CN117203355A - 取向性电磁钢板的制造方法 - Google Patents

取向性电磁钢板的制造方法 Download PDF

Info

Publication number
CN117203355A
CN117203355A CN202280024769.XA CN202280024769A CN117203355A CN 117203355 A CN117203355 A CN 117203355A CN 202280024769 A CN202280024769 A CN 202280024769A CN 117203355 A CN117203355 A CN 117203355A
Authority
CN
China
Prior art keywords
mass
annealing
steel sheet
sheet
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280024769.XA
Other languages
English (en)
Inventor
谷良祐
今村猛
高城重宏
山口广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of CN117203355A publication Critical patent/CN117203355A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

本发明提出使用不含有抑制剂形成成分的钢原材来制造低铁损、高磁通密度的取向性电磁钢板的方法。将以质量%计含有C:0.002~0.10%、Si:2.0~8.0%、Mn:0.005~1.0%、Al:小于0.010%、N:小于0.0050%、Se:小于0.0070%和S:小于0.0050%的钢原材加热至1150℃以上且1250℃以下的温度后,进行热轧,进行冷轧而制成最终板厚的冷轧板,对该冷轧板实施兼作一次再结晶退火的脱碳退火后,在钢板表面涂布退火分离剂,实施最终退火后,被覆绝缘覆膜,此时,在上述脱碳退火的加热过程中的500~700℃之间以100~1000℃/秒快速加热,并且在上述最终退火的加热过程的800~900℃区间以0.5~4.0℃/小时的升温速度缓慢加热至少10小时。

Description

取向性电磁钢板的制造方法
技术领域
本发明涉及低铁损且高磁通密度的取向性电磁钢板的制造方法。
背景技术
取向性电磁钢板是作为变压器、发电机等的铁芯材料使用的软磁性材料,其特征在于,具有作为铁的易磁化轴的<001>取向在钢板的轧制方向上高度一致的结晶组织。这样的织构如下形成:在取向性电磁钢板的制造工序的最终退火中发生二次再结晶,使被称为高斯(Goss)取向的{110}<001>取向的晶粒优先地巨大生长。
为了使上述二次再结晶发生,一般利用使用被称为抑制剂的微细析出物的技术。例如,专利文献1中公开了使用MnS、MnSe作为抑制剂的方法,专利文献2中公开了使用AlN、MnS作为抑制剂的方法,工业上正在实用化。使用这些抑制剂的方法需要1300℃以上的极高温的钢坯加热,但作为使二次再结晶稳定地显现的方法是非常有效的方法。
另外,作为强化这些抑制剂的作用的技术,专利文献3中公开了添加Pb、Sb、Nb、Te的方法,专利文献4中公开了添加Zr、Ti、B、Nb、Ta、V、Cr和Mo的方法。此外,专利文献5中还提出了如下方法:使钢原材含有0.010~0.060%的酸可溶性Al(sol.Al),将钢坯加热温度抑制为低温,在脱碳退火工序中在适当的气氛下实施氮化处理,由此,在最终退火中的二次再结晶时使(Al,Si)N析出而作为抑制剂使用。
另一方面,专利文献6等中公开了使用不含有抑制剂形成成分的钢原材通过二次再结晶使高斯取向晶粒发达的技术。该技术为通过尽可能地排除抑制剂形成成分之类的杂质、使一次再结晶时的晶界所具有的晶界能量的晶界取向差角依赖性显著化而即使在不使用抑制剂的情况下也使具有高斯取向的晶粒发生二次再结晶的技术,其效果也被称为织构抑制。该方法不需要对抑制剂形成成分进行纯化的处理,因而不需要使最终退火高温化,进而不需要抑制剂的微细分散,因此也不需要为了使抑制剂形成成分固溶而不可欠缺的高温钢坯加热等,在成本、制造方面的优点大。
另外,为了提高变压器的特性,需要降低空载损耗(能量损耗),成为铁芯的原材钢板为低铁损是不可欠缺的。作为降低取向性电磁钢板的铁损的方法,已知增加Si含量、降低板厚、提高晶体取向的取向性、对钢板赋予张力、钢板表面的平滑化、二次再结晶组织的细粒化等是有效的。
上述方法中,作为使二次再结晶晶粒细粒化的技术,提出了通过在脱碳退火时进行快速加热来改善一次再结晶织构的方法。例如,专利文献7中公开了如下技术:将热轧板中的AlN形式的N量限制为25质量ppm以下,并且在脱碳退火时以80℃/秒以上的加热速度加热至700℃以上,由此得到低铁损的取向性电磁钢板。另外,专利文献8中公开了如下技术:在对轧制至最终板厚后的冷轧板进行脱碳退火时,在PH2O/PH2为0.2以下的非氧化性气氛中,以100℃/秒以上快速加热至700℃以上的温度,由此得到低铁损的取向性电磁钢板。
现有技术文献
专利文献
专利文献1:日本特公昭51-013469号公报
专利文献2:日本特公昭40-015644号公报
专利文献3:日本特公昭38-008214号公报
专利文献4:日本特开昭52-024116号公报
专利文献5:日本特开平03-002324号公报
专利文献6:日本特开2000-129356号公报
专利文献7:日本特开平10-130729号公报
专利文献8:日本特开平07-062436号公报
发明内容
发明所要解决的问题
但是,在上述专利文献7和8公开的技术中,虽然通过在脱碳退火时进行快速加热使得铁损降低,但存在磁通密度也降低的问题。因此,本发明的目的在于,提出在使用不含有抑制剂形成成分的钢原材的情况下防止脱碳退火时的快速加热所致的磁通密度的降低从而制造低铁损、高磁通密度的取向性电磁钢板的方法。
用于解决问题的方法
发明人对磁通密度因上述脱碳退火时的快速加热而降低的原因进行了深入研究。其结果发现,在提高脱碳退火的加热过程中的升温速度的情况下,通过使在最终退火中发生二次再结晶的温度范围内缓慢加热、仅使高斯取向的晶粒进行晶粒生长,能够在不导致磁通密度降低的情况下实现低铁损化,从而开发出本发明。
基于上述见解的本发明提出一种取向性电磁钢板的制造方法,其中,将钢原材加热至1150℃以上且1250℃以下的温度后,进行热轧而制成热轧板,对该热轧板实施热轧板退火后,进行一次冷轧或夹有中间退火的两次以上冷轧而制成最终板厚的冷轧板,对该冷轧板实施兼作一次再结晶退火的脱碳退火后,在钢板表面涂布退火分离剂,实施最终退火后,被覆绝缘覆膜,此时,在上述脱碳退火的加热过程中的500~700℃之间以100~1000℃/秒快速加热,并且在上述最终退火的加热过程的800~900℃区间以0.5~4.0℃/小时的升温速度缓慢加热至少10小时,上述钢原材具有含有C:0.002~0.10质量%、Si:2.0~8.0质量%、Mn:0.005~1.0质量%、并且含有Al:小于0.010质量%、N:小于0.0050质量%、Se:小于0.0070质量%和S:小于0.0050质量%、余量由Fe和不可避免的杂质构成的成分组成。
本发明的取向性电磁钢板的制造方法中使用的上述钢原材的特征在于,在上述成分组成的基础上还含有Ni:0.01~1.50质量%、Cr:0.01~0.50质量%、Cu:0.005~1.000质量%、P:0.005~0.500质量%、Sb:0.005~0.500质量%、Sn:0.005~0.500质量%、Bi:0.005~0.500质量%、Mo:0.005~0.500质量%、Nb:0.0010~0.0100质量%、Ta:0.001~0.010质量%和Ti:0.001~0.0100质量%中的至少一种。
另外,本发明的取向性电磁钢板的制造方法的特征在于,在上述冷轧后的任一工序中在钢板表面沿与轧制方向交叉的方向形成槽而实施磁畴细化处理。
另外,本发明的取向性电磁钢板的制造方法的特征在于,对被覆有上述绝缘覆膜的钢板表面沿与轧制方向交叉的方向照射电子束或激光束而实施磁畴细化处理。
发明效果
根据本发明,优化最终退火中进行二次再结晶的温度范围的升温速度,抑制偏离高斯取向的晶粒的二次再结晶,因此,即使在脱碳退火时进行快速加热的情况下,也能够在不导致磁通密度降低的情况下制造低铁损的取向性电磁钢板。
具体实施方式
首先,对开发出本发明的实验进行说明。
通过连铸法制造由含有C:0.009质量%、Si:2.92质量%、Mn:0.081质量%、并且含有Al:0.001质量%、N:0.0001质量%、Se:0.0005质量%和S:0.0040质量%、余量为Fe和不可避免的杂质的成分组成构成的钢坯。接着,将该钢坯加热至1200℃的温度后,进行热轧而精加工成板厚为2.4mm的热轧板。接着,对上述热轧板实施1100℃×30秒的热轧板退火后,进行第一次冷轧而制成1.7mm的中间板厚,实施1020℃×100秒的中间退火后,利用可逆式轧机进行第二次冷轧而精加工成最终板厚为0.23mm的冷轧板。接着,在50体积%H2-50体积%N2的湿润气氛下对上述冷轧板实施860℃×60秒的兼作一次再结晶退火的脱碳退火。此时,500~700℃之间的升温速度设为30℃/秒和200℃/秒这两个水准。接着,将以MgO为主体的退火分离剂涂布在钢板表面,对卷成卷材的状态的钢板实施如下最终退火:在N2气氛下以25℃/小时升温至850℃,在上述温度下保持20小时后,以25℃/小时升温至900℃,进而,在H2:50体积%-N2:50体积%的混合气氛下以25℃/小时升温至1180℃,在H2气氛下在上述温度下保持5小时,从而进行纯化处理。
从这样得到的最终退火后的钢板上裁取试验片,通过JIS C 2550中记载的方法测定铁损W17/50(以50Hz的频率进行1.7T的励磁时的铁损)和磁通密度B8(磁化力800A/m时的磁通密度)。需要说明的是,试验片从制品卷材的两端部和中央部这三处裁取,将最差(高)的铁损值和最低(差)的磁通密度的值作为该卷材的代表值。将上述测定的结果示于下述表1中。可知:在脱碳退火加热过程的500~700℃之间的升温速度为200℃/秒的情况下,与升温速度为30℃/秒时相比,铁损值具有改善倾向,但磁通密度反而具有降低倾向。
[表1]
因此,进行将脱碳退火的加热过程中的500~700℃之间的升温速度设为200℃/秒(恒定)而使最终退火的加热过程中的800~900℃之间的升温速度如表2所示进行各种变化的实验,与上述同样地测定铁损W17/50和磁通密度B8。将上述测定的结果示于下述表2中。由该结果可知,最终退火的升温速度存在能够兼顾低铁损和高磁通密度的适当范围、具体而言为0.5~4.0℃/小时。
[表2]
如上所述,虽然关于通过优化最终退火的800~900℃之间的升温速度能够在不导致磁通密度降低的情况下享有脱碳退火的快速加热的铁损降低效果的理由尚未得到充分地阐明,但发明人认为如下。
提高脱碳退火的升温速度时,一次再结晶组织中的高斯取向和其附近的再结晶晶粒增加。由此,增加了的高斯取向和其附近的一次再结晶晶粒在最终退火中进行二次再结晶,成为细粒化了的二次再结晶组织。在此,如本发明提出的那样,在800~900℃的温度范围内以0.5~4.0℃/小时进行缓慢加热的情况下,高斯取向晶粒相对于其附近晶粒的晶粒生长性占优势,二次再结晶组织的取向锐度变高,磁通密度B8变高。与此相对,认为:升温速度小于0.5℃/小时时,高斯取向晶粒和其附近晶粒的晶粒生长性的差异小,二次再结晶组织的取向锐度降低,另一方面,升温速度超过4.0℃/小时时,高斯取向和其附近晶粒的生长速度均大幅增加,二次再结晶组织的取向锐度仍然降低。
本发明是基于上述新见解而开发的。
接着,对用于制造本发明的取向性电磁钢板的钢原材(钢坯)的成分组成进行说明。
C:0.002~0.10质量%
C小于0.002质量%时,有可能失去由C带来的晶界强化效果,钢坯产生裂纹,在制造时造成阻碍,或者产生表面缺陷。另一方面,超过0.10质量%时,难以将C减少至在脱碳退火时不发生磁时效的0.005质量%以下。因此,C设定为0.002~0.10质量%的范围。优选为0.010~0.080质量%的范围。
Si:2.0~8.0质量%
Si是提高钢的电阻率而降低铁损的必须成分,小于2.0质量%时,上述效果不充分,另一方面,超过8.0质量%时,加工性降低,变得难以轧制。因此,Si设定为2.0~8.0质量%的范围。优选为2.5~4.5质量%的范围。
Mn:0.005~1.0质量%
Mn改善钢的热加工性,需要含有0.005质量%以上。另一方面,超过1.0质量%时,制品板的磁通密度降低。因此,Mn设定为0.005~1.0质量%的范围。优选为0.02~0.20质量%的范围。
本发明是使用不含有抑制剂形成成分的钢坯使二次再结晶发生而制造取向性电磁钢板的方法,因此,钢原材中的作为抑制剂形成成分的Al、N、S和Se优选尽可能地减少,具体而言,需要Al:小于0.010质量%、N:小于0.0050质量%、Se:小于0.0070质量%和S:小于0.0050质量%。优选Al:0.007质量%以下、N:0.0040质量%以下、Se:0.0050质量%以下和S:0.0040质量%以下。
本发明中使用的钢原材的上述成分以外的余量为Fe和不可避免的杂质。但是,以改善铁损特性为目的,可以在上述成分的基础上进一步适当含有选自Ni:0.01~1.50质量%、Cr:0.01~0.50质量%、Cu:0.005~1.000质量%、P:0.005~0.500质量%、Sb:0.005~0.500质量%、Sn:0.005~0.500质量%、Bi:0.005~0.500质量%、Mo:0.005~0.500质量%、Nb:0.0010~0.0100质量%、Ta:0.001~0.010质量%和Ti:0.001~0.0100质量%中的一种或两种以上。
接着,对本发明的取向性电磁钢板的制造方法进行说明。
本发明的取向性电磁钢板的制造方法包含如下所述的一系列工序:将具有上述说明的成分组成的钢原材(钢坯)加热至规定温度,进行热轧而制成热轧板,对该热轧板实施热轧板退火后,进行一次冷轧或夹有中间退火的两次以上冷轧而制成最终板厚的冷轧板,对该冷轧板实施兼作一次再结晶退火的脱碳退火,在钢板表面涂布退火分离剂后,实施最终退火,被覆绝缘覆膜。以下,具体进行说明。
上述钢原材(钢坯)优选将通过通常公知的精炼工艺调整成上述成分组成的钢熔炼并通过连铸法或铸锭-开坯轧制法来制造。需要说明的是,也可以通过直接铸造法制造厚度为100mm以下的薄钢坯。
接着,将上述钢坯加热至1150℃以上且1250℃以下的温度后,供于热轧。上述钢坯加热温度低于1150℃时,有可能热轧中的负荷增大、或者不能确保规定的热轧温度。另一方面,如果加热超过1250℃,则导致热能成本的增大。优选为1180~1235℃的范围。需要说明的是,关于热轧条件,在作为取向性电磁钢板的热轧条件的通常条件下进行即可,没有特别限制。另外,薄钢坯的情况下,也可以省略热轧。
接着,为了改善磁特性,对上述热轧后的热轧板实施热轧板退火。该热轧板退火在通常公知的条件下进行即可,没有特别限制。
接着,上述热轧后的热轧板进行酸洗而脱氧化皮后,通过通常公知的一次冷轧或夹有中间退火的两次以上冷轧制成最终板厚(制品板厚)的冷轧板。
接着,对上述制成最终板厚的冷轧板实施兼作一次再结晶退火的脱碳退火,优选在得到一次再结晶组织的同时将钢板中的C降低至不发生磁时效的0.0050质量%以下。此时,重要的是,为了改善一次再结晶组织、使二次再结晶晶粒细粒化,将上述脱碳退火的加热过程中的500℃到700℃之间的升温速度设为100~1000℃/秒来进行快速加热。这是因为,上述升温速度小于100℃/秒时,一次再结晶组织中所占的成为二次再结晶的核的高斯取向晶粒的数量变少,另一方面,如果超过1000℃/秒,则高斯取向晶粒以外的晶粒的数量增加,任一种情况下磁特性都降低。优选为150~700℃/秒的范围。需要说明的是,关于脱碳退火的均热条件,从促进脱碳的观点出发,优选在湿润气氛下在800~900℃×60~300秒的范围内进行。
接着,对于上述脱碳退火后的钢板,在钢板表面涂布退火分离剂并干燥后,卷取成卷材,在卷材状态下实施最终退火,进行二次再结晶。此时,在上述最终退火中,为了使高斯取向的晶粒优先地晶粒生长、抑制偏离高斯取向的二次再结晶晶粒的增加,在加热过程中的800~900℃的范围内以0.5~4.0℃/小时进行缓慢加热很重要。这是因为,上述升温速度小于0.5℃/小时时,二次再结晶组织中的高斯取向的取向锐度降低,另一方面,超过4.0℃/小时时,高斯取向和其附近晶粒的生长速度过度增加,二次再结晶晶粒向高斯取向的聚集度显著降低。优选为0.7~2.0℃/小时的范围。需要说明的是,为了得到上述效果,如上所述以0.5~4.0℃/小时进行缓慢加热的时间需要确保为10小时以上。优选为20小时以上。另外,关于进行缓慢加热的区间,如果能够缓慢加热10小时以上,也可以设定为800~900℃之间的一部分。另外,该区间的气氛优选设定为氮气、氩气或者氮气与氩气的混合气氛。
上述缓慢加热过程之后,为了排除钢板中的杂质,实施升温至1150~1250℃的温度后在该温度下保持5~20小时的纯化处理。由此,能够将钢板中的杂质降低至不可避免的杂质水平。纯化处理时的气氛优选氢气,但根据需要也可以使用氮气、氩气。另外,直至达到纯化处理温度为止的升温速度优选设定为5℃/小时以上。另外,此时的气氛可以设定为氮气、氩气、或者氮气、氩气与氢气的混合气氛。需要说明的是,在钢原材中的Al、N、S和Se、其它不可避免的杂质充分地减少的情况下,上述纯化处理也可以省略。
接着,对于上述最终退火后的钢板,从钢板表面除去未反应的退火分离剂,实施平坦化退火后,涂布绝缘覆膜,制成制品板。从降低铁损的观点出发,上述绝缘覆膜优选设定为张力赋予型的绝缘覆膜。
进而,从进一步降低铁损的观点出发,本发明的无取向性电磁钢板优选实施磁畴细化处理。作为磁畴细化的方法,可以采用以往公知的方法。例如,可以在冷轧之后的任一工序中采用在钢板表面通过蚀刻等沿与轧制方向交叉的方向连续地或间歇地并且沿轧制方向隔开规定间隔地形成槽的方法、对被覆绝缘覆膜后的钢板表面沿与轧制方向交叉的方向连续地或间歇地并且沿轧制方向隔开规定间隔地照射电子束、激光束的方法等。
实施例1
通过连铸法制造由含有C:0.02质量%、Si:3.40质量%、Mn:0.70质量%、并且含有Al:0.007质量%、N:0.0001质量%、Se:0.0022质量%和S:0.0042质量%、余量为Fe和不可避免的杂质的成分组成构成的钢坯。接着,将该钢坯加热至1200℃的温度后,进行热轧而精加工成板厚为2.4mm的热轧板。接着,对上述热轧板实施1100℃×30秒的热轧板退火后,进行第一次冷轧而制成1.7mm的中间板厚,实施1020℃×100秒的中间退火后,利用可逆式轧机进行第二次冷轧而精加工成最终板厚为0.23mm的冷轧板。接着,在50体积%H2-50体积%N2的湿润气氛下对上述冷轧板实施860℃×60秒的兼作一次再结晶退火的脱碳退火。此时,加热过程的500~700℃之间的升温速度设为600℃/秒。接着,将以MgO为主体的退火分离剂涂布在钢板表面,卷取成卷材后,对该钢板卷材实施最终退火。此时,使最终退火的加热过程中的800~900℃之间的升温条件、退火气氛如表3那样变化。
从这样得到的最终退火后的钢板上裁取试验片,通过JIS C 2550中记载的方法测定铁损W17/50(以50Hz的频率进行1.7T的励磁时的铁损)和磁通密度B8(磁化力800A/m时的磁通密度)。需要说明的是,试验片从制品卷材的两端部和中央部这三处裁取,将最高(差)的铁损值和最低(差)的磁通密度的值作为该卷材的代表值。将上述测定的结果示于下述表3中。由该结果可知,在最终退火的800~900℃区间的升温速度为0.5~4.0℃/小时的范围内,可以得到低铁损且高磁通密度的钢板。
[表3]
实施例2
通过连铸法制造具有表4所示的各种成分组成的钢坯。接着,将该钢坯加热至1200℃的温度后,进行热轧而精加工成板厚为2.4mm的热轧板。接着,对上述热轧板实施1100℃×30秒的热轧板退火后,通过第一次冷轧精加工成最终板厚为0.23mm的冷轧板。接着,在50体积%H2-50体积%N2的湿润气氛下对上述冷轧板实施860℃×60秒的兼作一次再结晶退火的脱碳退火。此时,加热过程的500~700℃之间的升温速度设为350℃/秒。接着,将以MgO为主体的退火分离剂涂布在钢板表面,对卷成卷材的状态的钢板实施最终退火。此时,关于800~900℃的缓慢加热区间的加热,在N2气氛下在820~860℃之间以1.0℃/小时的升温速度缓慢加热40小时,除此以外的温度下的升温速度设为15℃/小时。然后,实施在H2:75体积%-N2:25体积%的混合气氛下以25℃/小时升温至1180℃、在H2气氛下在该温度下保持30小时的纯化处理。
从这样得到的最终退火后的钢板上裁取试验片,通过JIS C 2550中记载的方法测定铁损W17/50(以50Hz的频率进行1.7T的励磁时的铁损)和磁通密度B8(磁化力800A/m时的磁通密度)。需要说明的是,试验片从制品卷材的两端部和中央部这三处裁取,将最高(差)的铁损值和最低(差)的磁通密度的值作为该卷材的代表值。将上述测定的结果一并记于表4中。由该结果可知,通过使用满足本发明的钢原材并且应用适合于本发明的条件,能够稳定地得到低铁损且高磁通密度的取向性电磁钢板。

Claims (4)

1.一种取向性电磁钢板的制造方法,其中,将钢原材加热至1150℃以上且1250℃以下的温度后,进行热轧而制成热轧板,对该热轧板实施热轧板退火后,进行一次冷轧或夹有中间退火的两次以上冷轧而制成最终板厚的冷轧板,对该冷轧板实施兼作一次再结晶退火的脱碳退火后,在钢板表面涂布退火分离剂,实施最终退火后,被覆绝缘覆膜,此时,
在所述脱碳退火的加热过程中的500~700℃之间以100~1000℃/秒快速加热,并且在所述最终退火的加热过程的800~900℃区间以0.5~4.0℃/小时的升温速度缓慢加热至少10小时,
所述钢原材具有含有C:0.002~0.10质量%、Si:2.0~8.0质量%、Mn:0.005~1.0质量%、并且含有Al:小于0.010质量%、N:小于0.0050质量%、Se:小于0.0070质量%和S:小于0.0050质量%、余量由Fe和不可避免的杂质构成的成分组成。
2.根据权利要求1所述的取向性电磁钢板的制造方法,其特征在于,所述钢原材在所述成分组成的基础上还含有Ni:0.01~1.50质量%、Cr:0.01~0.50质量%、Cu:0.005~1.000质量%、P:0.005~0.500质量%、Sb:0.005~0.500质量%、Sn:0.005~0.500质量%、Bi:0.005~0.500质量%、Mo:0.005~0.500质量%、Nb:0.0010~0.0100质量%、Ta:0.001~0.010质量%和Ti:0.001~0.0100质量%中的至少一种。
3.根据权利要求1或2所述的取向性电磁钢板的制造方法,其特征在于,在所述冷轧后的任一工序中在钢板表面沿与轧制方向交叉的方向形成槽而实施磁畴细化处理。
4.根据权利要求1或2所述的取向性电磁钢板的制造方法,其特征在于,对被覆有所述绝缘覆膜的钢板表面沿与轧制方向交叉的方向照射电子束或激光束而实施磁畴细化处理。
CN202280024769.XA 2021-03-31 2022-03-28 取向性电磁钢板的制造方法 Pending CN117203355A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021-060740 2021-03-31
JP2021060740 2021-03-31
PCT/JP2022/014907 WO2022210503A1 (ja) 2021-03-31 2022-03-28 方向性電磁鋼板の製造方法

Publications (1)

Publication Number Publication Date
CN117203355A true CN117203355A (zh) 2023-12-08

Family

ID=83456288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280024769.XA Pending CN117203355A (zh) 2021-03-31 2022-03-28 取向性电磁钢板的制造方法

Country Status (6)

Country Link
US (1) US20240183011A1 (zh)
EP (1) EP4317471A1 (zh)
JP (1) JPWO2022210503A1 (zh)
KR (1) KR20230159874A (zh)
CN (1) CN117203355A (zh)
WO (1) WO2022210503A1 (zh)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT329358B (de) 1974-06-04 1976-05-10 Voest Ag Schwingmuhle zum zerkleinern von mahlgut
JPS5224116A (en) 1975-08-20 1977-02-23 Nippon Steel Corp Material of high magnetic flux density one directionally orientated el ectromagnetic steel and its treating method
JPS603106A (ja) 1983-06-21 1985-01-09 Shinko Electric Co Ltd 釣上電磁石の制御方法
JP2782086B2 (ja) 1989-05-29 1998-07-30 新日本製鐵株式会社 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
JPH0762436B2 (ja) 1991-11-06 1995-07-05 厚一 植村 オープンシールド工法
JP2983128B2 (ja) 1993-08-24 1999-11-29 新日本製鐵株式会社 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP3392664B2 (ja) 1996-10-31 2003-03-31 新日本製鐵株式会社 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP3707268B2 (ja) 1998-10-28 2005-10-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法
EP2963131B1 (en) * 2013-02-28 2018-12-19 JFE Steel Corporation Method for producing grain-oriented electrical steel sheet
JP6572855B2 (ja) * 2016-09-21 2019-09-11 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
US20220042137A1 (en) * 2019-04-23 2022-02-10 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
WO2022210503A1 (ja) 2022-10-06
EP4317471A1 (en) 2024-02-07
US20240183011A1 (en) 2024-06-06
KR20230159874A (ko) 2023-11-22
JPWO2022210503A1 (zh) 2022-10-06

Similar Documents

Publication Publication Date Title
JP2983128B2 (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP2017020059A (ja) 方向性電磁鋼板とその製造方法
JP2013047382A (ja) 方向性電磁鋼板の製造方法
WO2014132354A1 (ja) 方向性電磁鋼板の製造方法
JPH0885825A (ja) コイル全長にわたり磁気特性に優れた方向性けい素鋼板の製造方法
JP3674183B2 (ja) 方向性電磁鋼板の製造方法
US5139582A (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characeristics
WO2020218329A1 (ja) 方向性電磁鋼板の製造方法
JP5920387B2 (ja) 方向性電磁鋼板の製造方法
JPWO2019131853A1 (ja) 低鉄損方向性電磁鋼板とその製造方法
JP3392579B2 (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
US5759293A (en) Decarburization-annealed steel strip as an intermediate material for grain-oriented electrical steel strip
JP5712652B2 (ja) 方向性電磁鋼板の製造方法
JP5846390B2 (ja) 方向性電磁鋼板の製造方法
JP3928275B2 (ja) 電磁鋼板
JP3743707B2 (ja) 超高磁束密度一方向性電磁鋼板の製造方法
EP0468819A1 (en) Method for manufacturing an oriented silicon steel sheet having improved magnetic flux density
CN117203355A (zh) 取向性电磁钢板的制造方法
CN117062921A (zh) 取向性电磁钢板的制造方法
JP7463976B2 (ja) 方向性電磁鋼板の製造方法
JPH11241120A (ja) 均質なフォルステライト質被膜を有する方向性けい素鋼板の製造方法
JP3498978B2 (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JPH0762437A (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JPH075975B2 (ja) 方向性電磁鋼板の製造方法
JP3061515B2 (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination