CN117738636A - 一种压裂改造储层气井合理生产压差控制方法 - Google Patents

一种压裂改造储层气井合理生产压差控制方法 Download PDF

Info

Publication number
CN117738636A
CN117738636A CN202410180318.6A CN202410180318A CN117738636A CN 117738636 A CN117738636 A CN 117738636A CN 202410180318 A CN202410180318 A CN 202410180318A CN 117738636 A CN117738636 A CN 117738636A
Authority
CN
China
Prior art keywords
pressure
pressure gradient
gas
flow
gas well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410180318.6A
Other languages
English (en)
Other versions
CN117738636B (zh
Inventor
李溢龙
李财绅
张飞
李滔
毛正林
王一航
谭晓华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202410180318.6A priority Critical patent/CN117738636B/zh
Publication of CN117738636A publication Critical patent/CN117738636A/zh
Application granted granted Critical
Publication of CN117738636B publication Critical patent/CN117738636B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明属于油气田开发领域,特别涉及一种压裂改造储层气井合理生产压差控制方法;本发明通过选取储层具有代表性的基质和裂缝岩心,在高温高压条件下开展物理模拟实验,得到实验结果后,绘制渗透率特征曲线和生产指示曲线,合理压力梯度取生产指示曲线由直线段变为曲线段的流量变化临界点对应的压力梯度,在渗透率特征曲线中该临界压力梯度对应的渗透率降幅小于5%,此时可以忽略应力敏感,那么该临界压力梯度即为合理压力梯度,结合所给基质或裂缝泄压***半径就能确定气井合理生产压差;在本发明中的新方法能延长气井的经济生产周期,实现气井产能最大化。

