CN117511969A - 一种mRNA、制备方法、用途和疫苗 - Google Patents

一种mRNA、制备方法、用途和疫苗 Download PDF

Info

Publication number
CN117511969A
CN117511969A CN202410011697.6A CN202410011697A CN117511969A CN 117511969 A CN117511969 A CN 117511969A CN 202410011697 A CN202410011697 A CN 202410011697A CN 117511969 A CN117511969 A CN 117511969A
Authority
CN
China
Prior art keywords
vaccine
mrna
sequence
group
avian influenza
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410011697.6A
Other languages
English (en)
Other versions
CN117511969B (zh
Inventor
樊惠英
太万博
王召阳
敖翔
黄鹤
周永飞
廖明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Hemu Biotechnology Co ltd
South China Agricultural University
Original Assignee
Beijing Hemu Biotechnology Co ltd
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Hemu Biotechnology Co ltd, South China Agricultural University filed Critical Beijing Hemu Biotechnology Co ltd
Priority to CN202410011697.6A priority Critical patent/CN117511969B/zh
Publication of CN117511969A publication Critical patent/CN117511969A/zh
Application granted granted Critical
Publication of CN117511969B publication Critical patent/CN117511969B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16151Methods of production or purification of viral material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Genetics & Genomics (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Dispersion Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Pulmonology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明属于生物领域,公开了一种mRNA,核苷酸序列如SEQ ID NO.1所示。通过将H5亚型禽流感的HA蛋白编码序列进行密码子优化后,序列前端添加T7启动子、5’端非翻译区(5’UTR)和Kozak序列,后端添加3’端非翻译区(3’UTR)和多聚腺苷酸尾(Poly A),构成mRNA疫苗模板DNA序列,进而得到mRNA;该mRNA以禽类流感疫苗形式存在时具有免疫原性好、保护力度强等优势。同时,本发明还公开了一种该mRNA的制备方法、用途和疫苗。

Description

一种mRNA、制备方法、用途和疫苗
技术领域
本发明涉及生物领域,具体为一种mRNA、制备方法、用途和疫苗。
背景技术
禽流感是严重威胁禽类养殖业和公共卫生安全的重大***共患疫病。禽流感病毒在野生鸟类和家禽中均可存在并可传播,H5亚型禽流感病毒在家禽中传播并在广泛的地理区域中检测到,除严重危害禽类养殖业,也使人类面临禽流感在人群中大规模流行的风险。
禽流感病毒属于正粘病毒科,其基因组由八个负义单链RNA片段组成,编码病毒结构蛋白和非结构蛋白,如神经氨酸酶、血凝素(HA)、聚合酶复合物(PB2、PB1和PA)、基质蛋白1和2(M1和M2)、非结构蛋白1(NS1)、NEP/NS2和核蛋白(NP)。HA蛋白是流感病毒颗粒表面的主要成分,能够诱导机体产生中和抗体和细胞免疫,是研制流感病毒疫苗的主要靶抗原。
疫苗接种是目前预防禽流感传播与流行最有效的措施之一,当前的禽流感疫苗主要是灭活疫苗。该疫苗具有较多短板,如疫苗更新毒株速度较慢,难以应对毒株的快速变异;生产过程涉及活毒繁殖,具有一定的生物安全风险;依赖于鸡胚生产,流行期间可能鸡胚供应不足,生产期间产生大量的废弃物污染环境、和内源性污染等。此外,灭活疫苗需要与佐剂配伍使用,并且主要诱导体液免疫,细胞免疫较弱。
相对而言,mRNA疫苗具有较强的优势。mRNA疫苗是一种将编码抗原蛋白的mRNA序列通过载体分子递送到宿主细胞内并表达相应的抗原蛋白,从而诱导机体产生免疫反应的疫苗。与灭活疫苗、亚单位疫苗和DNA疫苗等其他疫苗相比,mRNA疫苗可以诱导T细胞和B细胞免疫反应,并且不存在感染或***诱变等风险。mRNA疫苗具有显著的安全性、高效性,且研发周期短、易实现规模化生产,具有显著优势,近年来逐渐受到关注。
CN115252770A公开了H9N2亚型禽流感病毒mRNA疫苗及制备方法与应用,其公开了用于制备针对H9N2亚型禽流感病毒的疫苗的mRNA,先通过分子生物学方法得到H9N2亚型禽流感病毒的HA序列,然后通过体外转录的方法合成mRNA。
该方案的技术效果部分记载:四批疫苗10 μg mRNA、15μg mRNA、25μg mRNA、灭活疫苗组均使SPF鸡产生了抗体,10 μg mRNA效价为4.5log2;15 μg mRNA效价为7log2;25 μgmRNA效价为10log2。
可见,采用禽流感病毒的HA基因来制备mRNA疫苗已经有研究人员关注,但是开发出更高效的mRNA疫苗却很难。
本案解决的技术问题是:如何开发出一种免疫效果更佳的H5亚型的mRNA疫苗。
发明内容
本发明的第一目的在于提供一种mRNA,其将禽流感2.3.2.1c分支毒株的HA蛋白编码序列进行密码子优化后,序列前端添加T7启动子、5’端非翻译区(5’UTR)和Kozak序列,后端添加3’端非翻译区(3’UTR)和多聚腺苷酸尾(Poly A),构成mRNA疫苗模板DNA序列,进而得到mRNA;该mRNA以禽类流感疫苗形式存在时具有免疫原性好、保护力度强等优势。
同时,本发明还公开了一种该mRNA的制备方法、用途和疫苗。
为实现上述第一目的,本发明提供如下技术方案:
一种mRNA,核苷酸序列如SEQ ID NO.1所示;
同时,本发明还公开了一种制备如上所述的mRNA的方法,包括如下步骤:
步骤1:构建含SEQ ID NO.2所示的核苷酸序列的载体,得到质粒;
步骤2:将质粒线性化,得到收线性化质粒;
步骤3:将收线性化质粒进行转录、纯化、加帽得到mRNA。
同时,本发明还公开了上述的mRNA制备疫苗的用途;所述疫苗为禽类疫苗。
具体来说,所述禽类疫苗面向的禽类为鸡、鸭、鹅、雁、鹌鹑、鸽子、火鸡。
在实际应用中,所述疫苗可以为仅含该mRNA的疫苗,也可以是多价疫苗。
在实际应用中,所述疫苗中还包括与一种或多种禽类传染病疫苗联合应用;所述禽类传染病疫苗为新城疫疫苗、传染性支气管炎疫苗、传染性喉气管炎疫苗、禽腺病毒感染疫苗、马利克病疫苗、传染性法氏囊病疫苗中的一种或多种。
最后,本发明还公开了一种疫苗,含有如上所述的mRNA。
在上述的疫苗中,包括脂质体和包裹在脂质体内的mRNA;所述疫苗中的脂质体的平均粒径为50-150nm。
在上述的疫苗中,所述疫苗中的脂质体的平均粒径为70-100nm。
在上述的疫苗中,所述脂质体包括阳离子脂、DSPC、胆固醇、PEG200-DMG,阳离子脂、DSPC、胆固醇、PEG200-DMG的摩尔比为50:10:38.5:1.5。
与现有技术相比,本发明的突出特点在于:
本发明选取禽流感病毒的HA抗原编码序列并进行优化设计,构建了禽流感mRNA疫苗。将H5亚型禽流感的HA蛋白编码序列进行密码子优化后,序列前端添加T7启动子、5’端非翻译区(5’UTR)和Kozak序列,后端添加3’端非翻译区(3’UTR)和多聚腺苷酸尾(Poly A),构成mRNA疫苗模板DNA序列。将该序列分别连接在质粒载体上构成重组质粒pUC57-H5-HA。通过将重组质粒进行线性化、转录、加帽,获得mRNA,并用LNP技术包装,制成H5亚型禽流感mRNA疫苗。
疫苗安全性试验表明,本发明的H5亚型禽流感mRNA疫苗以低剂量(10 μg)和高剂量(100 μg)分别接种SPF鸡。接种后SPF鸡精神状态良好,饮食状况无异常,并逐日观察注射部位无硬结、脓肿和溃烂的发生。接种后第3、4和5周剖检,胸部肌肉注射部位疫苗均吸收完全,并且与PBS组相比无任何异常。
疫苗有效性试验表明,本发明的H5亚型禽流感mRNA疫苗对相应的禽流感毒株具有良好的保护作用。我们通过实施SPF鸡动物试验评价了H5亚型的禽流感mRNA疫苗的免疫效力,结果表明,以15 μg mRNA疫苗剂量接种两次,间隔3周,对异源禽流感毒株攻毒有100%的保护作用,攻毒后显著抑制排毒。
以上试验结果证明,本发明的H5亚型的禽流感mRNA疫苗安全有效,可以为我国防控禽流感提供重要的技术储备。
本发明制备mRNA疫苗免疫家禽能够引起强烈的体液免疫和有效的细胞免疫。鸡只免疫15 μg mRNA疫苗,二免后平均HI效价为9.25log2,并且有效地诱导T细胞产生免疫应答,提高细胞因子IFN-γ、IL-4和IL-17的表达量。本发明的mRNA疫苗编码的HA蛋白保留了信号肽和跨膜区,经WB鉴定,HA蛋白以天然构象三聚体形式表达。免疫动物后,利用宿主本身的细胞器翻译和加工HA抗原蛋白,并展示在细胞表面,抗原蛋白的翻译和展示过程与自然感染病毒后表达HA蛋白的过程类似,不但可以刺激机体产生针对HA蛋白的特异性抗体,也可以有效激活细胞免疫,从而进一步增强免疫效果。
在应对新发突发变异禽流感疫情时,mRNA疫苗具有显著的研发速度优势。只需对型流感病毒进行基因测序,据此更换mRNA疫苗所编码的HA蛋白基因序列,即可快速实现疫苗与变异流感病毒的匹配,从而快速应对新发突发变异禽流感疫情。此外,mRNA疫苗还具有安全性高、易规模化生产等优势。
附图说明
图1为实施例1中重组质粒pUC57-H5-HA的质粒图谱;
图2为实施例2中重组质粒线性化酶切产物的电泳鉴定图;
图3为实施例2中转录加帽后mRNA的电泳鉴定图;
图4为实施例3中HA蛋白表达的WB检测结果;
图5为实施例3中HA蛋白的三聚体WB鉴定结果;
图6为实施例4中mRNA-LNPs粒径分析结果;
图7为实施例5中SPF鸡免疫后第2周、第3周和第4周注射部位剖检的代表性图片结果;
图8为实施例6中SPF鸡免疫后血清HI效价结果;
图9为实施例6中SPF鸡攻毒后存活率结果;
图10为实施例7中SPF鸡免疫后细胞因子的检测结果;
图11为实施例8的小鼠免疫后血清HI效价结果;
图12为实施例8的小鼠攻毒后平均体重变化结果;
图13为实施例8的小鼠肺脏排毒量检测结果;
图14为实施例8的小鼠肺脏细胞因子的检测结果;
图15为实施例1的HA基因序列进行密码子优化前后对比图。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例中涉及的H5N1亚型禽流感病毒为A/Chicken/Shandong/WFZC/2017(H5N1)(H5N1-SD57),由华南农业大学兽医学院国家禽流感专业实验室(广州)提供,已在中国专利申请(申请号为“202310079761.X”、申请名称为“一种抗H5N1亚型禽流感的病毒样颗粒疫苗及其制备方法和应用”)中公开(文中命名为:H5N1-SD57)。
本发明实施例中涉及的H5N1-D889毒株为A/Chicken/Guangdong/D889/2015(H5N1),由华南农业大学兽医学院国家禽流感专业实验室(广州)提供,已在中国专利申请(申请号为“201910117092.4”、申请名称为“基于MultiBac杆状病毒表达***的禽流感疫苗及制备与应用”)中公开(文中命名为:H5N1-D889)。
实施例1 禽流感病毒mRNA疫苗的抗原表达载体的构建
禽流感病毒mRNA疫苗序列包含以下元件:T7启动子、5’端非翻译区(5’UTR)、HA抗原编码基因、3’端非翻译区(3’UTR)和多聚腺苷酸(Poly A),并且在Poly A尾结构下游连接有质粒线性化的酶切位点(Eco31I)。
参考禽流感病毒A/Chicken/Shandong/WFZC/2017(H5N1)(H5N1-SD57)的HA基因编码序列,设计本发明中mRNA疫苗的HA抗原编码序列。在HA蛋白的C端添加His标签。将源于A/Chicken/Shandong/WFZC/2017(H5N1)(H5N1-SD57)的HA基因序列进行密码子优化。优化前后的对比图可见图15;
mRNA疫苗的抗原表达序列(SEQ ID NO.2)如下:
TAATACGACTCACTATAGGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCGCTAGCCTCGAGGCCGCCACCATGGAAAAAATTGTTCTGCTGTTTGCTACCATTAGCTTAGTGAAATCAGATCATATTTGCATCGGCTACCACGCCAATAATTCCACCGAGCAAGTGGACACTATCATGGAGAAGAATGTGACTGTCACTCATGCAAAGGATATTTTGGAGAAGACACACAACGGAAAGCTGTGTGACCTCAATGGGGTCAAACCCCTAATTCTCAAAGATTGCAGTGTAGCTGGTTGGCTGCTGGGAAACCCTCTCTGTGATGAGTTCACCAATGTACCAGAATGGTCTTATATAGTCGAGAAAGCTAATCCTGCAAACGATCTCTGCTACCCTGGGAAGTTTAATGACTATGAAGAACTCAAGCACCTCTTATCTAGAATAAATCACTTCGAGAAGATCCAGATTATACCTAAGGACAGCTGGAGTGACCATGAAGCCTCTCTGGGAGTTAGCGCAGCATGCTCATATCAAGGATCCAGTTCCTTTTTCAGGAATGTTGTTTGGCTAATCAAAAAAGACAACGCCTATCCCACGATCAAGAAGTCATACAATAACACGAATCGAGAGGATTTACTGATCCTCTGGGGAATTCATCACCCGAATGATGAAGCAGAGCAGACAAAGCTTTACCAAAACCCCACCACATACATCAGCATTGGTACTTCAACACTGAACCAGAGGCTGGTGCCAAAGATTGCCACCCGCAGCAAGATCAACGGCCAGAGTGGGCGCATCGACTTCTTCTGGACTATACTTAAACCAAACGACGCCATTCATTTTGAGTCTAATGGGAACTTCATCGCACCAGAATATGCCTACAAAATTGTAAAAAAGGGAGATAGTACCATCATGAGGAGTGAGGTGGAGTATGGCAACTGTAACACGAGATGCCAGACGCCCGTGGGTGCGATTAATTCAAGCATGCCTTTTCACAATATCCATCCGCTTACCATAGGAGAATGTCCCAAATACGTGAAAAGCAACAAACTGGTGCTGGCGACTGGCCTGCGGAACTCTCCACAAAGAGAGAGCAGAGGGCTTTTTGGTGCAATCGCTGGCTTCATTGAGGGAGGTTGGCAGGGCATGGTGGATGGTTGGTACGGCTATCACCATTCTAATGAACAAGGGAGCGGCTACGCAGCCGATAAGGAATCGACACAGAAAGCTATAGATGGTGTGACAAACAAGGTAAACAGCATCATCGACAAGATGAATACTCAGTTCGAGGCAGTCGGCAGGGAATTCAACAATCTGGAGCGTCGGATTGAAAACTTAAATAAAAAAATGGAAGATGGATTTCTCGACGTTTGGACATACAATGCGGAACTGTTGGTCCTGATGGAAAATGAGAGGACTTTGGACTTTCATGATAGTAACGTGAAAAACCTATATGACAAAGTTCGATTACAGCTGAAGGACAATGCTAAAGAGCTTGGAAATGGATGTTTCGAATTTTATCACAAGTGCAACAACGAGTGCATGGAGTCTGTCCGGAACGGAACATATGATTACCCACAGTACAGCGAGGAAGCTCGTCTGAAGCGCGAGGAAATATCAGGGGTGAAGCTTGAATCCATCGGTATCTACCAGATCCTGAGCATATACAGTACAGTGGCCTCATCCTTGGTCTTGGCCATTATGATGGCTGGGCTTTCTCTGTGGATGTGTTCCAACGGCTCGCTACAGTGCAGAATATGTATTCACCACCATCATCACCACTGAGGTACCGATATCTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGATCTAGAAAAAAAAAAAAAAAAAAAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAGACC。
疫苗转录后对应的mRNA序列(SEQ ID NO.1)如下:
GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACCGCUAGCCUCGAGGCCGCCACCAUGGAAAAAAUUGUUCUGCUGUUUGCUACCAUUAGCUUAGUGAAAUCAGAUCAUAUUUGCAUCGGCUACCACGCCAAUAAUUCCACCGAGCAAGUGGACACUAUCAUGGAGAAGAAUGUGACUGUCACUCAUGCAAAGGAUAUUUUGGAGAAGACACACAACGGAAAGCUGUGUGACCUCAAUGGGGUCAAACCCCUAAUUCUCAAAGAUUGCAGUGUAGCUGGUUGGCUGCUGGGAAACCCUCUCUGUGAUGAGUUCACCAAUGUACCAGAAUGGUCUUAUAUAGUCGAGAAAGCUAAUCCUGCAAACGAUCUCUGCUACCCUGGGAAGUUUAAUGACUAUGAAGAACUCAAGCACCUCUUAUCUAGAAUAAAUCACUUCGAGAAGAUCCAGAUUAUACCUAAGGACAGCUGGAGUGACCAUGAAGCCUCUCUGGGAGUUAGCGCAGCAUGCUCAUAUCAAGGAUCCAGUUCCUUUUUCAGGAAUGUUGUUUGGCUAAUCAAAAAAGACAACGCCUAUCCCACGAUCAAGAAGUCAUACAAUAACACGAAUCGAGAGGAUUUACUGAUCCUCUGGGGAAUUCAUCACCCGAAUGAUGAAGCAGAGCAGACAAAGCUUUACCAAAACCCCACCACAUACAUCAGCAUUGGUACUUCAACACUGAACCAGAGGCUGGUGCCAAAGAUUGCCACCCGCAGCAAGAUCAACGGCCAGAGUGGGCGCAUCGACUUCUUCUGGACUAUACUUAAACCAAACGACGCCAUUCAUUUUGAGUCUAAUGGGAACUUCAUCGCACCAGAAUAUGCCUACAAAAUUGUAAAAAAGGGAGAUAGUACCAUCAUGAGGAGUGAGGUGGAGUAUGGCAACUGUAACACGAGAUGCCAGACGCCCGUGGGUGCGAUUAAUUCAAGCAUGCCUUUUCACAAUAUCCAUCCGCUUACCAUAGGAGAAUGUCCCAAAUACGUGAAAAGCAACAAACUGGUGCUGGCGACUGGCCUGCGGAACUCUCCACAAAGAGAGAGCAGAGGGCUUUUUGGUGCAAUCGCUGGCUUCAUUGAGGGAGGUUGGCAGGGCAUGGUGGAUGGUUGGUACGGCUAUCACCAUUCUAAUGAACAAGGGAGCGGCUACGCAGCCGAUAAGGAAUCGACACAGAAAGCUAUAGAUGGUGUGACAAACAAGGUAAACAGCAUCAUCGACAAGAUGAAUACUCAGUUCGAGGCAGUCGGCAGGGAAUUCAACAAUCUGGAGCGUCGGAUUGAAAACUUAAAUAAAAAAAUGGAAGAUGGAUUUCUCGACGUUUGGACAUACAAUGCGGAACUGUUGGUCCUGAUGGAAAAUGAGAGGACUUUGGACUUUCAUGAUAGUAACGUGAAAAACCUAUAUGACAAAGUUCGAUUACAGCUGAAGGACAAUGCUAAAGAGCUUGGAAAUGGAUGUUUCGAAUUUUAUCACAAGUGCAACAACGAGUGCAUGGAGUCUGUCCGGAACGGAACAUAUGAUUACCCACAGUACAGCGAGGAAGCUCGUCUGAAGCGCGAGGAAAUAUCAGGGGUGAAGCUUGAAUCCAUCGGUAUCUACCAGAUCCUGAGCAUAUACAGUACAGUGGCCUCAUCCUUGGUCUUGGCCAUUAUGAUGGCUGGGCUUUCUCUGUGGAUGUGUUCCAACGGCUCGCUACAGUGCAGAAUAUGUAUUCACCACCAUCAUCACCACUGAGGUACCGAUAUCUGAUAAUAGGCUGGAGCCUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCCCAGCCCCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAAUAAAGUCUGAUCUAGAAAAAAAAAAAAAAAAAAAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA。
其中包含T7启动子序列为:
TAATACGACTCACTATAGG。
5’UTR序列为:
GAAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCGCTAGCCTCGAG。
3’UTR序列为:
GGTACCGATATCTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGA。
poly A序列为50-150A,优选为101A,序列为:
AAAAAAAAAAAAAAAAAAAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA。
HA基因核苷酸序列(SEQ ID NO.3)如下:
ATGGAAAAAATTGTTCTGCTGTTTGCTACCATTAGCTTAGTGAAATCAGATCATATTTGCATCGGCTACCACGCCAATAATTCCACCGAGCAAGTGGACACTATCATGGAGAAGAATGTGACTGTCACTCATGCAAAGGATATTTTGGAGAAGACACACAACGGAAAGCTGTGTGACCTCAATGGGGTCAAACCCCTAATTCTCAAAGATTGCAGTGTAGCTGGTTGGCTGCTGGGAAACCCTCTCTGTGATGAGTTCACCAATGTACCAGAATGGTCTTATATAGTCGAGAAAGCTAATCCTGCAAACGATCTCTGCTACCCTGGGAAGTTTAATGACTATGAAGAACTCAAGCACCTCTTATCTAGAATAAATCACTTCGAGAAGATCCAGATTATACCTAAGGACAGCTGGAGTGACCATGAAGCCTCTCTGGGAGTTAGCGCAGCATGCTCATATCAAGGATCCAGTTCCTTTTTCAGGAATGTTGTTTGGCTAATCAAAAAAGACAACGCCTATCCCACGATCAAGAAGTCATACAATAACACGAATCGAGAGGATTTACTGATCCTCTGGGGAATTCATCACCCGAATGATGAAGCAGAGCAGACAAAGCTTTACCAAAACCCCACCACATACATCAGCATTGGTACTTCAACACTGAACCAGAGGCTGGTGCCAAAGATTGCCACCCGCAGCAAGATCAACGGCCAGAGTGGGCGCATCGACTTCTTCTGGACTATACTTAAACCAAACGACGCCATTCATTTTGAGTCTAATGGGAACTTCATCGCACCAGAATATGCCTACAAAATTGTAAAAAAGGGAGATAGTACCATCATGAGGAGTGAGGTGGAGTATGGCAACTGTAACACGAGATGCCAGACGCCCGTGGGTGCGATTAATTCAAGCATGCCTTTTCACAATATCCATCCGCTTACCATAGGAGAATGTCCCAAATACGTGAAAAGCAACAAACTGGTGCTGGCGACTGGCCTGCGGAACTCTCCACAAAGAGAGAGCAGAGGGCTTTTTGGTGCAATCGCTGGCTTCATTGAGGGAGGTTGGCAGGGCATGGTGGATGGTTGGTACGGCTATCACCATTCTAATGAACAAGGGAGCGGCTACGCAGCCGATAAGGAATCGACACAGAAAGCTATAGATGGTGTGACAAACAAGGTAAACAGCATCATCGACAAGATGAATACTCAGTTCGAGGCAGTCGGCAGGGAATTCAACAATCTGGAGCGTCGGATTGAAAACTTAAATAAAAAAATGGAAGATGGATTTCTCGACGTTTGGACATACAATGCGGAACTGTTGGTCCTGATGGAAAATGAGAGGACTTTGGACTTTCATGATAGTAACGTGAAAAACCTATATGACAAAGTTCGATTACAGCTGAAGGACAATGCTAAAGAGCTTGGAAATGGATGTTTCGAATTTTATCACAAGTGCAACAACGAGTGCATGGAGTCTGTCCGGAACGGAACATATGATTACCCACAGTACAGCGAGGAAGCTCGTCTGAAGCGCGAGGAAATATCAGGGGTGAAGCTTGAATCCATCGGTATCTACCAGATCCTGAGCATATACAGTACAGTGGCCTCATCCTTGGTCTTGGCCATTATGATGGCTGGGCTTTCTCTGTGGATGTGTTCCAACGGCTCGCTACAGTGCAGAATATGTATTCACCACCATCATCACCACTGA。
HA基因mRNA序列如下:
AUGGAAAAAAUUGUUCUGCUGUUUGCUACCAUUAGCUUAGUGAAAUCAGAUCAUAUUUGCAUCGGCUACCACGCCAAUAAUUCCACCGAGCAAGUGGACACUAUCAUGGAGAAGAAUGUGACUGUCACUCAUGCAAAGGAUAUUUUGGAGAAGACACACAACGGAAAGCUGUGUGACCUCAAUGGGGUCAAACCCCUAAUUCUCAAAGAUUGCAGUGUAGCUGGUUGGCUGCUGGGAAACCCUCUCUGUGAUGAGUUCACCAAUGUACCAGAAUGGUCUUAUAUAGUCGAGAAAGCUAAUCCUGCAAACGAUCUCUGCUACCCUGGGAAGUUUAAUGACUAUGAAGAACUCAAGCACCUCUUAUCUAGAAUAAAUCACUUCGAGAAGAUCCAGAUUAUACCUAAGGACAGCUGGAGUGACCAUGAAGCCUCUCUGGGAGUUAGCGCAGCAUGCUCAUAUCAAGGAUCCAGUUCCUUUUUCAGGAAUGUUGUUUGGCUAAUCAAAAAAGACAACGCCUAUCCCACGAUCAAGAAGUCAUACAAUAACACGAAUCGAGAGGAUUUACUGAUCCUCUGGGGAAUUCAUCACCCGAAUGAUGAAGCAGAGCAGACAAAGCUUUACCAAAACCCCACCACAUACAUCAGCAUUGGUACUUCAACACUGAACCAGAGGCUGGUGCCAAAGAUUGCCACCCGCAGCAAGAUCAACGGCCAGAGUGGGCGCAUCGACUUCUUCUGGACUAUACUUAAACCAAACGACGCCAUUCAUUUUGAGUCUAAUGGGAACUUCAUCGCACCAGAAUAUGCCUACAAAAUUGUAAAAAAGGGAGAUAGUACCAUCAUGAGGAGUGAGGUGGAGUAUGGCAACUGUAACACGAGAUGCCAGACGCCCGUGGGUGCGAUUAAUUCAAGCAUGCCUUUUCACAAUAUCCAUCCGCUUACCAUAGGAGAAUGUCCCAAAUACGUGAAAAGCAACAAACUGGUGCUGGCGACUGGCCUGCGGAACUCUCCACAAAGAGAGAGCAGAGGGCUUUUUGGUGCAAUCGCUGGCUUCAUUGAGGGAGGUUGGCAGGGCAUGGUGGAUGGUUGGUACGGCUAUCACCAUUCUAAUGAACAAGGGAGCGGCUACGCAGCCGAUAAGGAAUCGACACAGAAAGCUAUAGAUGGUGUGACAAACAAGGUAAACAGCAUCAUCGACAAGAUGAAUACUCAGUUCGAGGCAGUCGGCAGGGAAUUCAACAAUCUGGAGCGUCGGAUUGAAAACUUAAAUAAAAAAAUGGAAGAUGGAUUUCUCGACGUUUGGACAUACAAUGCGGAACUGUUGGUCCUGAUGGAAAAUGAGAGGACUUUGGACUUUCAUGAUAGUAACGUGAAAAACCUAUAUGACAAAGUUCGAUUACAGCUGAAGGACAAUGCUAAAGAGCUUGGAAAUGGAUGUUUCGAAUUUUAUCACAAGUGCAACAACGAGUGCAUGGAGUCUGUCCGGAACGGAACAUAUGAUUACCCACAGUACAGCGAGGAAGCUCGUCUGAAGCGCGAGGAAAUAUCAGGGGUGAAGCUUGAAUCCAUCGGUAUCUACCAGAUCCUGAGCAUAUACAGUACAGUGGCCUCAUCCUUGGUCUUGGCCAUUAUGAUGGCUGGGCUUUCUCUGUGGAUGUGUUCCAACGGCUCGCUACAGUGCAGAAUAUGUAUUCACCACCAUCAUCACCACUGA。
HA基因对应的氨基酸序列:
MEKIVLLFATISLVKSDHICIGYHANNSTEQVDTIMEKNVTVTHAKDILEKTHNGKLCDLNGVKPLILKDCSVAGWLLGNPLCDEFTNVPEWSYIVEKANPANDLCYPGKFNDYEELKHLLSRINHFEKIQIIPKDSWSDHEASLGVSAACSYQGSSSFFRNVVWLIKKDNAYPTIKKSYNNTNREDLLILWGIHHPNDEAEQTKLYQNPTTYISIGTSTLNQRLVPKIATRSKINGQSGRIDFFWTILKPNDAIHFESNGNFIAPEYAYKIVKKGDSTIMRSEVEYGNCNTRCQTPVGAINSSMPFHNIHPLTIGECPKYVKSNKLVLATGLRNSPQRESRGLFGAIAGFIEGGWQGMVDGWYGYHHSNEQGSGYAADKESTQKAIDGVTNKVNSIIDKMNTQFEAVGREFNNLERRIENLNKKMEDGFLDVWTYNAELLVLMENERTLDFHDSNVKNLYDKVRLQLKDNAKELGNGCFEFYHKCNNECMESVRNGTYDYPQYSEEARLKREEISGVKLESIGIYQILSIYSTVASSLVLAIMMAGLSLWMCSNGSLQCRICIHHHHHH。
mRNA疫苗序列委托南京金斯瑞生物科技公司合成,并克隆至pUC57-Kan载体。疫苗序列包含T7启动子、5’端非翻译区(5’UTR)、经密码子优化的HA基因、3’端非翻译区(3’UTR)和多聚腺苷酸(Poly A)。
所合成的DNA序列经测序比对验证后,使用质粒提取试剂盒提取质粒(购自天根生化科技有限公司,Cat.#DP103-03),并将质粒命名为pUC57-H5-HA(质粒图谱如图1所示),使用NanoPhotometer®N50 超微量紫外可见光分光光度计测量质粒浓度,并保存在-20℃备用。
实施例2 mRNA转录验证试验
1.质粒pUC57-H5-HA的线性化
将实施例1中所获得的质粒用FastDigestEco31I(IIs型)限制性核酸内切酶进行酶切(购自赛默飞世尔科技,货号FD0294),反应体系如下表1所示:
表1 限制性内切酶FastDigest Eco31I酶切体系反应
组分 体积
质粒 5 μg
FastDigestEco31I酶 5 μL
10×FastDigest Green Buffer 5 μL
RNase-free ddH2O Up to 50 μL
轻柔混匀后,瞬离。37℃反应30 min,65℃反应5 min,灭活内切酶。随后用1%核酸凝胶电泳鉴定质粒,150V 20 min。结果如图2所示,目的条带约5000 bp,与预期大小一致。最后使用胶回收试剂盒回收线性化质粒(E.Z.N.A.® Gel Extraction Kit,购自OMEGABIO-TEK),使用NanoPhotometer®N50 超微量紫外可见光分光光度计测量质粒浓度,并保存在-20℃备用。
2.线性化质粒的转录
使用mRNA转录试剂盒T7 High Yield RNA Transcription Kit (N¹-Me-PseudoUTP),购自南京诺唯赞生物科技公司。按照产品说明书转录mRNA,将除T7 RNA PolymeraseMix外的组分振荡混匀,短暂离心收集于管底,冰上储存备用。依次加入以下各组分,具体参考表2,用移液器轻轻混匀各组分,并短暂离心收集,37℃孵育4 h。在反应体系中加入2 μLDNase I,37℃孵育30 min,消化转录的DNA模板。
表2 线性化质粒体外转录体系
组 分 体积
T7 RNA Polymerase Mix 2 μL
10×Transcription Buffer 2 μL
N1-Me-Pseudo UTP Solution 2 μL
ATP Solution 2 μL
CTP Solution 2 μL
GTP Solution 2 μL
线性化模板(1μg) x μL
RNase-free ddH2O Up to 20 μL
3.mRNA的纯化
用氯化锂法沉淀纯化mRNA(8M LiCl (DNase/RNase free),购自上海碧云天生物技术有限公司),具体纯化步骤如下:取30 μL DEPC水加入上述转录体系中,然后加入22.7μL 8M LiCl (DNase/RNase free)以调节LiCl至工作浓度2.5 M,置于-20℃孵育30 min。将产物转移至1.5 mL EP管,15,000g离心10 min。弃去上清,加入1 mL 70%乙醇溶液,上下颠倒数次以洗涤RNA团块,15,000g离心10 min。重复上述洗涤步骤。根据RNA团块大小,加入适量体积DEPC水,室温孵育5 min以充分溶解RNA,然后用移液器吹打数次,最后分装1-2 μL,使用NanoPhotometer®N50 超微量紫外可见光分光光度计测量质粒浓度,并保存在-20℃备用。
4.mRNA的加帽反应
将纯化后RNA使用加帽试剂盒进行加帽(Vaccinia Capping System和mRNA Cap2'-O-Methyltransferase),加帽试剂盒购自南京诺唯赞生物科技公司,按照产品说明书转录mRNA,具体步骤如下:加帽反应效率受RNA 5’端结构影响,因此通过热变性(65℃加热5min,冰上放置5 min)打开RNA 5’端的高级结构。依次加入以下各组分,具体参考表3,反应条件:37℃反应1 h。
表3 加帽反应体系
组分 用量 终浓度
10×Capping Buffer 2 μL 1 ×
Vaccinia Capping Enzyme (10 U/μL) 1 μL 0.5 U/μL
mRNA Cap 2'-O-Methyltransferase (50 U/μL) 1 μL 2.5 U/μL
GTP (10 mM) 1 μL 0.5 mM
SAM (4 mM) 1 μL 0.2 mM
Denatured RNA 10 μg 500 ng/μL
RNase-free ddH2O Up to 20 μL -
5.mRNA的纯化与大小鉴定
用氯化锂法沉淀纯化mRNA(8M LiCl (DNase/RNase free),购自上海碧云天生物技术有限公司),具体纯化步骤与本实施例步骤3相同。使用NanoPhotometer®N50 超微量紫外可见光分光光度计测量质粒浓度,并保存在-20℃备用。
将纯化后的mRNA与2×RNA上样缓冲液1:1混匀(2×RNA上样缓冲液购自NEB),将混合液先用70℃金属浴热变性10 min,再冰浴5 min,使用变性RNA核酸凝胶电泳(180 V,10min)验证产物,结果如图3所示,目的mRNA约为2000 nt,条带大小与预期相符。
实施例3 HA蛋白表达验证试验
1.mRNA的细胞转染与制样
使用RNA转染试剂盒(TransIT®-mRNA Transfection Kit,MIR2225购自Mirus-bio),将所得的mRNA转染至12孔板中的HEK-293T细胞中,每孔转染1 μg mRNA。按照转染试剂说明书具体步骤如下:前一天调节细胞浓度为2×105/mL,接种HEK-293T细胞于12孔板中。第二天待HEK-293T细胞生长至80-90%,进行转染。取100 μL MEM,加入1 μg mRNA,轻轻吹打混匀。加入2 μL mRNA Boost试剂,轻轻吹打混匀。加入2 μL TransIT-mRNA转染试剂,轻轻吹打混匀,室温孵育5 min。将生长至80-90%的HEK-293T细胞,更换新鲜的完全培养基,并将配置好的转染试剂和mRNA混合物逐滴加入。转染24 h后,弃去细胞上清液,PBS洗涤一次,使用裂解液裂解在4℃裂解2-4 h(RIPA裂解液+1%蛋白酶抑制剂,现用现配,购自北京鼎国昌盛生物技术有限公司)。加入蛋白Loading Buffer,沸水浴10 min。
2.HA蛋白表达的WB鉴定
首先配制10%的蛋白胶进行SDS-PAGE电泳,条件为恒压80 V 20 min,随后是恒压120 V 70 min。转膜,条件为恒流200 mA 80 min。转膜后用5%脱脂奶粉室温封闭2 h,PBS洗涤3次,每次5 min。用1:10,000的比例稀释H5亚型流感单克隆抗体,室温孵育1 h。PBST洗涤3次,每次10 min。最后用PBS洗涤1次,每次10 min。用以1:10,000的比例稀释辣根酶标记羊抗鼠IgG,室温孵育1 h。PBST洗涤3次,每次10 min。最后用PBS洗涤1次,每次10 min(辣根酶标记羊抗鼠IgG购自北京鼎国昌盛生物技术有限公司)。最后使用SuperKineTM增强型ECL发光液(购自亚科因(abbkine)生物技术有限公司),按照说明书进行操作ECL发光。
结果如图4所示,与对照组相比,转染了H5亚型mRNA的试验组的细胞裂解物泳道中出现了约75 kDa的明显的条带。结果表明,体外转录的mRNA可以在HEK-293T中表达。
3.HA蛋白三聚体结构的WB鉴定
取部分细胞上清和裂解后的细胞产物,加入非还原性蛋白5×Loading Buffer(购自上海碧云天生物技术有限公司)。配制10%的蛋白胶进行蛋白凝胶电泳,条件为恒压80 V20 min,随后是恒压120 V 70 min。转膜,条件为恒流200 mA 80 min。转膜后用5%脱脂奶粉室温封闭2 h,PBS洗涤3次,每次5 min。用1:10,000的比例稀释H5亚型流感单克隆抗体,室温孵育1 h。PBST洗涤3次,每次10 min。最后用PBS洗涤1次,每次10 min。用以1:10,000的比例稀释辣根酶标记羊抗鼠IgG,室温孵育1 h。PBST洗涤3次,每次10 min。最后用PBS洗涤1次,每次10 min(辣根酶标记羊抗鼠IgG购自北京鼎国昌盛生物技术有限公司)。最后使用SuperKineTM增强型ECL发光液(购自亚科因(abbkine)生物技术有限公司),按照说明书进行操作ECL发光。
结果如图5所示,与对照组相比,转染了H5亚型mRNA的试验组的细胞裂解物泳道中出现了大于180kDa明显的条带。结果表明,mRNA在HEK-293T中表达的HA蛋白以三聚体形式存在。
实施例4 mRNA-LNPs疫苗的制备
对于实施例2中所获得mRNA,分别使用脂质体包装技术进行包装,制备mRNA脂质体纳米颗粒疫苗。将脂质按阳离子脂:DSPC:胆固醇:DMG-2000=50:10:38.5:1.5 的比例溶于无水乙醇,mRNA溶于50 mM的柠檬酸缓冲液(pH4.0),随后醇相和水相按1:3的比例用微流控***进行混合包裹,获得制剂后用PBS稀释,并用中空纤维换液进行换液,将所得制剂加入蔗糖保护液后,用0.22 μm滤膜,并于4℃储存备用。并鉴定疫苗的LNP粒径、Zeta电位和包封率。采用粒度分析仪检测,结果如图6所示最终制剂的粒径为84.88 nm,分散系数(PDI)为0.070,包封率约为96%。
实施例5 mRNA-LNPs疫苗安全性试验
将18只21日龄SPF鸡随机分为3组,每组6只。通过鸡只胸部鸡肉分别注射10 μgmRNA-LNPs疫苗(低剂量组),100 μg mRNA-LNPs疫苗(高剂量组)以及PBS组免疫鸡后,观察精神状态,饮食状况,并逐日观察注射部位有无硬结、脓肿和溃烂的发生。注射疫苗第3、4和5周后,各组分别处死2只鸡,剖解观察注射部位疫苗吸收情况。
21日龄SPF鸡以10 μg mRNA-LNPs疫苗以及100 μg mRNA-LNPs疫苗通过胸部肌肉免疫后,连续观察5周,试验鸡精神、饮食与PBS免疫组相比均未见异常。注射疫苗第3、4和5周后通过对SPF鸡胸部的剖检,结果表明接种后第3、4和5周,胸部肌肉注射部位疫苗均吸收完全,代表性图片如图7所示。所有分组鸡注射部位肌肉的外观正常,未见红斑、水肿、溃疡的形成。
实施例6 mRNA-LNPs疫苗SPF鸡效力评估
1.试验分组与免疫
为验证H5亚型mRNA疫苗疫苗免疫效果,实施SPF鸡动物试验。将40只21日龄SPF鸡随机分为4组。第1组10只SPF鸡接种15 μg mRNA-LNPs疫苗,第2组10只SPF鸡接种10 μgmRNA-LNPs疫苗,第3组10只SPF鸡接种5 μg mRNA-LNPs疫苗,第4组10只SPF鸡接种PBS缓冲液作为空白对照。所有分组首次免疫3周后实施相同剂量的加强免疫。
2.免疫后抗体水平与攻毒保护率的检测
在首次免疫后第3和5周,采血进行HI试验分析特异性抗体水平,并在第5周使用禽流感病毒A/Chicken/Guangdong/D889/2015(H5N1)异源毒株以106 EID50剂量对各试验SPF鸡进行滴鼻攻毒,0.2mL/鸡。攻毒之后14天内,每日记录SPF鸡状态,最后分析疫苗的保护率。攻毒后第5天,采集各分组SPF鸡的咽喉拭子和肛拭子,检测SPF鸡排毒情况。
2.1 HI抗体水平检测
结果如图8所示,免疫后SPF鸡抗体水平与免疫剂量成正相关,并且加强免疫后SPF鸡抗体水平明显提高。15μg组、10μg组、5μg组1免后3周平均HI效价为3.3log2、1.85log2、1log2。15μg组、10μg组、5μg组1免后5周平均HI效价为9.25log2、7.45log2、5.6log2。
2.2攻毒后鸡存活率与排毒情况
鸡存活率结果如图9所示,攻毒后PBS组SPF鸡在攻毒后2天内全部死亡。15 μg组SPF鸡的存活率为100%,攻毒后共有1只鸡检测到了排毒;10 μg组SPF鸡在攻毒后共有3只鸡死亡,存活率为70%(7/10),攻毒后第5天共有3只鸡检测到了排毒;5 μg组SPF鸡在攻毒后共有5只鸡死亡,存活率为50%(5/10),攻毒后第5天共有2只鸡检测到了排毒。
实施例7 mRNA-LNPs疫苗SPF鸡细胞免疫反应检测
试验分组与免疫
为了验证H5-HA mRNA疫苗细胞免疫效果,实施SPF鸡动物试验。将16只21日龄SPF鸡随机分为两组。第1组12只SPF鸡接种15 μg mRNA-LNPs疫苗,第2组4只SPF鸡接种PBS缓冲液作为空白对照。所有分组首次免疫3周后实施相同剂量的加强免疫。
1.外周淋巴细胞分离与刺激
二免后第2周,采集2 mL鸡只外周抗凝血,使用购自北京索莱宝科技有限公司的鸡外周血淋巴细胞分离试剂盒和红细胞裂解液,分离采集血液的外周血淋巴细胞。调整细胞密度为2×106/mL接种细胞至6孔板。37 ℃ 5% CO2条件下培养2 h。加入20 μg/mL抗原刺激外周血淋巴细胞,37℃ 5% CO2条件下培养6 h收集细胞。
2.总RNA的提取与反转录
使用RNAfast200总RNA极速抽提试剂盒提取RNA(购自上海飞捷生物技术有限公司)。将提取的总RNA样品使用购自Takara的Premix型反转录试剂PrimeScriptTMRT
Master Mix(Perfect Real Time)(RR036A)转录为cDNA。反转录反应体系如表4,表中*为10 μL反应体系可最大使用500 ng的总RNA:
表4 反转录反应体系
试剂 使用量 终浓度
5X PrimeScript RT Master Mix (Perfect Real Time) 2 μL 1X
总RNA *
RNase Free ddH2O up to 10 μL
反转录反应条件如下:37℃ 15 min(反转录反应);85℃ 5 s(反转录酶的失活反应);4℃ 保存。
3.qPCR检测淋巴细胞的细胞因子
使用购自南京诺唯赞生物科技股份有限公司的ChamQ Universal SYBR qPCRMaster Mix通过qPCR检测淋巴细胞的细胞因子IFN-γ,IL-4,和IL-17的表达量。qPCR反应体系配方参考表5;qPCR反应引物序列参考表6;qPCR反应体系参考表7。
表5 qPCR反应体系
组分 体积
2 × ChamQ Universal SYBR qPCR Master Mix 10.0 μL
Primer 1 (10 μM) 0.4 μL
Primer 2 (10 μM) 0.4 μL
cDNA 1 μL
RNase Free ddH2O Up to 20.0 μL
用于实时定量PCR的引物序列参考文献Supplementation of H7N9 Virus-LikeParticle Vaccine With Recombinant Epitope Antigen Confers Full ProtectionAgainst Antigenically Divergent H7N9 Virus in Chickens, Dexin Kong et al.,Front Immunol.。
表6 qPCR反应引物序列
使用Bio-RAD CFX96TM Real-Time System荧光定量PCR仪进行qPCR反应。
表7 qPCR反应体系
表7中*为荧光信号采集。
结果如图10所示,mRNA疫苗组IFN-γ mRNA表达量的是PBS组的2.32倍,IFN-γ具有抗病毒的作用,表明mRNA疫苗免疫组能够提高鸡的抗病毒能力;IL-4是Ⅱ型辅助T细胞(Th2细胞)分泌的细胞因子,mRNA疫苗组IL-4 mRNA表达量的是PBS组的1.71倍,表明mRNA疫苗免疫组能激活鸡的Th2的免疫反应;IL-17 是T细胞诱导的炎症反应的早期启动因子,可以通过促进释放前炎性细胞因子来放大炎症反应,mRNA疫苗组IL-17 mRNA表达量的是PBS组的1.43倍,适度的炎症有利于机体对抗病毒的感染。总之,该结果表明mRNA免疫后有效激活了SPF鸡的细胞免疫反应。
实施例8 mRNA-LNPs疫苗小鼠效力评估
1. 小鼠免疫与攻毒
为验证mRNA-LNPs疫苗疫苗免疫效果,实施小鼠动物试验。将6周龄SPF BALB/c小鼠随机分为5组,每组12只小鼠。第1组免疫10 μg mRNA-LNPs疫苗,第2组免疫5 μg mRNA-LNPs疫苗,第3组免疫2 μg mRNA-LNPs疫苗,第4组免疫0.5 μg mRNA-LNPs疫苗,第5组免疫PBS作为空白对照。所有分组首次免疫3周后实施相同剂量的加强免疫。
在首次免疫后第3、5周,采血进行HI试验分析特异性抗体水平,并在第5周使用禽流感病毒A/Chicken/Guangdong/D889/2015(H5N1) 毒株以106 EID50剂量对各试验小鼠进行滴鼻攻毒。攻毒之后,每日记录小鼠体重变化,连续记录14天。并观察小鼠死亡情况,最后分析疫苗的保护率。攻毒后第3天,第3组和第5组各随机取3只小鼠,通过qPCR检测小鼠肺脏细胞因子水平。攻毒后第5天每组处死三只小鼠,检测肺脏病毒载量。
2. 免疫后抗体水平检测
免疫后第3,5周采血并分离血清。通过眼眶静脉丛采集血液,采集后在37℃孵育2-3 h,3,000 g离心10 min,收集并小量分装血清,避免反复冻融,正常血清为透亮淡黄色。然后将15 µL血清加入至45 µL RDE溶液中(日本生研受体破坏酶RDE,购自北京兰易科技有限公司),并在37℃孵育18-20 h,然后在56℃孵育30-60 min。首先用H5N1-SD57毒株制备4单位抗原(4 HAU),将25 µL预处理血清的两倍系列稀释液与等体积的4 HAU,在室温下孵育1h。然后,向每个孔中加入25 µL 1%鸡红细胞(RBC)悬浮液,并在室温下孵育30 min。HI滴度表示为完全抑制病毒血凝的最高血清稀释度的倒数。
小鼠HI效价结果如图11所示,不同分组小鼠HI效价与免疫剂量呈正相关,并且加强免疫后小鼠血清HI效价明显升高。10 μg组、5 μg组、2 μg组和0.5 μg组1免后3周平均HI效价为4log2、3.17log2、0.67log2和0.58log2。10 μg组、5 μg组、2 μg组和0.5 μg组1免后5周平均HI效价为9.5log2、8.5log2、7.92log2和6.42log2。
3. 攻毒保护率
疫苗攻毒保护率结果如图12所示,攻毒后,PBS组小鼠体重持续降低,并在攻毒后第5天全部死亡。mRNA疫苗免疫组小鼠存活率为100%,并且在观察期内,小鼠平均体重恢复至攻毒前的水平。结果表明以0.5 μg免疫两次即可100%保护致死剂量的禽流感病毒的攻毒。
4. 小鼠肺脏排毒检测
攻毒后第5天每组处死三只小鼠,检测肺脏病毒载量。摘眼球处死小鼠,将小鼠浸泡在75%酒精中10 min,打开小鼠胸腔,取出肺脏,称重后按照每0.1g加入100 μL双抗PBS。研磨后,取100 μL肺脏混悬液用PBS溶液依次作10倍稀释(10-1-10-11),进行鸡胚尿囊腔接种, 每个稀释度接种3枚,0.1mL/枚,同时设置空白对照,置37℃培养箱孵化48 h, 弃去24h内死亡胚, 收获24 h后死亡胚及48 h活胚的尿囊液, 测试尿囊液的血凝活性,并计算EID50。结果如图13所示,PBS组均检测到排毒,平均EID50为10-6.33/mL。mRNA疫苗组小鼠均未检测到排毒,表明mRNA疫苗免疫后能够有效的抑制排毒。
5. 细胞因子检测
攻毒后第3天检测小鼠肺脏细胞因子,摘眼球处死小鼠,将小鼠浸泡在75%酒精中10 min,打开小鼠胸腔,取出肺脏,称重后按照每0.1g加入100 μL双抗PBS。研磨后,随后使用RNAfast200总RNA极速抽提试剂盒提取RNA(购自上海飞捷生物技术有限公司)。使用NanoPhotometer®N50 超微量紫外可见光分光光度计测量RNA浓度,并保存在-20℃备用。
将提取的总RNA样品使用购自Takara的Premix型反转录试剂PrimeScriptTMRTMaster Mix(Perfect Real Time)(RR036A)转录为cDNA。使用购自南京诺唯赞生物科技股份有限公司的ChamQ Universal SYBR qPCR Master Mix通过qPCR检测淋巴细胞的细胞因子IFN-γ,TNF-α,IL-6,IL-4,和IL-13的表达量。qPCR反应体系配方参考表8,qPCR 的引物序列参考表9,qPCR反应程序参考表10。
表8 qPCR反应体系
组分 体积
2 × ChamQ Universal SYBR qPCR Master Mix 10.0 μL
Primer 1 (10 μM) 0.4 μL
Primer 2 (10 μM) 0.4 μL
cDNA 1 μL
RNase Free ddH2O up to 20.0 μL
表9 qPCR 的引物序列
表10 qPCR反应程序
表10中*为荧光信号采集。
qPCR检测细胞因子结果如图14所示,mRNA疫苗组小鼠肺脏的IFN-γ平均水平是PBS组的1.56倍,IFN-γ具有抗病毒的作用,表明mRNA疫苗免疫组能够提高小鼠的抗病毒能力。mRNA疫苗免疫略微提高了与炎症相关细胞因子TNF-α的水平,适度的炎症有利于机体对抗病毒的感染。IL-6主要免疫相关功能包括刺激B细胞增殖,分泌抗体,刺激T细胞增殖及CTL活化。mRNA疫苗组小鼠肺脏的IL-6平均水平是PBS组的2.29倍,表明mRNA疫苗免疫组能够有效的激活了小鼠的免疫反应。而与Th2型免疫相关的细胞因子IL-4和IL-13,mRNA疫苗组与PBS组相比细胞因子IL-4和IL-13的平均水平大致相同,表明mRNA疫苗免疫小鼠主要引起偏向Th1型的免疫反应。
上述所有的动物试验结果表明:本发明提供的H5N1亚型mRNA疫苗可诱导交叉保护抵抗异源H5N1亚型高致病性禽流感病毒的攻击。本发明制备的H5N1亚型mRNA疫苗为防控H5N1亚型禽流感提供新的疫苗选择。
对比例1
参考CN202310509346.3,主题为一种禽流感病毒 mRNA 疫苗及其制备方法和应用,其是本申请人的在先申请,其同样为mRNA疫苗,该mRNA疫苗的制备策略为:
首先将禽流感2.3.2.1c分支毒株的HA蛋白信号肽编码序列替换为强信号肽编码序列,去掉HA蛋白跨膜区,并添加3×GGGGS的柔性Linker,以实现HA蛋白的分泌表达;然后将序列进行禽源密码子优化后,序列前端添加T7启动子、5’端非翻译区(5’UTR)和Kozak序列,序列后端添加3’端非翻译区(3’UTR)和多聚腺苷酸尾(poly A),构成mRNA疫苗候选序列;再进一步预测各候选序列的二级结构,挑选出2条二级结构中5’UTR处于相对游离状态的mRNA序列,将对应的DNA序列分别连接在质粒载体上构成重组质粒,并将重组质粒进行线性化、转录、加帽,并用LNP技术包装,制成禽流感mRNA疫苗。
该疫苗的免疫方式为:
将15只6周龄SPF BALB/c小鼠随机分成3组,每组5只小鼠。第1-2组小鼠经小鼠左和右后腿内侧肌肉分别注射免疫不同剂量的pUC-H5N1-HA-3 mRNA疫苗,免疫剂量分别为10+10 μg和2+2 μg,第3组小鼠经小鼠左和右后腿肌肉分别注射与mRNA疫苗组等体积的PBS缓冲液作为空白对照。首次免疫2周后进行加强免疫。首次免疫后10天以及加强免疫后10通过小鼠眼眶静脉丛采血,采集后在4℃孵育过夜,3000×g离心10分钟,收集并小量分装血清,-20℃保存。将采集血清,加入3倍体积的受体破坏酶(RDE)(购自北京兰易科技有限公司)(1:3稀释),37℃孵育18 h,56℃灭活30 min。
在微量反应板的第1孔至11孔中分别加入25 μl PBS,第12孔加入50 μl PBS;吸取25 μl的血清加入到第一孔,混匀,依次倍比稀释至第10孔,弃25 μl混合液;然后在第1至11孔均加入4 HAU抗原液25 μl,室温放置1h;每孔均加入25 μl 1%鸡红细胞悬液或每孔均加入50 μl 0.5%鸡红细胞悬液,振荡混匀,室温放置1h(40 min-1h)观察结果,对照红细胞将呈纽扣状沉于孔底。以完全抑制4个HAU抗原的血清最高稀释倍数为HI滴度;只有阴阳性对照组均成立的情况下,实验结果才有效。
其结果为:实验结果表明,初免10天,所有实验组均未检测到抗体;加强免疫后10天,10 μg组均检测到抗体HI效价,HI效价分别为5log2,5log2,4log2,8log2,3log2;2 μg组有两只小鼠检测到抗体HI效价,HI效价分别为5log2,4log2。
结果分析:
1.相比现有技术中的mRNA疫苗,本发明的mRNA疫苗能够在更低剂量的时候表现出更高的平均HI效价。本发明的mRNA疫苗免疫剂量低、免疫0.5μg平均HI效价(6.42log2)就可以超过对比例1中免疫10 μg组的平均HI效价(4.5log2)。
2.本发明的mRNA疫苗能够有效激活了小鼠和鸡的细胞免疫反应。
3.通过和对比例1的对比可见,本发明提供的H5亚型mRNA-LNPs在设计上的特点在于保留HA基因跨膜区,HA蛋白以三聚体形式展示在细胞膜上,这种构象更接近病毒天然的HA蛋白,诱导产生了更高水平的特异性抗体。

Claims (10)

1.一种mRNA,其特征在于,核苷酸序列如SEQ ID NO.1所示。
2.一种制备如权利要求1所述的mRNA的方法,其特征在于,包括如下步骤:
步骤1:构建含SEQ ID NO.2所示的核苷酸序列的载体,得到质粒;
步骤2:将质粒线性化,得到收线性化质粒;
步骤3:将收线性化质粒进行转录、纯化、加帽得到mRNA。
3.采用如权利要求1所述的mRNA制备疫苗的用途;所述疫苗为禽类疫苗。
4.根据权利要求3所述的用途,其特征在于,所述禽类为鸡、鸭、鹅、雁、鹌鹑、鸽子、火鸡。
5.根据权利要求3所述的用途,其特征在于,所述疫苗为禽流感多价疫苗。
6.根据权利要求5所述的用途,其特征在于,所述疫苗中还包括与一种或多种禽类传染病疫苗联合应用;所述禽类传染病疫苗为新城疫疫苗、传染性支气管炎疫苗、传染性喉气管炎疫苗、禽腺病毒感染疫苗、马利克病疫苗、传染性法氏囊病疫苗中的一种或多种。
7.一种疫苗,其特征在于,含有如权利要求1所述的mRNA。
8.根据权利要求7所述的疫苗,其特征在于,包括脂质体和包裹在脂质体内的mRNA;所述脂质体的平均粒径为50-150 nm。
9.根据权利要求8所述的疫苗,其特征在于,所述脂质体的平均粒径为70-100 nm。
10.根据权利要求8所述的疫苗,其特征在于,所述脂质体包括阳离子脂、DSPC、胆固醇、PEG200-DMG,阳离子脂、DSPC、胆固醇、PEG200-DMG的摩尔比为50:10:38.5:1.5。
CN202410011697.6A 2024-01-04 2024-01-04 一种mRNA、制备方法、用途和疫苗 Active CN117511969B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410011697.6A CN117511969B (zh) 2024-01-04 2024-01-04 一种mRNA、制备方法、用途和疫苗

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410011697.6A CN117511969B (zh) 2024-01-04 2024-01-04 一种mRNA、制备方法、用途和疫苗

Publications (2)

Publication Number Publication Date
CN117511969A true CN117511969A (zh) 2024-02-06
CN117511969B CN117511969B (zh) 2024-03-19

Family

ID=89753472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410011697.6A Active CN117511969B (zh) 2024-01-04 2024-01-04 一种mRNA、制备方法、用途和疫苗

Country Status (1)

Country Link
CN (1) CN117511969B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108126191A (zh) * 2016-12-01 2018-06-08 普莱柯生物工程股份有限公司 一种疫苗组合物及其制备方法和应用
CN108653725A (zh) * 2017-04-01 2018-10-16 普莱柯生物工程股份有限公司 一种用于预防禽减蛋综合征的疫苗组合物、及其制备方法和应用
US20200163878A1 (en) * 2016-10-26 2020-05-28 Curevac Ag Lipid nanoparticle mrna vaccines
US20230043128A1 (en) * 2021-06-18 2023-02-09 Sanofi Multivalent influenza vaccines
WO2023091766A2 (en) * 2021-11-19 2023-05-25 RNAimmune, Inc. Compositions and methods of ribonucleic acid respiratory syncytial virus (rsv) vaccines
CN116217678A (zh) * 2023-02-08 2023-06-06 华南农业大学 一种抗h5n1亚型禽流感的病毒样颗粒疫苗及其制备方法和应用
CN117069860A (zh) * 2023-07-06 2023-11-17 华南农业大学 一种分子佐剂、嵌合型禽流感病毒样颗粒、疫苗及其制备与应用
CN117244048A (zh) * 2023-05-08 2023-12-19 华南农业大学 一种禽流感病毒mRNA疫苗及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200163878A1 (en) * 2016-10-26 2020-05-28 Curevac Ag Lipid nanoparticle mrna vaccines
CN108126191A (zh) * 2016-12-01 2018-06-08 普莱柯生物工程股份有限公司 一种疫苗组合物及其制备方法和应用
CN108653725A (zh) * 2017-04-01 2018-10-16 普莱柯生物工程股份有限公司 一种用于预防禽减蛋综合征的疫苗组合物、及其制备方法和应用
US20230043128A1 (en) * 2021-06-18 2023-02-09 Sanofi Multivalent influenza vaccines
WO2023091766A2 (en) * 2021-11-19 2023-05-25 RNAimmune, Inc. Compositions and methods of ribonucleic acid respiratory syncytial virus (rsv) vaccines
CN116217678A (zh) * 2023-02-08 2023-06-06 华南农业大学 一种抗h5n1亚型禽流感的病毒样颗粒疫苗及其制备方法和应用
CN117244048A (zh) * 2023-05-08 2023-12-19 华南农业大学 一种禽流感病毒mRNA疫苗及其制备方法和应用
CN117069860A (zh) * 2023-07-06 2023-11-17 华南农业大学 一种分子佐剂、嵌合型禽流感病毒样颗粒、疫苗及其制备与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEOW, B.L.等: "Influenza A virus (A/chicken/Sabah/6123/2018(H5N1)) segment 4 hemagglutinin (HA) gene, complete cds,GenBank: OM070364.2", GENBANK, 7 June 2022 (2022-06-07) *
李淑梅等: "禽传染性支气管炎病毒脂质体核酸疫苗的制备", 中国生物制品学杂志, vol. 21, no. 3, 31 March 2008 (2008-03-31), pages 212 - 215 *

Also Published As

Publication number Publication date
CN117511969B (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
JP6375329B2 (ja) ベロ細胞において増強された複製を有する高力価の組換えインフルエンザウイルス
Crawford et al. Baculovirus-derived hemagglutinin vaccines protect against lethal influenza infections by avian H5 and H7 subtypes
TWI485247B (zh) 產生流感病毒之方法
CA2566355C (en) Influenza virus vaccine composition and methods of use
EP3851120A1 (en) Immunogen for broad-spectrum influenza vaccine and application thereof
US10793834B2 (en) Live-attenuated virus and methods of production and use
Kilany et al. Protective efficacy of H5 inactivated vaccines in meat turkey poults after challenge with Egyptian variant highly pathogenic avian influenza H5N1 virus
US9505806B2 (en) DNA vaccine, method of inducing the immune response, method of immunisation, antibodies specifically recognising the H5 haemagglutinin of an influenza virus and use of the DNA vaccine
CN105821010B (zh) 一种表达鸡ibdv抗体的重组ndv及其在制备双价疫苗中的应用
US11607448B2 (en) Whole avian-origin reverse genetic system and its use in producing H7N9 subtype avian influenza vaccine
Zheng et al. A single immunization with HA DNA vaccine by electroporation induces early protection against H5N1 avian influenza virus challenge in mice
US20140199337A1 (en) Influenza h5 vaccines
Lekcharoensuk et al. Cloned cDNA of A/swine/Iowa/15/1930 internal genes as a candidate backbone for reverse genetics vaccine against influenza A viruses
CN107287168B (zh) 一种新城疫病毒拯救方法及其应用
CN104804099B (zh) 一种重组h9n2亚型禽流感加强型多表位疫苗
CN117511969B (zh) 一种mRNA、制备方法、用途和疫苗
US20120107354A1 (en) Viral vaccine and process for preparing the same
KR20120131725A (ko) 고병원성 조류인플루엔자 a h5n1 바이러스 유사입자 및 이를 이용한 가금용 백신
Nomura et al. An H9N2 influenza virus vaccine prepared from a non-pathogenic isolate from a migratory duck confers protective immunity in mice against challenge with an H9N2 virus isolated from a girl in Hong Kong
Zhang et al. Immunoadjuvant effects of hemagglutinating virus of Japan envelope (HVJ-E) on the inactivated H9 subtype avian influenza virus vaccine
RU2736788C1 (ru) Штамм A/chiken/Kostroma/3175/17 H5N2 вируса гриппа птиц подтипа H5N2 Infuenza A virus рода Alphainfluenzavirus для контроля антигенной и иммуногенной активности вакцин против гриппа птиц и для изготовления антигенсодержащих диагностикумов
CN110917343B (zh) 一种新城疫与传染性法氏囊病二联亚单位疫苗
CN117815377A (zh) mRNA的用途
CN110713987B (zh) 一种重组基因vii型新城疫病毒毒株及其疫苗组合物、制备方法及应用
CN111057683A (zh) 一种鸡胚接种用病毒稀释液及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant