0081     0.0022       0.0014     0.0011       0.00090.2055     0.1522       0.1220     0.1034       0.0907
  总计   1.0000      1.0000      1.0000      1.0000      1.0000   1.0000     1.0000       1.0000     1.0000       1.0000
表2(续)
 温度  400℃  450℃
S/C 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5
 CH4C2 +H2OH2COCO2  0.6911      0.4374     0.3158       0.2441        0.19684.0E-05     6.6E-06    2.9E-06      1.7E-06       3.0E-120.0415      0.2805     0.4109       0.4921        0.54770.0483      0.1181     0.1380       0.1465        0.15050.0247      0.0072     0.0048       0.0037        0.00310.1944      0.1568     0.1305       0.1136        0.1019  0.6486      0.3986       0.2800      0.2111       0.16614.8E-05     8.1E-06      3.5E-06     1.9E-06      1.1E-060.0399      0.2409       0.3579      0.4328       0.48550.0924      0.1826       0.2108      0.2218       0.22600.0592      0.0202       0.0137      0.0107       0.00890.1699      0.1577       0.1376      0.1236       0.1135
 总计  1.0000      1.0000     1.0000       1.0000        1.0000  1.0000      1.0000       1.0000      1.0000       1.0000
 温度  500℃  550℃
 S/C  0.5  1.0 1.5  2.0    2.5  0.5  1.0    1.5   2.0    2.5
 CH4C2 +H2OH2COCO2  0.5830      0 3461     0.2342       0.1703        0.12934.9E-05     8.9E-06    3.6E-06      1.8E-06       1.0E-060.0382      0.1975     0.2989       0.3671        0.41700.1342      0.2597     0.2951       0.3072        0.31040.1135      0.0481     0.0336       0.0266        0.02220.1311      0.1486     0.1382       0.1288        0.1211  0.4996      0.2794       0.1793      0.1234       0.08854.5E-05     8.3E-06      3.1E-06     1.4E-06      7.3E-070.0329      0.1544       0.2402      0.3023       0.35070.2032      0.3455       0.3842      0.3949       0.39440.1793      0.0957       0.0694      0.0554       0.04620.0849      0.1250       0.1269      0.1240       0.1202
 总计  1.0000      1.0000     1.0000      1.0000         1.0000  1.0000      1.0000       1.0000      1.0000       1.0000
表2(续)
 温度  600℃   700℃
 S/C  0.5  1.0    1.5     2.0   2.5   1.0   1.5   2.0   2.5
 CH4C2 +H2OH2COCO2  0.4156        0.2048        0.1201        0.0755      0.04924.1E-05       6.3E-06       2.0E-06       7.9E-07     2.0E-120.0227        0.1142        0.1875        0.2464      0.29620.2776        0.4336        0.4696        0.4740      0.46590.2409        0.1568        0.1188        0.0954      0.07880.0432        0.0906        0.1040        0.1087      0.1099   0.0831        0.0302      0.0133        0.00662.1E-06       9.1E-12     2.1E-12       2.2E-120.0515        0.1197      0.1886        0.25200.5744        0.5872      0.5620        0.52860.2594        0.2058      0.1621        0.12910.0316        0.0571      0.0740        0.0837
 总计  1.0000        1.0000        1.0000        1.0000      1.0000   1.0000        1.0000      1.0000        1.0000
 温度  700℃(cont.)  750℃
 S/C  3.0  3.5  1.0  1.5 2.0  2.5  3.0  3.5
 CH4C2 +H2OH2COCO2  0.0036        0.00212.2E-12       2.3E-120.3085        0.35830.4947        0.46290.1045        0.08610.0887        0.0906  0.0488              0.0112       0.0042         0.0019        0.0010       0.00061.1E-06             1.3E-10      2.0E-12        2.1E-12       2.2E-12      2.3E-120.0322              0.1078       0.1851         0.2532        0.3120       0.36300.6157              0.6095       0.5699         0.5294        0.4922       0.45880.2866              0.2268       0.1768         0.1406        0.1142       0.09440.0167              0.0447       0.0640         0.0749        0.0806       0.0832
 总计  1.0000        1.0000  1.0000              1.0000       1.00000        1.0000        1.0000       1.0000
正如所看到的,在预重整的燃料中甲烷含量随重整温度的提高和蒸气与碳比值的提高而降低。
具体实施方式
现在参照附图仅通过举例方式描述依照本发明的方法的实施例,在附图中:
图1是表示典型蒸气预重整炉和SOFC电池组流程的方框图;以及
图2是表示电池输出电压对时间的图;
参照图1,蒸气预重整炉10可以采用任何典型形式,但对它必需进行绝热操作,以便使预重整炉中的最大操作温度500℃位于入口端12。
来自SOFC电池组14的废热可以循环回收到入口端12。
在入口端12将经过除硫的重质烃燃料(C2+)、例如LPG导入到重整炉10中,也将蒸气导入到重整炉中,使S/C比不大于2.0。为了实现至少97.5%的重质烃转化成甲烷、氢、二氧化碳和一氧化碳,要使气流在催化剂上存留达足够时间。在500℃的最大温度下,所得到的燃料流应当具有最低甲烷含量,利用湿量法(也就是包括来自预重整炉的燃料流中的蒸气)测得甲烷含量为20体积%,优选的是,甲烷的百分含量高于氢的百分含量。
可将燃料流、可随意地与加到其中的来自燃料电池组阳极出口端的蒸气一起导入到电池组14的阳极端。燃料电池在至少700℃的温度下工作,当燃料流接触到镍/氧化锆金属陶瓷阳极时,燃料流中的甲烷发生蒸气重整,形成一氧化碳和氢。
与此同时,将空气形式中的氧输送到燃料电池组的阴极侧,当通过外部负载(未示出)将燃料电池组短接时,燃料在阳极处氧化,产生CO2和H2O废气。
实例
例1:
利用蒸气预重整过程产生高含量的甲烷,在两个不同的最大温度378℃和328℃下、以各种S/C比值利用商业可得的催化剂对丙烷进行蒸气预重整。催化剂为镍基的预重整催化剂C11-PR,其由United CatalystsCorporation提供。表3中给出的测量转化率表明,其至少能接近通过上面给出的热力学计算预测的结果。在微型反应器***中绝热地进行蒸气重整,并在线分析气体成分。要注意的是,试验装置不理想,可以确信这表明不完全转化。通常期望全部转化至少为97.5%,为了确保这一点,要在催化剂上存留适当时间。所有的百分比为体积%,用干量法给出。
表3
 温度(℃)  蒸气/碳比  蒸气/气比  H2  CO%  CH4  CO2  C3H8  丙烷的转化率
 378  1.37  4.11  34  2.4  48.9  14.2  0.6  97.5
 328  1.37  4.11  15.4  2  62.7  15  4.8  84.6
 328  1.01  3.03  24.4  3.8  56.5  12.4  3  89.2
 328  0.75  2.25  21.4  1.6  61.1  13.1  3.1  89.0
 328  0.5  1.5  17.3  1.6  64.6  12.9  3.6  88.2
例2-4
在典型蒸气预重整炉中,为了在SOFC阳极上对由澳大利亚Victorian得到的LPG(“Victorian LPG”)进行内部重整而对富含甲烷的燃油产品作进一步试验。Victorian LPG的成分从100%的丙烷变到丙烷、丁烷和/或乙烷的混合物。在该工作过程中使用的LPG成分为93%的丙烷和7%的乙烷。
在具有0.6L前述商用预重整催化剂C11-PR的典型燃料处理器中进行该试验。选择操作条件,以便使重整后气体中的甲烷含量高于传统上由丙烷和乙烷预重整产生的甲烷含量,并在催化剂上存留足够的时间,以便能使丙烷和乙烷实现100%转化。实验结果给出如下,并同时给出操作条件。应当注意的是结果是通过干量法给出的。
例2:
温度:353-380℃,蒸气/碳=1.5
CH4:48.3
H2:30.6
CO2:21.1
CO:0.0
C3H8:0.0
C2H6:0.0
例3:
温度:361-393℃,蒸气/碳=1.0
CH4:54.9
H2:25.0
CO2:20.1
CO:0.0
C3H8:0.0
C2H6:0.0
例4:
温度:367-402℃,蒸气/碳=0.75
CH4:57.9
H2:22.5
CO2:19.5
CO:0.0
C3H8:0.0
C2H6:0.0
上面的实例证实,可以在比较低的温度下对重质烃(C3+)进行蒸气重整,在所得的燃料流中至少可实现20体积%的甲烷(用湿量法测量)和至少97.5%的重质烃转化率。
例5
在该实例中,将大约含28体积%的CH4、22体积%的H2、12体积%的CO2、1体积%的CO和37体积%的H2O的气体输送到燃料电池中进行内部重整和发电。
正如从表1中所看到的(克分子%和体积%基本上相同),气体成分模拟于在450℃和S/C比为1.5的条件下发生蒸气重整的LPG(85体积%的丙烷,15体积%的丁烷)。
单燃料电池为标准平面SOFC,其在120微米厚的电解质层上有致密的含3摩尔%氧化锆稳定氧化钇的一侧有50微米厚掺杂了镧锰(LSM)的锶阴极层,在电解质层的另一侧有50微米厚含50%Ni-3YSE金属陶瓷的阳极层。燃料电池安装在封闭的陶瓷外壳中,使其燃料侧入口和出口以及燃料气流通道位于阳极侧,而空气侧入口和出口以及空气流通道位于阴极侧。在燃料电池周围的外壳中设置了密封层,用以防止燃料气体与空气混合。利用阳极与外壳的阳极侧之间与阳极接触的Ni网和在阴极与外壳的阴极侧之间与阴极接触的Pt网拾取电流。
将燃料电池加热到930℃,并将燃料气体输送到阳极侧入口,同时将空气输送到阴极侧入口。在该温度下,燃料气体中的甲烷在阳极上发生内部蒸气重整,生成氢和碳的氧化物,然后作为燃料反应的结果,它们在阳极被氧化。测量由燃料电池输出的所得电压约55小时,将其示于图2中。
在时间延续到基本上超过55小时的时间段,由甲烷内部重整反应产生的一些碳沉积可能会有害地影响燃料电池的性能。已经提出了各种方案来缓解该问题,其中,如果证明是必要的,在本发明中将促进剂加到Ni蒸气重整催化剂中是尤其适当的。
该促进剂包括碱金属(例如Na和K)和碱土金属(Mg,Ca,Sr,Ba)(J.R.Rostrup-Nielson in Catalysis Science and Technology,Volume5,Springer,Berlin,1984,pl)。对于SOFC阳极,碱金属添加剂是不可取的,但已经证明,碱土金属添加剂(Mg,Ca,Sr,Ba)和金属陶瓷添加剂能抑制碳的沉积{P,Singh等人,美国专利4894297(1990);V.D.Belyaev等人,Applied Catalysis A,133,p47(1995)}。已经表明,氧化钼添加剂对于抑制碳沉积也是有效的(R.H.Cunningham等人,固体氧化物燃料电池5,Proceeding Volume 97-40,The Electrochemical Society,Pennington,NJ,1997,p1973)。
本领域普通技术人员清楚的是,此处所描述的发明除具体描述外还易于产生变化和改进。要明白,本发明包括所有落入其精神和范围的所有变化和改进。本发明也包括本说明书中涉及或暗含的所有步骤、特征、成分和化合物,单独或共同方式,以及任意两个或多个所述步骤、特征、成分和化合物的任意和所有组合。
在本发明书中对任何现有技术的参考不是、也不应当认为是一种确认或该现有技术构成澳大利亚或其它地方部分的普通公知常识或任何形式的建议。
除非内容需要,贯穿该说明书和权利要求中的词“包括”和诸如“包含了”和“包含”的变化要理解为暗含着包含所述整体或步骤、或整体或步骤的组,而不是排除任何其它整体或步骤、或整体或步骤的组。

Claims (20)

1.一种在燃料电池中发电的方法,其包括在预重整炉中温度不高于500℃的条件下使至少具有2个碳原子的烃类燃料与蒸气预重整炉中的蒸气发生反应,以生成包括氢和通过湿量法测得体积不低于20%的甲烷的燃料流,以及将燃料流和氧化剂输送到高温燃料电池中,在此对甲烷进行重整,并通过在燃料电池阳极上使燃料流发生反应和在燃料电池的阴极上使氧化剂发生反应来发电。
2.根据权利要求1所述的方法,其中燃料流包括通过湿量法测得体积不低于25%的甲烷。
3.根据权利要求2所述的方法,其中燃料流包括通过湿量法测得体积不低于40%的甲烷。
4.根据权利要求3所述的方法,其中燃料流包括通过湿量法测得体积不低于50%的甲烷。
5.根据权利要求4所述的方法,其中燃料流包括通过湿量法测得体积不低于60%的甲烷。
6.根据权利要求1到3中任一项所述的方法,其中蒸气预重整炉中的温度不高于450℃。
7.根据权利要求6所述的方法,其中蒸气预重整炉中的温度在250℃到450℃的范围内。
8.根据权利要求7所述的方法,其中蒸气预重整炉中的温度在300℃到400℃的范围内。
9.根据权利要求1到3中任一项所述的方法,其中在预重整炉中绝热地进行燃料与蒸气的反应。
10.根据权利要求1到3中任一项所述的方法,其中在预重整炉中蒸气对碳的比值不超过1.5。
11.根据权利要求10所述的方法,其中在预重整炉中蒸气对碳的比值不超过1.25。
12.根据权利要求11所述的方法,其中在预重整炉中蒸气对碳的比值不超过1.0。
13.根据权利要求10所述的方法,其中将附加蒸气引入到蒸气预重整炉下游的燃料流中。
14根据权利要求13所述的方法,其中附加蒸气是从阳极排出流中回收的。
15.根据权利要求1到3中任一项所述的方法,其中烃类燃料至少具有3个碳原子。
16.根据权利要求15所述的方法,其中燃料选自由液化石油气体、汽油和柴油组成的组中。
17.根据权利要求1到3中任一项所述的方法,其中燃料选自由乙烷、丙烷、丁烷、液化石油气体、汽油、柴油、煤油、燃油、喷气式飞机油、石脑油以及它们的两种或更多种组成的混合物组成的组。
18.根据权利要求1到3中任一项所述的方法,其中燃料电池在阳极上的反应至少在700℃的温度下进行。
19.根据权利要求1到3中任一项所述的方法,其中将来自燃料电池的废热回收到蒸气预重整炉中。
20.根据权利要求1到3中任一项所述的方法,其中蒸气预重整炉中的反应至少导致97.5%的至少具有2个碳原子的烃类燃油发生转化。
CNB008117225A 1999-08-16 2000-08-16 燃料电池*** Expired - Lifetime CN1185742C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPQ2234A AUPQ223499A0 (en) 1999-08-16 1999-08-16 Fuel cell system
AUPQ2234 1999-08-16

Publications (2)

Publication Number Publication Date
CN1370333A CN1370333A (zh) 2002-09-18
CN1185742C true CN1185742C (zh) 2005-01-19

Family

ID=3816410

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008117225A Expired - Lifetime CN1185742C (zh) 1999-08-16 2000-08-16 燃料电池***

Country Status (7)

Country Link
US (1) US6841279B1 (zh)
EP (1) EP1228547B9 (zh)
JP (1) JP5248729B2 (zh)
CN (1) CN1185742C (zh)
AU (1) AUPQ223499A0 (zh)
CA (1) CA2393871C (zh)
WO (1) WO2001013452A1 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR324201A0 (en) * 2001-02-21 2001-03-15 Ceramic Fuel Cells Limited Fuel cell system
US6653009B2 (en) * 2001-10-19 2003-11-25 Sarnoff Corporation Solid oxide fuel cells and interconnectors
AUPS014702A0 (en) * 2002-01-25 2002-02-14 Ceramic Fuel Cells Limited Desulfurisation of fuel
AUPS024302A0 (en) 2002-01-31 2002-02-21 Ceramic Fuel Cells Limited Thermal management of fuel cells
AUPS087502A0 (en) * 2002-03-04 2002-03-28 Ceramic Fuel Cells Limited Solid oxide fuel cell
JP2004071450A (ja) * 2002-08-08 2004-03-04 Daikin Ind Ltd 燃料電池発電システム
JP3994825B2 (ja) * 2002-08-28 2007-10-24 ダイキン工業株式会社 燃料電池発電システム
US6977067B2 (en) 2003-02-12 2005-12-20 Engelhard Corporation Selective removal of olefins from hydrocarbon feed streams
CN100431213C (zh) * 2003-02-24 2008-11-05 精工电子有限公司 燃料电池***
US7217303B2 (en) * 2003-02-28 2007-05-15 Exxonmobil Research And Engineering Company Pressure swing reforming for fuel cell systems
US7503948B2 (en) * 2003-05-23 2009-03-17 Exxonmobil Research And Engineering Company Solid oxide fuel cell systems having temperature swing reforming
WO2005122300A2 (en) * 2004-06-10 2005-12-22 Risoe National Laboratory Solid oxide fuel cell
WO2006010212A1 (en) * 2004-07-28 2006-02-02 Ceramic Fuel Cells Limited Fuel cell system
JP4726200B2 (ja) * 2005-05-23 2011-07-20 本田技研工業株式会社 燃料電池システム及びその運転方法
JP2006331678A (ja) * 2005-05-23 2006-12-07 Honda Motor Co Ltd 燃料電池システム
EP2062313A1 (en) * 2006-09-06 2009-05-27 Ceramic Fuel Cells Limited A fuel cell gas separator for use between solid oxide fuel cells
FI20065692L (fi) * 2006-11-02 2008-05-03 Waertsilae Finland Oy Menetelmä kiinteäoksidipolttokennon käyttämiseksi
US8123826B2 (en) * 2006-11-08 2012-02-28 Saudi Arabian Oil Company Process for the conversion of oil-based liquid fuels to a fuel mixture suitable for use in solid oxide fuel cell applications
WO2008131051A1 (en) 2007-04-17 2008-10-30 Modine Manufacturing Company Fuel cell system with partial external reforming and direct internal reforming
US8043752B2 (en) 2008-05-06 2011-10-25 Siemens Energy, Inc. Fuel cell generator with fuel electrodes that control on-cell fuel reformation
US8669013B2 (en) * 2010-02-23 2014-03-11 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US9647286B2 (en) 2011-11-16 2017-05-09 Saudi Arabian Oil Company System and method for generating power and enhanced oil recovery
KR102080819B1 (ko) 2011-11-21 2020-02-24 사우디 아라비안 오일 컴퍼니 석유 연료를 사용한 화합된 수소 및 전기 생산 방법 및 그 시스템
WO2013178430A1 (en) 2012-05-29 2013-12-05 Topsøe Fuel Cell A/S Pre-reforming of sulfur-containing fuels to produce syngas for use in fuel cell systems
EP3061146B1 (en) 2013-10-23 2018-03-07 Bloom Energy Corporation Pre-reformer for selective reformation of higher hydrocarbons
JP2015127999A (ja) * 2013-12-27 2015-07-09 Toto株式会社 固体酸化物型燃料電池システム
US20150280265A1 (en) * 2014-04-01 2015-10-01 Dustin Fogle McLarty Poly-generating fuel cell with thermally balancing fuel processing
CN108350728B (zh) 2015-11-05 2021-02-19 沙特***石油公司 在储层中进行空间定向化学诱导脉冲压裂的方法及设备
CN106910912B (zh) 2015-12-18 2020-06-30 通用电气公司 燃料电池***及其操作方法及燃料电池发电厂
CN110167874A (zh) * 2016-08-30 2019-08-23 燃料电池能有限公司 用于增加由蒸汽甲烷重整器产生的合成气中一氧化碳含量的***和方法
WO2019189844A1 (ja) 2018-03-30 2019-10-03 大阪瓦斯株式会社 燃料電池装置及び燃料電池装置の運転方法
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
CN111446466B (zh) * 2019-01-16 2022-03-15 国家能源投资集团有限责任公司 多级固体氧化物燃料电池***、发电***及发电方法
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea
DE102019128934A1 (de) * 2019-10-25 2021-04-29 Forschungszentrum Jülich GmbH Herstellung eines Synthesegases umfassend Kohlenmonoxid und Wasserstoff
US20220285712A1 (en) * 2021-03-04 2022-09-08 Saudi Arabian Oil Company Integrated production of hydrogen, electricity, and heat
CN115000435B (zh) * 2022-06-24 2023-06-13 中自环保科技股份有限公司 一种质子交换膜燃料电池ccm材料全回收工艺

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3488226A (en) 1965-11-08 1970-01-06 Inst Gas Technology Process for generation of hydrogen from hydrocarbons and use thereof in molten carbonate fuel cells
JPS63119163A (ja) * 1986-11-07 1988-05-23 Mitsubishi Heavy Ind Ltd 燃料電池発電システム
JPS649801A (en) * 1987-07-03 1989-01-13 Jgc Corp Production device for town gas
US5302470A (en) * 1989-05-16 1994-04-12 Osaka Gas Co., Ltd. Fuel cell power generation system
JPH03201370A (ja) 1989-12-27 1991-09-03 Sekiyu Sangyo Katsuseika Center 燃料電池発電プロセスの改良法
US5034287A (en) 1990-04-23 1991-07-23 International Fuel Cells Corporation Fuel cell cooling using heat of reaction
US5198310A (en) 1991-09-11 1993-03-30 Institute Of Gas Technology Thermal management in fuel cell system by feed gas conditioning
JPH06104002A (ja) * 1992-09-16 1994-04-15 Tonen Corp 内部改質式溶融炭酸塩型燃料電池
JPH07230816A (ja) * 1994-02-16 1995-08-29 Tokyo Gas Co Ltd 内部改質型固体電解質燃料電池システム
GB9403198D0 (en) * 1994-02-19 1994-04-13 Rolls Royce Plc A solid oxide fuel cell stack
JPH0848501A (ja) 1994-08-05 1996-02-20 Toshiba Corp 改質装置
JP3316393B2 (ja) * 1996-09-25 2002-08-19 三菱電機株式会社 燃料電池発電システム及びその運転方法
JP3071158B2 (ja) * 1997-07-02 2000-07-31 溶融炭酸塩型燃料電池発電システム技術研究組合 燃料電池発電装置

Also Published As

Publication number Publication date
EP1228547A1 (en) 2002-08-07
EP1228547A4 (en) 2005-07-20
CA2393871A1 (en) 2001-02-22
WO2001013452A1 (en) 2001-02-22
EP1228547B1 (en) 2012-11-07
AUPQ223499A0 (en) 1999-09-09
JP5248729B2 (ja) 2013-07-31
US6841279B1 (en) 2005-01-11
EP1228547B9 (en) 2013-08-21
CA2393871C (en) 2009-12-15
CN1370333A (zh) 2002-09-18
JP2003507860A (ja) 2003-02-25

Similar Documents

Publication Publication Date Title
CN1185742C (zh) 燃料电池***
JP6397502B2 (ja) 水素製造のための改質装置・電解装置・精製装置(rep)組立体、同組立体を組み込むシステムおよび水素製造方法
US6811913B2 (en) Multipurpose reversible electrochemical system
JP4318920B2 (ja) 燃料電池システム
JP6723292B2 (ja) エンジン付きrepを用いるエネルギ貯蔵
CN1707839A (zh) 燃料处理方法和***
KR101077929B1 (ko) 고체산화물 연료전지 시스템의 연료 개질 방법
CN101075680A (zh) 燃料电池***
US20070269691A1 (en) Reformer with oxygen supplier and fuel cell system using the same
KR20100046433A (ko) 고체산화물 연료전지의 연료 개질을 위한 통합반응기
CN114930588A (zh) 具有高电解质填充率的熔融碳酸盐燃料电池的运行
US20050106427A1 (en) Direct operation of low temperature solid oxide fuel cells using oxygenated fuel
AU780375B2 (en) Fuel cell system
US11859147B2 (en) Single stage process for production of hydrogen enriched gas
US20230201791A1 (en) Diesel reforming apparatus having a heat exchanger for higher efficiency steam reforming for solid oxide fuel cells (sofc)
AU2002229412B2 (en) Fuel cell system
CA2484220A1 (en) Solid oxide fuel cell stack assembly for direct injection of carbonaceous fuels
KR100804693B1 (ko) 연료 전지용 개질기의 일산화탄소 저감 장치 및 이를포함하는 연료 전지 시스템
Yildiz et al. Fuel cells
AU2002229412A1 (en) Fuel cell system
Atkinson et al. Fuel Cells for Autonomous Vehicles
WO2006095586A1 (ja) 水素製造システム用燃料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151113

Address after: Canton base factory building, 64 Victoria Road, Hongkong, China

Patentee after: Sino German energy Limited by Share Ltd

Address before: Vitoria Australia

Patentee before: Ceramic Fuel Cells Ltd

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160119

Address after: 515646 comprehensive industrial building, Sanhuan Industrial City, Feng Tang Town, Guangdong, Chaozhou

Patentee after: Chaozhou Three-Circle (Group) Co., Ltd.

Address before: Canton base factory building, 64 Victoria Road, Hongkong, China

Patentee before: Sino German energy Limited by Share Ltd

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20050119