Description

一种压裂改造储层气井合理生产压差控制方法
技术领域
本发明属于油气田开发领域,特别涉及一种压裂改造储层气井合理生产压差控制方法。
背景技术
随着天然气在全球能源结构中的地位日益重要,高效开发气田成为行业的重点。在非常规气藏和低渗透气藏的开发中,压裂技术是提高气井产能的关键手段。通过压裂改造,可以大幅度提高储层的渗透率,从而增加储层与井筒的有效接触面积,提高天然气的采收率。然而,压裂改造后的气井在生产过程中容易受到复杂地质条件的影响,导致生产压差控制不当,进而引起出砂、水锁和压力下降过快,影响气井的长期稳定产能。经过广泛的调研,气井合理生产压差确定方法包括原始地层压力法、物性法和采气指数法等,但都有一定应用范围限制,具有各自的局限性。为此,研究一种压裂改造储层气井合理生产压差控制方法显得至关重要。确保气井在高效率的同时,减少因压差过大而导致储层损害,以及因压差过小导致的产能不足问题。
发明内容
本发明目的是:提供一种压裂改造储层气井合理生产压差控制方法,以解决现有技术中存在的因生产压差控制不当导致的储层损害及生产效率低下。通过对地层条件、井况和压裂改造后储层特性的综合分析,选取储层具有代表性的基质和裂缝岩心,在高温高压条件下开展物理模拟实验,得到实验结果后,绘制渗透率特征曲线和生产指示曲线;合理压力梯度取生产指示曲线由直线段变为曲线段的临界点对应的压力梯度,在渗透率特征曲线中该临界压力梯度对应的渗透率降幅小于5%时可以忽略应力敏感,那么该临界压力梯度即为合理压力梯度,结合基质或裂缝泄压***半径就确定了气井合理生产压差;在本发明中的新方法能延长气井的经济生产周期,实现气井产能的最大化。
为实现上述目的,本发明提供了一种压裂改造储层气井合理生产压差控制方法,该方法包括下列步骤:
第一步,经压裂改造后的储层,获取储层中的基质岩心和裂缝岩心各10块,测量出岩心长度和直径;
第二步,物理模拟实验选择采用岩心高温高压孔渗联合测试仪器进行测试,按地层中实际情况通过相似准则转换并设置实验条件;
第三步,将岩心装入岩心夹持器后,其围压增加至70兆帕,温度设置为200摄氏度,围压和温度稳定平衡后继续进行物理模拟实验;
第四步,设计进口压力,出口处设置回压阀、压力表和流量计,读取并记录出口处的流量和出口压力,得到对应的压力梯度与有效应力;
第五步,根据已知的进口压力、出口压力和流量,利用达西公式得到在不同进出口压力下的气体渗透率,
式中,K为气体渗透率,单位为毫达西;为进口压力,单位为兆帕;/>为出口压力,单位为兆帕;Q为出口流量,单位为立方厘米每分钟;S为岩心端截面积,单位为平方厘米;u为气体粘度,单位为毫帕·秒;/>为大气压力,单位为兆帕;L为岩心长度,单位为米;C为常数,无量纲量;
第六步,渗流状态为达西流时,气体在储层中渗流主要克服摩擦阻力,建立流量与压力梯度关系式,
式中,l为压力梯度,单位为兆帕每米;A、B为常数,无量纲量;
第七步,当渗流状态为非达西流时,气体在储层中渗流同时需要克服摩擦阻力和惯性阻力,建立气井流量压降特征公式,
式中,D、F为常数,无量纲量;
第八步,绘制压力梯度与有效应力组合相对应的渗透率特征曲线,气体渗透率在受有效应力的作用大于压力梯度时,在气体渗透率特征曲线中,当压力梯度小于临界渗透率偏转压力梯度时,气体渗透率降幅<5%,根据渗透率伤害程度评价标准,此时应力敏感损伤程度不足以对产能造成影响;
第九步,绘制压力梯度与有效应力组合相对应的流量曲线作为生产指示曲线,合理压力梯度取生产指示曲线由直线段变为曲线段的流量变化临界点对应的压力梯度,压力梯度为临界流量偏转压力梯度时,气体渗透率未受到伤害并忽略应力敏感,此临界流量偏转压力梯度即为气井合理生产压力梯度,给出基质或裂缝***泄压半径,得到气井合理生产压差。
与现有技术相比,本发明具有以下有益效果:(1)方法具有较强适应性,适用范围更广;(2)方法便捷有效,工作效率高;(3)多因素综合计算,计算结果精度高。
附图说明
在附图中:
图1是方法的总技术路线图。
图2是渗透率特征曲线图。
图3是生产指示曲线图。
具体实施方式
下面结合实施方式和附图对本发明作进一步说明;
本发明提供了一种压裂改造储层气井合理生产压差控制方法,图1是方法的总技术路线图,本方法包括下列步骤:
第一步,经压裂改造后的储层,获取储层中的基质岩心和裂缝岩心各10块,洗净干燥后测量出岩心长度和直径这两个基本物性参数;
第二步,在物理实验中需要真正地反映地层实际情况,物理模拟实验选择采用岩心高温高压孔渗联合测试仪器进行测试,按照地层中实际情况通过相似准则转换并设置实验条件;
第三步,将岩心装入岩心夹持器后,其围压增加至70兆帕,温度设置为200摄氏度,围压和温度稳定平衡后继续进行物理模拟实验;
第四步,设计进口压力,出口处设置回压阀、压力表和流量计,此时得到出口处的流量和出口压力,已知岩心的围压和长度,进出口压差与岩心长度比值等于压力梯度,围压减去进口压力等于有效应力,此时我们得到不同进出口压力对应的压力梯度与有效应力,计算结果见表1;
表1压力梯度与有效应力计算结果
第五步,根据已知的进口压力、出口压力和流量,利用达西公式计算在不同进出口压力下的气体渗透率,在实验中裂缝和基质岩心共计得出780组实验结果,这里只选取了1组基质岩心气体渗透率的实验结果进行说明,其余结果方法相同将不进行一一赘述,实验结果见表2;
式中,K为气体渗透率,单位为毫达西;为进口压力,单位为兆帕;/>为出口压力,单位为兆帕;Q为出口流量,单位为立方厘米每分钟;S为岩心端截面积,单位为平方厘米;u为气体粘度,单位为毫帕·秒;/>为大气压力,单位为兆帕;L为岩心长度,单位为米;C为常数,无量纲量;
表2气体渗透率计算结果
第六步,渗流状态为达西流时,气体在储层中渗流主要克服摩擦阻力,流量随压力梯度的增大而增大,两者总体呈线性,建立流量与压力梯度关系式,
式中,l为压力梯度,单位为兆帕每米;A、B为常数,无量纲量;
第七步,当渗流状态为非达西流时,气体在储层中渗流同时需要克服摩擦阻力和惯性阻力,流量随压力梯度增大而增大,趋势逐渐减缓,建立气井流量压降特征公式,
式中,D、F为常数,无量纲量;
第八步,绘制压力梯度与有效应力组合相对应的渗透率特征曲线,见图2,随有效应力和压力梯度的同时增大,气体渗透率呈现下降趋势且下降速度不断增快,说明气体渗透率受到有效应力的作用大于压力梯度,在渗透率特征曲线中压力梯度小于0.27兆帕每米时,气体渗透率降幅<5%,根据渗透率伤害程度评价标准,此时应力敏感损伤程度不足以对产能造成影响,忽略应力敏感;
第九步,绘制压力梯度与有效应力组合下的流量曲线作为生产指示曲线,见图3,生产指示曲线在曲线段相较于直线段需要耗费更多的能量来产气,生产需要最大程度利用好储层能量,合理压力梯度取生产指示曲线由直线段变为曲线段的临界点对应的临界流量偏转压力梯度,找到临界流量偏转压力梯度为0.25兆帕每米,此时气体渗透率未受到伤害并可以忽略应力敏感,临界流量偏转压力梯度即为气井合理生产压力梯度;
第十步,压裂后的气井近井带为裂缝***,其远井带为基质***,现场生产资料给出了裂缝和基质***泄压半径分别为80米、150米,基质***按合理生产压力梯度为0.25兆帕每米,得到气井基质***合理生产压差为37.5兆帕;以同样的方法我们算出裂缝***的合理生产压力梯度为0.19兆帕每米,得到裂缝***合理生产压差为15.2兆帕;对于气井生产来说,前期裂缝***供气时储层压力和井底压力的生产压差控制在15.2兆帕,后期基质***供气时储层压力和井底压力的生产压差控制在37.5兆帕。
与现有技术相比,本发明具有以下有益效果:与现有技术相比,本发明具有以下有益效果:(1)方法具有较强适应性,适用范围更广;(2)方法便捷有效,工作效率高;(3)多因素综合计算,计算结果精度高。
最后所应说明的是:以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应该理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。

Claims (1)

1.一种压裂改造储层气井合理生产压差控制方法,其特征在于,该方法包括下列步骤:
第一步,经压裂改造后的储层,获取储层中的基质岩心和裂缝岩心各10块,测量出岩心长度和直径;
第二步,物理模拟实验选择采用岩心高温高压孔渗联合测试仪器进行测试,按地层中实际情况通过相似准则转换并设置实验条件;
第三步,将岩心装入岩心夹持器后,其围压增加至70兆帕,温度设置为200摄氏度,围压和温度稳定平衡后继续进行物理模拟实验;
第四步,设计进口压力,出口处设置回压阀、压力表和流量计,读取并记录出口处的流量和出口压力,得到对应的压力梯度与有效应力;
第五步,根据已知的进口压力、出口压力和流量,利用达西公式得到在不同进出口压力下的气体渗透率,
式中,K为气体渗透率,单位为毫达西;为进口压力,单位为兆帕;/>为出口压力,单位为兆帕;Q为出口流量,单位为立方厘米每分钟;S为岩心端截面积,单位为平方厘米;u为气体粘度,单位为毫帕·秒;/>为大气压力,单位为兆帕;L为岩心长度,单位为米;C为常数,无量纲量;
第六步,渗流状态为达西流时,气体在储层中渗流主要克服摩擦阻力,建立流量与压力梯度关系式,
式中,l为压力梯度,单位为兆帕每米;A、B为常数,无量纲量;
第七步,当渗流状态为非达西流时,气体在储层中渗流同时需要克服摩擦阻力和惯性阻力,建立气井流量压降特征公式,
式中,D、F为常数,无量纲量;
第八步,绘制压力梯度与有效应力组合相对应的渗透率特征曲线,气体渗透率在受有效应力的作用大于压力梯度时,在气体渗透率特征曲线中,当压力梯度小于临界渗透率偏转压力梯度时,气体渗透率降幅<5%,根据渗透率伤害程度评价标准,此时应力敏感损伤程度不足以对产能造成影响;
第九步,绘制压力梯度与有效应力组合相对应的流量曲线作为生产指示曲线,合理压力梯度取生产指示曲线由直线段变为曲线段的流量变化临界点对应的压力梯度,压力梯度为临界流量偏转压力梯度时,气体渗透率未受到伤害并忽略应力敏感,此临界流量偏转压力梯度即为气井合理生产压力梯度,给出基质或裂缝***泄压半径,得到气井合理生产压差。
CN202410180318.6A 2024-02-18 2024-02-18 一种压裂改造储层气井合理生产压差控制方法 Active CN117738636B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410180318.6A CN117738636B (zh) 2024-02-18 2024-02-18 一种压裂改造储层气井合理生产压差控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410180318.6A CN117738636B (zh) 2024-02-18 2024-02-18 一种压裂改造储层气井合理生产压差控制方法

Publications (2)

Publication Number Publication Date
CN117738636A true CN117738636A (zh) 2024-03-22
CN117738636B CN117738636B (zh) 2024-04-26

Family

ID=90278070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410180318.6A Active CN117738636B (zh) 2024-02-18 2024-02-18 一种压裂改造储层气井合理生产压差控制方法

Country Status (1)

Country Link
CN (1) CN117738636B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462936A (zh) * 2017-08-28 2017-12-12 中国石油大学(北京) 利用压力监测资料反演低渗透储层非达西渗流规律的方法
CN111188610A (zh) * 2018-10-29 2020-05-22 中国石油化工股份有限公司 一种致密气藏压裂气井产能确定方法及装置
CN111236908A (zh) * 2020-01-09 2020-06-05 西南石油大学 一种适用在低渗透致密气藏中的多段压裂水平井产能预测模型及产能敏感性分析的方法
CN112800632A (zh) * 2021-04-01 2021-05-14 西南石油大学 基于粒状模型的砂岩储层渗透率有效应力系数计算方法
US20210238973A1 (en) * 2020-11-26 2021-08-05 University Of Science And Technology Beijing Method and device for developing shale gas by tapered gradient pressure drop with multi-stage fractured horizontal well
CN113484216A (zh) * 2021-07-06 2021-10-08 西南石油大学 一种评估致密砂岩气藏水相返排率及合理返排压差的方法
CN114575835A (zh) * 2021-06-09 2022-06-03 中国石油天然气股份有限公司 一种基于开发实验的页岩气井产量预测方法
CN115127970A (zh) * 2022-08-30 2022-09-30 西南石油大学 一种高温高压储层等效井下渗流特征及产能实验模拟方法
CN116050623A (zh) * 2023-02-01 2023-05-02 西南石油大学 一种致密气储层供气能力的计算与评价方法
CN116517520A (zh) * 2023-04-10 2023-08-01 西南石油大学 一种油气井井控半径计算方法
CN116894572A (zh) * 2023-09-11 2023-10-17 西南石油大学 一种超深井考虑岩崩后出砂的合理配产方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462936A (zh) * 2017-08-28 2017-12-12 中国石油大学(北京) 利用压力监测资料反演低渗透储层非达西渗流规律的方法
CN111188610A (zh) * 2018-10-29 2020-05-22 中国石油化工股份有限公司 一种致密气藏压裂气井产能确定方法及装置
CN111236908A (zh) * 2020-01-09 2020-06-05 西南石油大学 一种适用在低渗透致密气藏中的多段压裂水平井产能预测模型及产能敏感性分析的方法
US20210238973A1 (en) * 2020-11-26 2021-08-05 University Of Science And Technology Beijing Method and device for developing shale gas by tapered gradient pressure drop with multi-stage fractured horizontal well
CN112800632A (zh) * 2021-04-01 2021-05-14 西南石油大学 基于粒状模型的砂岩储层渗透率有效应力系数计算方法
CN114575835A (zh) * 2021-06-09 2022-06-03 中国石油天然气股份有限公司 一种基于开发实验的页岩气井产量预测方法
CN113484216A (zh) * 2021-07-06 2021-10-08 西南石油大学 一种评估致密砂岩气藏水相返排率及合理返排压差的方法
CN115127970A (zh) * 2022-08-30 2022-09-30 西南石油大学 一种高温高压储层等效井下渗流特征及产能实验模拟方法
CN116050623A (zh) * 2023-02-01 2023-05-02 西南石油大学 一种致密气储层供气能力的计算与评价方法
CN116517520A (zh) * 2023-04-10 2023-08-01 西南石油大学 一种油气井井控半径计算方法
CN116894572A (zh) * 2023-09-11 2023-10-17 西南石油大学 一种超深井考虑岩崩后出砂的合理配产方法

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
CAO, LN等: "Dual-porosity model of rate transient analysis for horizontal well in tight gas reservoirs with consideration of threshold pressure gradient", JOURNAL OF HYDRODYNAMICS, vol. 30, no. 5, 31 October 2018 (2018-10-31) *
KIM, SC等: "Well-Testing Model for Dual-Porosity Reservoir considering Stress-Sensitivity and Elastic Outer Boundary Condition", GEOFLUIDS, vol. 2023, 16 November 2023 (2023-11-16) *
严恕荪, 张淑琴: "三轴压缩下气体在岩石中渗透率的测定", 天然气工业, no. 04, 28 July 2000 (2000-07-28) *
冯青;: "低渗含水气藏非线性数值试井解释模型及压力特征分析", 油气井测试, no. 02, 25 April 2019 (2019-04-25) *
唐林;郭肖;苗彦平;刘玉奎;陈晨;: "非达西渗流效应对低渗气藏水平井产能的影响", 断块油气田, no. 05, 18 September 2013 (2013-09-18) *
张译丹: "水锁伤害对F低孔低渗气藏产能影响研究", 中国优秀硕士学位论文全文数据库工程科技Ⅰ辑, no. 2020, 15 June 2020 (2020-06-15) *
杨小松;严谨;郑荣臣;穆林;: "致密低渗透气藏气井产能预测新方法", 天然气工业, no. 06, 25 June 2009 (2009-06-25) *
杨朝蓬;高树生;刘广道;熊伟;胡志明;叶礼友;杨发荣;: "致密砂岩气藏渗流机理研究现状及展望", 科学技术与工程, no. 32, 18 November 2012 (2012-11-18) *
汪吉林;刘桂建;王维忠;张善进;袁雷雷;: "川东南龙马溪组页岩孔裂隙及渗透性特征", 煤炭学报, no. 05, 15 May 2013 (2013-05-15) *
熊健;马强;肖峰;马倩;: "考虑压敏效应的动态启动压力梯度研究", 科学技术与工程, no. 09, 28 March 2013 (2013-03-28) *
王春艳;王卫刚;周雄兵;: "低渗透气藏渗流的影响因素研究", 吐哈油气, no. 01, 15 March 2009 (2009-03-15) *
王杨;刘柯;赵丰年;段晓辉;: "靖边气田气井合理生产压差及对策研究", 西部探矿工程, no. 07, 15 July 2013 (2013-07-15) *
田巍;邓瑞健;朱维耀;国殿斌;李中超;龙运前;高志飞;: "页岩压裂缝网储层应力敏感性及对产能的影响", 油气藏评价与开发, no. 06, 26 December 2017 (2017-12-26) *
白慧芳;施里宇;张磊;辛翠平;王永科;王少征;: "鄂尔多斯盆地致密砂岩气藏启动压力梯度实验研究", 非常规油气, no. 03, 20 June 2020 (2020-06-20) *
石军太;李相方;隋秀香;刘华;朱礼斌;: "高温高压凝析气井测试工作制度及生产压差设计", 油气井测试, no. 01, 25 February 2009 (2009-02-25) *
罗明耀;: "高温高压气井测试中合理生产压差的确定方法", 江汉石油职工大学学报, no. 06, 30 December 2006 (2006-12-30) *
罗瑞兰, 程林松, 彭建春, 李春兰: "油气储层渗透率应力敏感性与启动压力梯度的关系", 西南石油学院学报, no. 03, 30 June 2005 (2005-06-30) *
董平川;雷刚;计秉玉;田树宝;: "考虑变形影响的致密砂岩油藏非线性渗流特征", 岩石力学与工程学报, no. 2, 15 July 2013 (2013-07-15) *
谷建伟;于秀玲;马宁;田同辉;张以根;: "考虑应力敏感的致密气藏水平井产能计算方法", 大庆石油地质与开发, no. 06, 1 December 2016 (2016-12-01) *
赵继涛;梁冰;: "低渗气藏中气体非线性渗流的特征分析", 辽宁工程技术大学学报(自然科学版), no. 06, 15 December 2010 (2010-12-15) *
郑文宽;刘月田;丁祖鹏;刘泽华;张艺馨;: "微裂缝岩心启动压力梯度实验研究", 西安石油大学学报(自然科学版), no. 04, 25 July 2017 (2017-07-25) *
高博禹, 彭仕宓, 王颖, 向阳, 张文胜: "实验模拟指示曲线法确定气井合理生产压差", 新疆石油地质, no. 05, 25 October 2003 (2003-10-25) *

Also Published As

Publication number Publication date
CN117738636B (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
US11009443B2 (en) Method for dynamic imbibition capacity of shale
CN103573263B (zh) 一种致密砂岩油藏压裂投产水平井流压设计方法
CN109594959B (zh) 一种提高老油田薄差储层采收经济效率的压裂驱油方法
CN110905472B (zh) 确定基于复合暂堵体系的实时转向压裂参数的方法
CN111257202A (zh) 一种含吸附气条件下页岩压裂液强制渗吸及返排实验方法
CN109236265B (zh) 一种致密气藏井网优化方法
CN110984970B (zh) 一种利用地层测试确定启动压力梯度的方法
CN111353205B (zh) 用于致密气藏产水气井地层压力和动态产能的计算方法
Zeng et al. Non-Darcy flow in oil accumulation (oil displacing water) and relative permeability and oil saturation characteristics of low-permeability sandstones
WO2020056750A1 (zh) 一种页岩气藏介质结构耦合及缝网形态判识方法
CN109268004B (zh) 一种页岩气藏介质结构耦合及缝网形态判识方法
Xiang et al. Dynamic characteristics and influencing factors of CO2 huff and puff in tight oil reservoirs
CN116894572B (zh) 一种超深井考虑岩崩后出砂的合理配产方法
CN117738636B (zh) 一种压裂改造储层气井合理生产压差控制方法
CN112031719A (zh) 一种基于流动系数下启动压力的油藏开发方式优选方法
CN103048090A (zh) 堵剂对裂缝封堵行为的评价方法
CN116201538B (zh) 一种基于采出程度的全生命周期储层损害评价方法
Wang et al. Investigation of plugging performance and enhanced oil recovery of multi-scale polymer microspheres in low-permeability reservoirs
CN105673003A (zh) 一种致密油开采物理模拟试验方法
CN112082900B (zh) 一种提高低渗油气藏长岩心注气量精度的测试装置及方法
He et al. Experimental simulation on dynamic variation of the permeability of high-rank coal reservoirs
CN117147318B (zh) 一种页岩储层多尺度孔隙应力敏感性评价方法
CN116044389B (zh) 一种致密页岩油藏早期衰竭开采合理生产压差的确定方法
CN113970489B (zh) 基于岩心尺度吞吐采油方式确定二氧化碳作用距离的方法
CN111781087B (zh) 页岩气控放压生产的模拟实验装置及评价方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant