CN117157774A - 具有覆盖层的三维锂阳极 - Google Patents

具有覆盖层的三维锂阳极 Download PDF

Info

Publication number
CN117157774A
CN117157774A CN202280024018.8A CN202280024018A CN117157774A CN 117157774 A CN117157774 A CN 117157774A CN 202280024018 A CN202280024018 A CN 202280024018A CN 117157774 A CN117157774 A CN 117157774A
Authority
CN
China
Prior art keywords
layer
lithium
lithium anode
anode layer
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280024018.8A
Other languages
English (en)
Inventor
西瓦·法尼·库玛·亚拉曼奇里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Surface Solutions AG Pfaeffikon
Original Assignee
Oerlikon Surface Solutions AG Pfaeffikon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Surface Solutions AG Pfaeffikon filed Critical Oerlikon Surface Solutions AG Pfaeffikon
Publication of CN117157774A publication Critical patent/CN117157774A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及一种电池的半电池,其包括铜箔、沉积于铜箔表面上的锂阳极层和沉积于锂阳极层上的覆盖层、优选共形的覆盖层。锂阳极层包括竖向结构例如柱状结构和/或网格结构。

Description

具有覆盖层的三维锂阳极
本发明涉及一种三维锂阳极以及这种具有覆盖层的三维锂阳极的制造。
锂是对当今电池最重要的元素之一。所谓的Li+离子电池是基于锂失去其外电子的趋势来构建的。这样的电池一般包括锂层状氧化物阴极和石墨阳极,它们通过也包括隔膜的液态电解质或固态电解质被分隔。如果电池被放电,则所有锂原子留在阴极网格中。施加电压以给电池充电,正极连接至阴极并且负极连接至阳极。结果,电子从阴极被夺走并且锂原子被离子化成Li+离子。由于在阴极(+)与阳极(-)之间建立的电场,Li+离子开始被阳极吸引且流动/扩散经过电解质而进入到阳极的石墨中,它们在此吸收电子且进一步嵌入其中。一旦全部Li+离子进入阳极、夺取电子以致不再有离子,则电池充满电。
当与充电电源分离时,阴极的金属失去其先前与锂原子共享的电子。因此阴极保持正极,而阳极相比于阴极处于负电位。
但是,如果现在耗电用户(消耗电流)连接阳极和阴极,则电子经由耗电用户的连接被吸引向阴极。这造成锂原子再次失去其外电子。这些电子从石墨流入阳极的连接电线且经由耗电用户进入阴极连接电线而回到带正电的金属氧化物阴极。由于越来越多的Li+离子集中在阳极(其夺取其外电子)中,它们开始经由电解质(穿过隔膜)扩散到金属氧化物阴极中。
这种扩散因Li+离子带正电而得到支持,因为它们(以与充电式同样的方式)试图尽可能彼此分离。当在阴极与阳极之间不再有电位差时,电池完全放电。
当前可得到的基于石墨的阳极的一个问题是:吸收锂原子的能力极其有限。这意味着,为了增大电池(电)容量必须提供更多石墨并且电池的尺寸和重量增大。尤其与电动车相关地,电池重量和尺寸是限制因素。这就是为何要按克容量(mAh/g)来评价电池技术解决方案。
更新的做法将石墨与硅结合,其与仅有石墨相比表明更高的容量。
锂金属本身是极其有前途的阳极材料候选者,因为其理论容量为3860mAh/g和低的阳极电位。
不幸的是,锂金属至少具有以下四个主要缺点:
1.它反应性强,这意味着在短时间暴露在空气和/或水中之后锂表面退化,
2.为了实现高效的阳极,必须实现很薄的锂层(<20μm),
3.锂趋向于形成枝晶生长,这在诸多问题中尤其造成层不稳定,
4.大的体积变化导致体积不稳定和进而有限的寿命周期。
第一问题可以借助覆盖层来应对。这可以通过石墨、锂镧锆氧化物(LLZO)、锂磷氮氧化物(LIPON)或其混合物形成。锂离子于是扩散穿过该层且吸附至界面而没有呈现枝晶生长。不幸的是仍有体积变化问题。
根据本发明的一个方面,Li2O被用作靶材以执行电弧放电和/或电子束(ebeam)蒸发。输入反应性气体X到反应室中且在电弧放电和/或电子束蒸发的高能冲击的帮助下,Li2O被原位还原成Li2和XO。如果X例如是氢,则反应可以被描述为Li2O+H2→Li2+H2O。也可能的是使用CH4作为反应气体。另一可能方式将会是将碳加入靶中。这样一来,可以使靶导电,这促进电弧沉积过程。碳随后与氧反应生成CO和/或CO2。不反应的碳微粒能够嵌入到覆盖层中,由此形成这种层的嵌入部分。
可被利用的可能反应例如是:
氢:H2+Li2O→2Li+H2O
碳:C+2Li2O→4Li+CO2
C+Li2O→2Li+CO
一氧化碳:CO+Li2O→2Li+CO2
甲烷:CH4+4Li2O→4Li+2H2O+CO2
这些反应的自由能Δ(ΔG)的计算表明,在0至3000°K的温度范围内,仅在作为气体设置碳的情况下,Δ在1300至2500°K之间为负。对于剩下的反应,ΔG直到3000°K仍为正。故在这些条件下将不会发生所述反应。
但相比之下,如果使用Li2O+离子,则自由能Δ被显著降低,并且最迟在1300°K温度,所有的Δ为负。在此上下文中重要的是知道电弧沉积工艺一般是以约10~20eV能量产生高离子化程度的蒸发微粒的工艺。
根据本发明的另一方面,形成阳极层的具有竖向结构的锂层且优选是柱状的锂层形成在基材例如像铜箔上。柱状结构可以利用电弧沉积技术实现,例如通过调整基材温度、涂覆室内压力、离子化程度和/或基材偏电压来调节吸附原子能。竖向结构是如下结构,其至少大约或大致从形成沉积基底的铜箔的大的主表面垂直竖立。
根据本发明的又一方面,柱状锂阳极层利用原子层沉积(ALD)和/或等离子体增强化学气相沉积(PECVD)被覆盖上共形(conformal)覆盖层。在一些情况下也可以通过磁控溅射来形成覆盖层。共形覆盖层例如可以是碳层和/或一层非晶态/结晶的Li7La3Zr2O12(LLZO)和/或一层锂磷氮氧化物(LIPON)和/或一层锂硼氮氧化物(LIBON)。在LIPON和/或LIBON的情况下,这些材料不仅保护阳极层,也构成固态电解质,其还就只让Li+离子经过而言具有过滤器功能,这使得附加的隔膜变得不必要。另外,覆盖层的非晶态到晶态结构的梯度可以容易地通过调整工艺参数如靶电流等来获得。完全非晶态在靠近金属锂阳极的界面处有益于抑制不希望的枝晶生长。
以下表述仅作优选示例,而非旨在做出排他性定义:
在任何情况下,所有这样的层是“同形的(conformal)”,在此将会在任何地方(完全或基本上)测得小于5%且理想地小于50纳米的层厚偏差,优选通过电子显微镜来测量,其次是正交于样品表面的聚焦离子束切割。
现在将举例并借助图来描述本发明。
图1示出算得的导致Li2O还原的反应自由能Δ。
图2示意性示出根据本发明的3D锂阳极的生产布局。
图3示出通过选择适当的涂覆参数而以阴极电弧沉积来产生的薄膜的柱状生长。期望特征是通过减小柱宽度(一般小于100纳米)来产生大的表面面积。
起点是Li2O粉末与石墨粉的混合物。在本例子中,70原子%的LiO2与30原子%的石墨混合。混合后,粉末被压制且烧结成在阴极电弧沉积工艺中待用作阴极的固态靶。靶被送入电弧沉积室。因为Li2O是电绝缘体,故阴极电弧沉积将很难用纯Li2O进行。在石墨微粒形成导电母材情况下可执行阴极电弧沉积工艺。在该例子中,铜箔是待涂覆基材。它们也被送入涂覆室中且如此安放,即,待涂覆的铜表面至少在涂覆过程的一定期间内朝向靶面。
涂覆室接着被抽空且在靶面引燃电弧,在斑点区域内局部从表面抽取电子,由此如此加热靶面位置,即,Li2O微粒被蒸发和离子化。碳微粒也被蒸发,并且因为电弧内等离子体的高能量水平,发明人认为锂和氧被分离。氧随后与碳原子反应而形成CO和/或CO2气体,而锂离子被沉积到铜箔表面。为了完全避免锂和氧重组为Li2O,氢气被输入涂覆室,其在涂覆过程中与游离氧结合形成水。
为了还加速Li+离子至待涂覆表面,可以施加负电压(偏电压)至基材。百伏负电压(-100V)将是待用的优选值,但偏电压量可被用来调节涂层形貌,主要因为这影响基材温度(Li+离子动能越高,基材表面越热)。如上所指出地,形貌是至关紧要的,因为需要实现柱状结构以形成(三维)柱状锂阳极层。影响形貌的其它可能方式是涂覆室内的压力和离子化程度。可以通过将用于保持电弧点燃的电源脉冲化来实现更高的离子化程度。电源脉冲化还有助于减少所谓的滴形成。但为了完全消除在表面上的滴沉积,可能需要所谓的过滤电弧沉积。图3示出用阴极电弧沉积的薄膜,形成了在本发明上下文中所优选的柱状结构。
图3相当清楚地示出柱状结构的选择性区别特征:
沉积承载基材是(铜)箔。这可以在图3的最下方水平区域内看到。
(大多数情况下完全三维的)柱状结构由相互紧邻堆积的许多柱状结构单元组成。并非总是、但原则上如可以在图3中清楚看到地,它们主要是或甚至实质上如此形成,即,它们在竖向上具有纵轴线。优选地,柱状结构单元主要或甚至实质上具有垂直于其纵轴线的横截面,其最大尺寸比各自柱状单元在所述纵轴线方向上的最大尺寸小至少4倍、优选至少6倍。理想地,柱状结构单元的自由端显示出针状尖头,例如大致为金字塔类型或圆锥类型。优选的是在彼此紧邻的柱状结构单元之间没有自由空隙或没有可观的自由空隙,但针状尖缩的区域除外。所述柱状结构单元优选随机分布。优选的是所述柱状结构单元具有纳米级尺寸,理想地具有小于250纳米的直径,见图3。
另一方面,也可能的是加入到锂阳极层中的Li2O微粒滴甚至可能改善阳极性能,因为它们有助于阳极层的结构化。
柱状锂阳极层被构建至15微米厚度。
作为最后步骤,碳层被涂覆在柱状锂阳极层上。这通过等离子体增强化学气相沉积完成。为此,甲烷气被输入涂覆室中且形成等离子体,其将CH4分离为碳和氢。碳随后冷凝在腔室内存在的表面,包括但不限于涂覆有柱状锂阳极层的基材。碳层沉积达到50纳米厚度。涂覆过程如此执行,即,仅(约或大致)25%的碳结合是sp3键,其赋予碳层稳定性。此外,(约或大致)75%的结合是sp2键。因此碳层主要有石墨特性。
图2提供对本发明工作过程的优选实施例的概览。图2示出在联线设备中实现所提出的结构。
从左侧起,大多呈箔形式的铜基材被供入。
在工位1,Li2O粉末被原位还原成锂。
在工位2,还原的锂通过电弧放电/电子束(ebeam)蒸发等以具有优选小于100纳米的尺寸的三维竖向结构的形式被气相沉积。
在工位3,薄的共形涂层设置在所述竖向结构上以增强锂阳极的功能。
结果,图2所示的布置结构产生功能3D结构化锂阳极,其最好直接用来自Li2O原材料的覆盖层来加以保护。
为了改善锂阳极层附着到铜基材,可以在沉积锂之前先沉积附着层。根据本发明的一个优选实施例,沉积以铜开始,且当铜沉积下降至零时,锂沉积上升。这产生梯度层,其保证锂出色附着于铜以及在铜基材与锂阳极层之间的出色的导电接触。
根据另一优选实施例,沉积靶包含铜来代替碳。一方面,这改善涂覆条件,因为铜是导电的,并且允许顺畅的阴极电弧沉积过程。另一方面,锂阳极层中的铜改善附着于铜基材。
在本说明书中披露一种电池的半电池,其包括铜箔、沉积于铜箔表面的锂阳极层和沉积在锂阳极层上的覆盖层、优选是共形的覆盖层。该锂阳极层包括竖向结构例如柱状结构和/或网格结构。
表述“网格结构”是指表面结构化,其无法通过沉积工艺获得、但在锂沉积之后形成。用于实现这种网格的方法例如可能是采用光致抗蚀剂和蚀刻的介入工艺。典型的网格间隔可以是100纳米至几微米,例如达到3微米或仅2微米。典型的工作周期可以为20:80到80:20。
锂阳极层可以具有等于或小于20微米的厚度。
覆盖层可以包括来自由碳、LLZO、LIPON和LIBON构成的组的材料或其组合物。
覆盖层可以具有不小于20纳米且不大于120纳米的厚度,优选具有50纳米厚度。
一种用于制造电池的半电池的方法被披露,具有锂阳极层,该方法包括以下步骤:
-通过执行PVD、优选执行以靶为材料源的阴极电弧沉积来涂覆金属基材的表面、优选是铜箔表面,该靶包含作为材料的Li2O,由此形成锂阳极层,其中,锂阳极层被沉积且或许被如此再处理,即,它包括竖向结构如柱状结构和/或网格结构,
-通过原子层沉积、等离子体增强化学气相沉积、磁控溅射和/或阴极电弧沉积中的至少一个将覆盖层沉积到该锂阳极层。
由此在任何情况下再处理涉及去除滴(例如通过抛光)或为了实现网格结构而涉及表面结构化,例如基于上述的介入和蚀刻技术。
该方法所用的靶也可以包含碳和/或铜。
在由包含Li2O的靶进行电弧沉积期间,反应气体、优选是氢气和/或CO和/或甲烷可被输入以支持Li2O*还原成金属锂。

Claims (9)

1.一种电池半电池,包括铜箔、沉积于铜箔表面上的锂阳极层和沉积于锂阳极层上的覆盖层、优选是共形的覆盖层,其特征是,该锂阳极层包括竖向结构例如柱状结构和/或网格结构。
2.根据权利要求1所述的电池半电池,其特征是,该锂阳极层具有等于或小于20微米的厚度。
3.根据权利要求1或2所述的电池半电池,其特征是,该覆盖层包括来自由碳、LLZO、LIPON和LIBON构成的组的材料或其组合物。
4.根据前述权利要求之一所述的电池半电池,其特征是,该覆盖层具有不小于20纳米且不大于120纳米的厚度,优选具有50纳米的厚度。
5.一种制造具有锂阳极层的电池半电池的方法,包括以下步骤:
-通过执行PVD、优选执行以靶为材料源的阴极电弧沉积来涂覆金属基材的表面、优选是铜箔表面,该靶包含作为材料的Li2O,由此形成锂阳极层,其中,锂阳极层被沉积且最后被如此再处理,即,它包括竖向结构如柱状结构和/或网格结构,
-通过原子层沉积、等离子体增强化学气相沉积、磁控溅射和/或阴极电弧沉积中的至少一个将覆盖层沉积到该锂阳极层。
6.根据权利要求5所述的方法,其特征是,该靶也包含碳和/或铜。
7.根据权利要求5或6所述的方法,其特征是,在借助包含Li2O的靶进行电弧沉积期间,反应气体、优选氢气和/或CO和/或甲烷被输入以支持Li2O*还原成金属锂。
8.一种电池,包括阴极、电解质和阳极,其特征是,该阳极是根据权利要求1至4之一所述的阳极。
9.一种发动机驱动的车辆,其特征是,发动机是电动机并且用于驱动电动机的供电装置包括至少一个根据权利要求8所述的电池。
CN202280024018.8A 2021-03-24 2022-03-24 具有覆盖层的三维锂阳极 Pending CN117157774A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102021001522.3 2021-03-24
DE102021001522 2021-03-24
PCT/EP2022/057786 WO2022200507A1 (en) 2021-03-24 2022-03-24 Three dimensional lithium anode with a capping layer

Publications (1)

Publication Number Publication Date
CN117157774A true CN117157774A (zh) 2023-12-01

Family

ID=81384967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280024018.8A Pending CN117157774A (zh) 2021-03-24 2022-03-24 具有覆盖层的三维锂阳极

Country Status (5)

Country Link
EP (1) EP4315449A1 (zh)
JP (1) JP2024511411A (zh)
KR (1) KR20230160842A (zh)
CN (1) CN117157774A (zh)
WO (1) WO2022200507A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7408541B2 (ja) * 2017-09-21 2024-01-05 アプライド マテリアルズ インコーポレイテッド リチウムアノードデバイススタック製造
KR102176349B1 (ko) * 2018-11-08 2020-11-09 주식회사 포스코 리튬 금속 음극, 이의 제조 방법 및 이를 이용한 리튬 이차 전지
CA3148530A1 (en) * 2019-08-20 2021-02-25 Graphenix Development, Inc. Structured anodes for lithium-based energy storage devices
CN110854441B (zh) * 2019-11-27 2020-12-22 山东大学 一种三维多孔集流体及模板刻蚀方法与应用

Also Published As

Publication number Publication date
WO2022200507A1 (en) 2022-09-29
KR20230160842A (ko) 2023-11-24
EP4315449A1 (en) 2024-02-07
JP2024511411A (ja) 2024-03-13

Similar Documents

Publication Publication Date Title
US11078565B2 (en) Thermal evaporation process for manufacture of solid state battery devices
US20220328814A1 (en) Silicon composition material for use as battery anode
JP4027966B2 (ja) リチウム二次電池用負極およびその製造方法、ならびにリチウム二次電池用負極を備えたリチウム二次電池
US10777804B2 (en) Electrochemical cell including functionally graded and architectured components and methods
CN107667186B (zh) 可充电电池及其制造方法
TWI525888B (zh) Lithium sulfur secondary battery for the positive and its formation method
CN100423327C (zh) 用于锂离子二次电池的负极及该负极的生产方法
US20090104536A1 (en) Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
WO2001031723A1 (fr) Electrode pour accumulateur au lithium et accumulateur au lithium
JP6194320B2 (ja) 電池用電極の処理方法
WO2011071154A1 (ja) シリコン膜およびリチウム二次電池
US11158849B2 (en) Lithium ion battery including nano-crystalline graphene electrode
JP5351618B2 (ja) リチウムイオン二次電池用負極材、および、その製造方法、ならびに、リチウムイオン二次電池
KR101979349B1 (ko) 리튬 금속 전극, 그 제조방법 및 이를 포함하는 이차전지
JP2018092944A (ja) リチウム電池用安定化アノード及びその製造方法
CN117157774A (zh) 具有覆盖层的三维锂阳极
TWI536640B (zh) 用於沈積活性材料之模板電極結構
TWI416784B (zh) Lithium ion battery anode material, and its manufacturing method, and lithium ion battery
Polat et al. Designing Self-Standing Three Dimensional Composite SiCu Thin Films as Anodes for Lithium Ion Battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination