CN117568758A - 一种含贻贝足丝蛋白的复合涂层材料及其制备方法 - Google Patents

一种含贻贝足丝蛋白的复合涂层材料及其制备方法 Download PDF

Info

Publication number
CN117568758A
CN117568758A CN202311285578.1A CN202311285578A CN117568758A CN 117568758 A CN117568758 A CN 117568758A CN 202311285578 A CN202311285578 A CN 202311285578A CN 117568758 A CN117568758 A CN 117568758A
Authority
CN
China
Prior art keywords
carbon steel
coating
sputtering
composite coating
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311285578.1A
Other languages
English (en)
Inventor
程洁
刘丁未
邓久帅
王书鹏
范磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology Beijing CUMTB
Original Assignee
China University of Mining and Technology Beijing CUMTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology Beijing CUMTB filed Critical China University of Mining and Technology Beijing CUMTB
Priority to CN202311285578.1A priority Critical patent/CN117568758A/zh
Publication of CN117568758A publication Critical patent/CN117568758A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种含贻贝足丝蛋白的复合涂层材料及其制备方法,对碳钢表面进行清洗,去除表层氧化膜;采用直流磁控溅射在碳钢表面制备TiO2层;采用直流磁控溅射在碳钢表面制备Ag层;以碳钢表面含有的TiO2/Ag膜为前驱体膜,利用均胶机在前驱体膜上旋涂一层Mefp‑1蛋白溶液,得到用于碳钢表面的Mefp‑1/TiO2/Ag复合涂层。TiO2涂层主要起到防腐作用,Ag涂层具有优异的耐磨特性,两种涂层在防腐耐磨领域都属于环保材料,用于替代有害化学物质。Mefp‑1蛋白对于提升碳钢的防腐耐磨特性均有一定作用,且极大的增强磁控溅射涂层的粘附性,使磁控溅射涂层的防护性能成倍增加。本发明在可以有效改善碳钢防腐性、耐磨的前提下,还具有操作简单,成本低廉等优势。

Description

一种含贻贝足丝蛋白的复合涂层材料及其制备方法
技术领域
本发明涉及涂层材料技术领域,具体涉及一种含贻贝足丝蛋白的复合涂层材料及其制备方法。
背景技术
碳钢作为工业生产中应用最为广泛的金属之一,因其较差的防腐耐磨性能,每年都会导致巨大的经济损失。传统的碳钢防腐涂层大量用到有害的化学物质,如铬酸盐、重金属和可挥发性有机物,不仅严重污染环境,还会对人体造成不可逆的伤害。为减少碳钢的磨损失效,工业上通常采用添加润滑油或润滑脂等方法来减小摩擦,但使用过程中产生的大量废弃油液难以处理,如果处理不当会对生态***造成严重破坏。因此,开发一种同时具备防腐、减摩和耐磨特性的多功能环保涂层变得非常必要。
CN109468601A公开了一种磁控溅射沉积碳钢表面非晶钽涂层的方法,其步骤为:将样品进行砂纸机械打磨和抛光处理,并超声清洗;将样品固定在超高真空磁控溅射设备溅射平台上,将靶材放入磁控溅射腔室内,关闭溅射室,抽真空达到一定的本底真空度;采用直流磁控溅射方法制备非晶钽涂层。磁控溅射涂层具有均匀性好、致密性好、粘附性强等优点,被广泛应用于提高碳钢的防腐耐磨特性。但由于磁控溅射技术所制备涂层厚度仅为微米级别。在面对较为恶劣的工况时,仅依靠磁控溅射涂层难以满足要求,需要结合其他技术手段进一步提高涂层的物理特性以达到更好的防腐耐磨特性。
发明内容
本发明的目的在于提供一种含贻贝足丝蛋白的复合涂层材料及其制备方法,解决现有涂层材料对环境和人体不友好的问题。
为解决上述的技术问题,本发明采用以下技术方案:一种含贻贝足丝蛋白的复合涂层材料的制备方法,其特征在于步骤如下:
S1.对碳钢表面进行清洗,去除表层氧化膜;
S2.采用直流磁控溅射在碳钢表面制备TiO2层;
S3.采用直流磁控溅射在碳钢表面制备Ag层;
S4.以碳钢表面含有的TiO2/Ag膜为前驱体膜,利用均胶机在前驱体膜上旋涂一层Mefp-1蛋白溶液,得到用于碳钢表面的Mefp-1/TiO2/Ag复合涂层。
更进一步的技术方案是所述步骤S1具体为采用水砂纸对碳钢底物表面进行打磨后,用金刚石抛光膏配合真丝绒抛光布进行抛光,抛光后表明粗糙度Ra小于0.3μm,去除表面的氧化膜;再用去离子水将碳钢底物冲洗干净后放入无水乙醇中用超声波清洗,取出后用去离子水冲洗后吹干备用。
更进一步的技术方案是所述步骤S2具体为选用纯度99.99%的Ti靶材,将处理后的碳钢至于磁控溅射设备的溅射台中央,靶材与底物之间的距离恒定,通入氩气和氧气,磁控溅射功率是80~120w,磁控溅射时间为40~80min。
更进一步的技术方案是所述靶材在沉积前在10Pa的纯氩气环境中溅射清洗10min,距离恒定为5cm,溅射台转速设置为3rpm,溅射完成后,继续在真空室中保存20min。
更进一步的技术方案是所述步骤S3具体为选用纯度99.99%的Ag靶材,沉积之前,靶材在10Pa的纯氩气环境中溅射清洗10min,通入氩气,磁控溅射功率是50~90w,磁控溅射时间为5~30min。
更进一步的技术方案是所述溅射过程中氩气的通入速率是10~30ml/min。
更进一步的技术方案是所述步骤S4中Mefp-1蛋白溶液以Mefp-1蛋白为基础溶液,用柠檬酸溶液进行稀释,pH值为5~9,浓度为0.05~0.2mg/mL。
更进一步的技术方案是所述步骤S4中均胶机先低速旋涂再高速旋涂,低速旋涂转速为500~1000rpm,低速旋涂时间为10~30s,高速旋涂转速为2000~4000rpm,高速旋涂时间为50~70s。
更进一步的技术方案是由上述方法制得的含贻贝足丝蛋白的复合涂层材料。
工作机理:这是由于TiO2涂层致密且稳定,紧密的黏附在碳钢表面形成保护屏障。且TiO2本身的化学性质稳定,不易与其他物质反应,使得覆盖有TiO2涂层的碳钢可有效抵抗盐水和一些酸性环境中的腐蚀。Ag涂层极好的延展性,这种延展性允许银涂层在相对滑动表面之间发生塑性剪切,从而起到润滑作用。Mefp-1蛋白,来源于海洋贻贝的天然蛋白,是一种绿色环保的天然材料,其具有极强的黏附和内聚性能。其超强的黏附和内聚性能来源于其所含有的大量的di-hydroxyphenylalanine(DOPA)。DOPA可以与所制备的TiO2涂层或Ag涂层发生络合反应,从而进一步增强磁控溅射涂层在金属表面的吸附作用。当碳钢因腐蚀而生成氧化物时,DOPA也可与所生成的氧化物发生络合反应,生成更加致密的保护层,从而阻止腐蚀反应的进一步进行。
与现有技术相比,本发明的有益效果是:本发明所制备的Mefp-1/TiO2/Ag复合涂层材料中,TiO2涂层主要起到防腐作用,Ag涂层具有优异的耐磨特性,两种涂层在防腐耐磨领域都属于环保材料,用于替代有害化学物质。Mefp-1蛋白对于提升碳钢的防腐耐磨特性均有一定作用。更重要的是,Mefp-1蛋白的加入,可以极大的增强磁控溅射涂层的粘附性,使磁控溅射涂层的防护性能成倍增加。本发明在可以有效改善碳钢防腐性、耐磨的前提下,还具有操作简单,成本低廉等优势,可以为贻贝足丝蛋白在碳钢防腐耐磨方向的工业化应用提供参考。
附图说明
图1中(a)为预处理之后的碳钢表面,(b)为表面覆盖有Mefp-1/TiO2/Ag复合涂层表面。
图2中(a)为TiO2涂层的纳米划痕实验结果、(b)TiO2/Ag涂层的纳米划痕实验结果、(c)为实施例1的纳米划痕实验结果。
图3为实施例1、碳钢试样、TiO2涂层试样、TiO2/Ag涂层试样的摩擦系数随时间变化曲线。
图4为实施例1、碳钢试样、TiO2涂层试样、TiO2/Ag涂层试样的极化电阻随浸泡时间的变化曲线。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
步骤1:选用直径为15mm,厚度为2mm的Q235碳钢薄片,采用水砂纸400#、800#、1200#对试样依次进行打磨,后用w2.5的金刚石抛光膏配合真丝绒抛光布进行抛光。以去除表面的氧化膜,用去离子水将试样冲洗干净后放入无水乙醇中用超声波清洗8min,取出后用去离子水冲洗后吹干,得到预处理后的Q235碳钢试样,备用。
图1(a)为处理之后的碳钢表面的显微形貌图,可以看出处理过后的碳钢表面有少量打磨过程中留下的磨痕,但表面基本平整。
步骤2:将试样放置于磁控溅射设备的溅射台中央,靶材与底物之间的距离恒定为5cm,溅射台转速设置为3rpm。选用纯度为99.99%的Ti靶材,沉积之前,靶材在10Pa的纯氩气环境中溅射清洗10min。后将氧气与氩气以2:10的比例通入。溅射功率设置为100w,溅射时长60min。溅射完成后,继续在真空室中保存20min。
步骤3:将试样放置于磁控溅射设备的溅射台中央,靶材与底物之间的距离恒定为5cm,溅射台转速设置为3rpm。选用纯度为99.99%的Ag靶材,沉积之前,靶材在10Pa的纯氩气环境中溅射清洗10min。后以20mL/min速度通入氩气。溅射功率设置为70w,溅射时长10min。溅射完成后,继续在真空室中保存20min。
步骤4:选用含量为1mg/ml,纯度为92%的Mefp-1蛋白,用1wt.%的柠檬酸将溶液稀释为0.1mg/ml。用饱和KOH将pH值调整为7。取少量配置好的溶液滴加到试样表面,在匀胶机上进行旋涂,700rpm旋涂20s,3000rpm下旋涂60s。即得到Mefp-1/TiO2/Ag复合涂层,记为(MTA-1)。
图1(b)为所得Mefp-1/TiO2/Ag涂层的显微观察图,所得到的复合涂层均匀,致密,且较为平整,无明显缺陷。
如图3所示,本实施例所得Mefp-1/TiO2/Ag复合涂层、对比例2的TiO2/Ag涂层、对比例1的TiO2涂层以及碳钢试样在室温干摩擦条件下的摩擦系数曲线。可见Mefp-1/TiO2/Ag复合涂层的摩擦学性能远优于其他涂层。
如图4所示,在长时间的浸泡过程中,本实例的极化电阻随着浸泡时间的增加而逐渐增加,最终远高于碳钢的极化电阻。说明随着浸泡时间的增加,涂层的防腐性能有明显增加。
实施例2
步骤1:选用直径为15mm,厚度为2mm的Q235碳钢薄片,采用水砂纸400#、800#、1200#对试样依次进行打磨。后用w2.5的金刚石抛光膏配合真丝绒抛光布进行抛光,以去除表面的氧化膜。用去离子水将试样冲洗干净后放入无水乙醇中用超声波清洗8min,取出后用去离子水冲洗后吹干,得到预处理后的Q235碳钢试样,备用。
步骤2:将试样放置于磁控溅射设备的溅射台中央,靶材与底物之间的距离恒定为5cm,溅射台转速设置为3rpm。选用纯度为99.99%的Ti靶材,沉积之前,靶材在10Pa的纯氩气环境中溅射清洗10min。后将氧气与氩气以2:10的比例通入。溅射功率设置为100w,溅射时长80min。溅射完成后,继续在真空室中保存20min。
步骤3:将试样放置于磁控溅射设备的溅射台中央,靶材与底物之间的距离恒定为5cm,溅射台转速设置为3rpm。选用纯度为99.99%的Ag靶材,沉积之前,靶材在10Pa的纯氩气环境中溅射清洗10min。后以20mL/min速度通入氩气。溅射功率设置为70w,溅射时长20min。溅射完成后,继续在真空室中保存20min。
步骤4:选用含量为1mg/ml,纯度为92%的Mefp-1蛋白,用1wt.%的柠檬酸将溶液稀释为0.1mg/ml。用饱和KOH将pH值调整为7。取少量配置好的溶液滴加到试样表面,在匀胶机上进行旋涂,700rpm旋涂20s,3000rpm下旋涂60s。即得到Mefp-1/TiO2/Ag复合涂层,(记为MTA-2)。
实施例3
步骤1:选用直径为15mm,厚度为2mm的Q235碳钢薄片,采用水砂纸400#、800#、1200#对试样依次进行打磨。后用w2.5的金刚石抛光膏配合真丝绒抛光布进行抛光,以去除表面的氧化膜。用去离子水将试样冲洗干净后放入无水乙醇中用超声波清洗8min,取出后用去离子水冲洗后吹干,得到预处理后的Q235碳钢试样,备用。
步骤2:将试样放置于磁控溅射设备的溅射台中央,靶材与底物之间的距离恒定为5cm,溅射台转速设置为3rpm。选用纯度为99.99%的Ti靶材,沉积之前,靶材在10Pa的纯氩气环境中溅射清洗10min。后将氧气与氩气以2:10的比例通入。溅射功率设置为100w,溅射时长60min。溅射完成后,继续在真空室中保存20min。
步骤3:将试样放置于磁控溅射设备的溅射台中央,靶材与底物之间的距离恒定为5cm,溅射台转速设置为3rpm。选用纯度为99.99%的Ag靶材,沉积之前,靶材在10Pa的纯氩气环境中溅射清洗10min。后以20mL/min速度通入氩气。溅射功率设置为70w,溅射时长10min。溅射完成后,继续在真空室中保存20min。
步骤4:选用含量为1mg/ml,纯度为92%的Mefp-1蛋白,用1wt.%的柠檬酸将溶液稀释为0.1mg/ml。用饱和KOH将pH值调整为7。取少量配置好的溶液滴加到试样表面,在匀胶机上进行旋涂,1000rpm旋涂20s,4000rpm下旋涂60s。即得到Mefp-1/TiO2/Ag复合涂层,记为MTA-3。
实施例4
步骤1:选用直径为15mm,厚度为2mm的Q235碳钢薄片,采用水砂纸400#、800#、1200#对试样依次进行打磨。后用w2.5的金刚石抛光膏配合真丝绒抛光布进行抛光,以去除表面的氧化膜。用去离子水将试样冲洗干净后放入无水乙醇中用超声波清洗8min,取出后用去离子水冲洗后吹干,得到预处理后的Q235碳钢试样,备用。
步骤2:将试样放置于磁控溅射设备的溅射台中央,靶材与底物之间的距离恒定为5cm,溅射台转速设置为3rpm。选用纯度为99.99%的Ti靶材,沉积之前,靶材在10Pa的纯氩气环境中溅射清洗10min。后将氧气与氩气以2:10的比例通入。溅射功率设置为100w,溅射时长60min。溅射完成后,继续在真空室中保存20min。
步骤3:将试样放置于磁控溅射设备的溅射台中央,靶材与底物之间的距离恒定为5cm,溅射台转速设置为3rpm。选用纯度为99.99%的Ag靶材,沉积之前,靶材在10Pa的纯氩气环境中溅射清洗10min。后以20mL/min速度通入氩气。溅射功率设置为70w,溅射时长10min。溅射完成后,继续在真空室中保存20min。
步骤4:选用含量为1mg/ml,纯度为92%的Mefp-1蛋白,用1wt.%的柠檬酸将溶液稀释为0.1mg/ml。用饱和KOH将pH值调整为7。取少量配置好的溶液滴加到试样表面,在匀胶机上进行旋涂,500rpm旋涂20s,2000rpm下旋涂60s。即得到Mefp-1/TiO2/Ag复合涂层。(记为MTA-4)
对比例1
选用直径为15mm,厚度为2mm的Q235碳钢薄片,采用水砂纸400#、800#、1200#对试样依次进行打磨。后用w2.5的金刚石抛光膏配合真丝绒抛光布进行抛光,以去除表面的氧化膜。用去离子水将试样冲洗干净后放入无水乙醇中用超声波清洗8min,取出后用去离子水冲洗后吹干,得到预处理后的Q235碳钢试样(记为BC-1)。
对比例2
与实施例1相同,区别在于只进行了步骤1和步骤2的处理。
具体步骤如下:
将步骤1中制备好的试样放置于磁控溅射设备的溅射台中央,靶材与底物之间的距离恒定为5cm,溅射台转速设置为3rpm。选用纯度为99.99%的Ti靶材,沉积之前,靶材在10Pa的纯氩气环境中溅射清洗10min。后将氧气与氩气以2.:10的比例通入。溅射功率设置为100w,溅射时长60min。溅射完成后,继续在真空室中保存20min。即得到TiO2涂层试样,(记为T-1)。
对比例3
与实施例1相同,区别在于未进行步骤4的处理。
具体步骤如下:
将步骤1中制备好的试样放置于磁控溅射设备的溅射台中央,靶材与底物之间的距离恒定为5cm,溅射台转速设置为3rpm。选用纯度为99.99%的Ti靶材,沉积之前,靶材在10Pa的纯氩气环境中溅射清洗10min。后将氧气与氩气以2.:10的比例通入。溅射功率设置为100w,溅射时长60min。溅射完成后,继续在真空室中保存20min。后将试样放置于磁控溅射设备的溅射台中央,靶材与底物之间的距离恒定为5cm,溅射台转速设置为3rpm。选用纯度为99.99%的Ag靶材,沉积之前,靶材在10Pa的纯氩气环境中溅射清洗10min。后以20ml/min速度通入氩气。溅射功率设置为70w,溅射时长10min。溅射完成后,继续在真空室中保存20min。即得到TiO2/Ag涂层试样,(记为TA-1)。
对采用本发明涉及Q235碳钢试样,TiO2涂层试样,TiO2/Ag涂层试样和Mefp-1/TiO2/Ag涂层试样进行如下力学性能、摩擦学性能、耐蚀性能性能测试。其力学性能指标如表1所示,耐腐蚀性能指标如表2所示,摩擦学性能指标如表3所示。
表1:实施例1力学性能测试结果
表2:实施例1的摩擦学性能测试结果
表3:实施例1的耐腐蚀性能测试结果
表4:实施例2的耐腐蚀性及摩擦学性能测试结果
表5:实施例3的耐腐蚀性及摩擦学性能测试结果
表6:实施例4的耐腐蚀性及摩擦学性能测试结果
采用纳米划痕法和纳米压痕法对TiO2涂层、TiO2/Ag涂层、Mefp-1/TiO2/Ag涂层的临界载荷和弹性模量进行测试,进而计算各个涂层的粘附能。具体:选用的球形金刚石触针进行划痕实验,划痕长度800um,载荷从3mN均匀增加到60mN,加载时长60s。滑动过程中滑头和涂层之间的摩擦力变化如图1所示。一般认为摩擦力的突变点即为涂层的失效点,此点处对应的加载压力即为涂层的临界载荷。TiO2涂层、TiO2/Ag涂层的临界载荷分别为24.27mN和36.45mN;而本发明制备的Mefp-1/TiO2/Ag涂层的临界载荷为50.35mN,可见该复合涂层具有更强的承受载荷的能力。选用Berkovich压头进行纳米压痕实验,对涂层的弹性模量进行测试。用形貌轮廓仪对涂层的厚度进行测试。结合以上实验结果,计算所得涂层的粘附能如表1所示。TiO2涂层和TiO2/Ag涂层的粘附能为分别为222.54J m-2和949.04J m-2。而采用本发明制备的Mefp-1/TiO2/Ag涂层的粘附能为3428.70J m-2。其粘附能远高于普通的磁控溅射涂层。因此相比与传统的磁控溅射涂层,该涂层的黏附特性更好。
此外,利用UMT-3线性往复式摩擦机表征基体及各涂层试样的摩擦磨损性能。摩擦副选用直径为4mm的Si3N4小钢球,对磨材料为Q235碳钢基体及各膜层试样。具体实验参数设置为:往复频率2Hz,滑动行程6mm,加载载荷1N,对应的最大赫兹接触应力为0.6GPa。实验时间为30min。各试样的摩擦系数及磨痕宽度数值见表2、表4、表5及表6。Q235碳钢的磨痕宽度为546μm,稳态摩擦系数为0.969,磨损量为8.375×10-5mm3 Nm-1。而采用本发明制备的Mefp-1/TiO2/Ag复合涂层,其磨痕宽度仅为175μm,稳态摩擦系数为0.236。磨损率为1.826×10- 5mm3 Nm-1。仅为基体试样的21.8%。可见涂层的摩擦学性能显著提高。
关于涂层的耐腐蚀性能,采用电化学实验表征Q235基底、TiO2涂层试样、TiO2/Ag涂层试样和Mefp-1/TiO2/Ag涂层试样的腐蚀性能。将上述试样作为工作电极,饱和Ag/AgCl电极和铂网电极分别作为参比电极和对电极,形成三电极体系用于测量其交流阻抗谱(EIS)。试样浸泡在1wt.%的NaCl溶液中,每隔24小时进行一次EIS测试。用Ro(RpQ)电路进行拟合,其中极化电阻(Rp)反应试样的耐腐蚀性能。实验结果如表3-6和图3所示。碳钢的极化电阻值一直保持在1.3kΩcm-2左右。而本发明所制备的Mefp-1/TiO2/Ag复合涂层的极化电阻值在随着浸泡时间的增加而增加。48小时之后,Rp值增加到2.742kΩcm-2。经过120小时的浸泡之后,Rp值增大到3.889kΩcm-2。可见复合涂层对碳钢有着明显的防腐效果,且随着浸泡时间的增加,防腐效果更加明显。
通过工艺调整(增加步骤2和步骤3中磁控溅射时间或改变旋涂转速),按照实施例2的实施工艺制备的复合涂层的厚度为6747.3nm,较实施例1中制备的Mefp-1/TiO2/Ag复合涂层有所增加。该复合涂层的耐腐蚀性能及摩擦磨损实验结果见表4。实施例2在浸泡了48h和120h后,Rp值分别为2.751kΩcm2、3.904kΩcm2,均远高于基底试样,可见调整膜厚的复合涂层仍具有优异的耐蚀性。此外,该Mefp-1/TiO2/Ag复合涂层的稳定摩擦系数为0.228,磨痕宽度为186um,磨损率为1.944×10-5mm3 Nm-1.可见摩擦学性能相较于Q235碳钢试样也显著增加。另外,随着磁控溅射的时间增加,Mefp-1/TiO2/Ag涂层厚度增加。但当进一步延长磁控溅射时间后,厚度增加不明显,且涂层的致密性会有所下降。其防腐耐磨性能也会有所下降。且制备过程中的能耗会有所增加。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (9)

1.一种含贻贝足丝蛋白的复合涂层材料的制备方法,其特征在于步骤如下:
S1.对碳钢表面进行清洗,去除表层氧化膜;
S2.采用直流磁控溅射在碳钢表面制备TiO2层;
S3.采用直流磁控溅射在碳钢表面制备Ag层;
S4.以碳钢表面含有的TiO2/Ag膜为前驱体膜,利用均胶机在前驱体膜上旋涂一层Mefp-1蛋白溶液,得到用于碳钢表面的Mefp-1/TiO2/Ag复合涂层。
2.根据权利要求1所述的一种含贻贝足丝蛋白的复合涂层材料的制备方法,其特征在于:所述步骤S1具体为采用水砂纸对碳钢底物表面进行打磨后,用金刚石抛光膏配合真丝绒抛光布进行抛光,抛光后粗糙度小于0.3μm,去除表面的氧化膜;再用去离子水将碳钢底物冲洗干净后放入无水乙醇中用超声波清洗,取出后用去离子水冲洗后吹干备用。
3.根据权利要求1所述的一种含贻贝足丝蛋白的复合涂层材料的制备方法,其特征在于:所述步骤S2具体为选用纯度99.99%的Ti靶材,将处理后的碳钢至于磁控溅射设备的溅射台中央,靶材与底物之间的距离恒定,通入氩气和氧气,磁控溅射功率是80~120w,磁控溅射时间为40~80min。
4.根据权利要求3所述的一种含贻贝足丝蛋白的复合涂层材料的制备方法,其特征在于:所述靶材在沉积前在10Pa的纯氩气环境中溅射清洗10min,距离恒定为5cm,溅射台转速设置为3rpm,溅射完成后,继续在真空室中保存20min。
5.根据权利要求1所述的一种含贻贝足丝蛋白的复合涂层材料的制备方法,其特征在于:所述步骤S3具体为选用纯度99.99%的Ag靶材,沉积之前,靶材在10Pa的纯氩气环境中溅射清洗10min,通入氩气,磁控溅射功率是50~90w,磁控溅射时间为5~30min。
6.根据权利要求5所述的一种含贻贝足丝蛋白的复合涂层材料的制备方法,其特征在于:所述溅射过程中氩气的通入速率是10~30ml/min。
7.根据权利要求1所述的一种含贻贝足丝蛋白的复合涂层材料的制备方法,其特征在于:所述步骤S4中Mefp-1蛋白溶液以Mefp-1蛋白为基础溶液,用柠檬酸溶液进行稀释,
pH值为5~9,浓度为0.05~0.2mg/mL。
8.根据权利要求1所述的一种含贻贝足丝蛋白的复合涂层材料的制备方法,其特征在于:所述步骤S4中均胶机先低速旋涂再高速旋涂,低速旋涂转速为500~1000rpm,低速旋涂时间为10~30s,高速旋涂转速为2000~4000rpm,高速旋涂时间为50~70s。
9.一种含贻贝足丝蛋白的复合涂层材料,其特征在于:由权利要求1~8中任一项所述的一种含贻贝足丝蛋白的复合涂层材料的制备方法制得。
CN202311285578.1A 2023-10-07 2023-10-07 一种含贻贝足丝蛋白的复合涂层材料及其制备方法 Pending CN117568758A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311285578.1A CN117568758A (zh) 2023-10-07 2023-10-07 一种含贻贝足丝蛋白的复合涂层材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311285578.1A CN117568758A (zh) 2023-10-07 2023-10-07 一种含贻贝足丝蛋白的复合涂层材料及其制备方法

Publications (1)

Publication Number Publication Date
CN117568758A true CN117568758A (zh) 2024-02-20

Family

ID=89883268

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311285578.1A Pending CN117568758A (zh) 2023-10-07 2023-10-07 一种含贻贝足丝蛋白的复合涂层材料及其制备方法

Country Status (1)

Country Link
CN (1) CN117568758A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101370961A (zh) * 2006-04-19 2009-02-18 罗帕尔股份公司 用于制造防腐蚀和高光泽基底的方法
CN107779814A (zh) * 2017-08-31 2018-03-09 昆明贵金属研究所 一种含Ag纳米粒子梯度耐磨涂层的制备方法
CN112609165A (zh) * 2020-12-15 2021-04-06 辽宁科技大学 一种不锈钢基燃料电池双极板表面复合涂层及其制备方法
WO2022011501A1 (zh) * 2020-07-13 2022-01-20 中国科学院宁波材料技术与工程研究所 仿贝壳多拱形结构纳米复合涂层、其制备方法与应用
CN115612998A (zh) * 2022-12-13 2023-01-17 潍坊科技学院 一种镁合金表面润滑耐磨复合膜层及其制备方法
CA3128998A1 (en) * 2021-08-26 2023-02-26 Mohsen Seyfi Kashani The manufacturing process of antibacterial, self-cleaning, and wear-resistant hybrid coatings on glazed ceramic substrates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101370961A (zh) * 2006-04-19 2009-02-18 罗帕尔股份公司 用于制造防腐蚀和高光泽基底的方法
CN107779814A (zh) * 2017-08-31 2018-03-09 昆明贵金属研究所 一种含Ag纳米粒子梯度耐磨涂层的制备方法
WO2022011501A1 (zh) * 2020-07-13 2022-01-20 中国科学院宁波材料技术与工程研究所 仿贝壳多拱形结构纳米复合涂层、其制备方法与应用
CN112609165A (zh) * 2020-12-15 2021-04-06 辽宁科技大学 一种不锈钢基燃料电池双极板表面复合涂层及其制备方法
CA3128998A1 (en) * 2021-08-26 2023-02-26 Mohsen Seyfi Kashani The manufacturing process of antibacterial, self-cleaning, and wear-resistant hybrid coatings on glazed ceramic substrates
CN115612998A (zh) * 2022-12-13 2023-01-17 潍坊科技学院 一种镁合金表面润滑耐磨复合膜层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
熊文娟等: "仿贻贝蛋白聚合物在防污涂层中的应用进展", 高分子材料科学与工程, vol. 39, no. 4, 30 April 2023 (2023-04-30), pages 182 - 190 *

Similar Documents

Publication Publication Date Title
Ürgen et al. Characterization of molybdenum nitride coatings produced by arc-PVD technique
Barril et al. Triboelectrochemical investigation of the friction and wear behaviour of TiN coatings in a neutral solution
CN107281544A (zh) 一种钛及钛合金表面自润滑耐磨复合涂层及其制备方法
WO2012036199A1 (ja) 容器用鋼板およびその製造方法
CN115261100B (zh) 一种具有减摩抗磨性能的固体润滑涂层及其制备方法和应用
Zhang et al. Electrochemical corrosion and tribological properties of CrMoCN coatings sliding against Al2O3 balls in artificial seawater
Zhao et al. Structure and properties of Si and N co-doping on DLC film corrosion resistance
CN117568758A (zh) 一种含贻贝足丝蛋白的复合涂层材料及其制备方法
Wu et al. Comparisons of tribological and electrochemical properties of CrSiC and CrSiCN coatings in seawater
TW201239120A (en) Housing and method for making same
CN110184636B (zh) 通过多电位阶跃法在铝表面原位制备水滑石薄膜的方法
Keawhan et al. Corrosion behavior of AISI 4140 steel surface coated by physical vapor deposition
CN106048611A (zh) 一种铜或铜合金疏水表面的制备方法
CN109055910B (zh) 一种耐磨防腐抗污一体化(Cr, Cu)-GLC复合涂层及其制备方法
CN112626588A (zh) 一种耐磨抗腐蚀型阴极电泳涂装工艺
JP2006347827A (ja) アモルファスSiO2膜被覆部材および、その形成方法
CN114231895A (zh) 一种奥氏体不锈钢高性能化低温高效离子复合渗表面改性方法
CN116535884B (zh) 镁锂合金表面致密防腐耐磨SWF/LDHs复合涂层及制备方法
WO2006023933A1 (en) Electrodeposition process
CN115354275B (zh) 一种奥氏体不锈钢表面渗镀复合处理方法及应用
CN114561635B (zh) 一种镁合金表面的LDHs膜及其原位结晶制备方法
Sivakumar et al. WEAR RESISTANCE INVESTIGATION OF TiN AND H-DIAMOND LIKE CARBON COATED AISI 5140 STEEL IN DRY SLIDING WEAR CONDITION.
Ciobotaru et al. The enhancement of the corrosion resistance of aluminium and VTES-coated aluminium by using a green inhibitor
CN116023850B (zh) 一种有机-无机复合防腐涂层及其制备方法
CN113186570B (zh) 一种活塞杆表面处理工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination