CN117136247A - 石墨-铜复合材料、使用其的散热器构件、及石墨-铜复合材料的制造方法 - Google Patents

石墨-铜复合材料、使用其的散热器构件、及石墨-铜复合材料的制造方法 Download PDF

Info

Publication number
CN117136247A
CN117136247A CN202280025526.8A CN202280025526A CN117136247A CN 117136247 A CN117136247 A CN 117136247A CN 202280025526 A CN202280025526 A CN 202280025526A CN 117136247 A CN117136247 A CN 117136247A
Authority
CN
China
Prior art keywords
composite material
graphite particles
copper
graphite
gaps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280025526.8A
Other languages
English (en)
Inventor
吉村正文
稲森太
砂本健市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Corp filed Critical Ube Corp
Publication of CN117136247A publication Critical patent/CN117136247A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Thermal Sciences (AREA)
  • Immunology (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种石墨‑铜复合材料,包含铜层及介隔上述铜层而积层的鳞片状石墨粒子且铜的体积分率为3~30%,其特征在于:积层剖面中,通过下述(1a)~(1c)所获得的粒子内间隙个数N为5个以下。(1a)在上述积层剖面内划定5个930μm×1230μm的测定视野。(1b)分别针对5个测定视野,对鳞片状石墨粒子内的宽2~5μm的间隙的数量进行计数并设为N1~N5。(1c)算出间隙的数量的平均值((N1+N2+N3+N4+N5)/5)而获得粒子内间隙个数N。

Description

石墨-铜复合材料、使用其的散热器构件、及石墨-铜复合材料 的制造方法
技术领域
本发明是关于一种石墨-铜复合材料、使用其的散热器构件、及石墨-铜复合材料的制造方法。
背景技术
半导体机器的散热零件用材料需要较高的导热率。铜虽然具有较高的导热率,但热膨胀率也较高。作为在不损及铜的较高导热率的情况下使热膨胀率下降且以低成本获得的复合材料,提出有一种金属-石墨复合材料(例如,参考专利文献1:日本特开2017-128802号公报)。揭示了专利文献1的金属-石墨复合材料具有较高的冷却可靠性及较低的线膨胀系数。
发明内容
[发明所欲解决的课题]
金属-石墨复合材料用作散热材料时,有时会被提供于最低-40℃左右至最高125℃左右的温度循环。抑制温度循环所导致的复合材料的热劣化被认为是一直以来的课题,但现状是该课题尚未得到充分解决。
因此,本发明的目的在于提供一种温度循环后的热劣化得以抑制的石墨-铜复合材料、使用其的散热器构件、及石墨-铜复合材料的制造方法。
[解决课题的技术手段]
本发明人为了解决上述课题而进行了研究,结果发现通过将对石墨粒子实施特定的预处理而获得的鳞片状石墨粒子与铜粒子一起用作原料,可获得温度循环后的热劣化得以抑制的石墨-铜复合材料。
即,本发明是一种石墨-铜复合材料,其包含铜层及介隔上述铜层而积层的鳞片状石墨粒子且铜的体积分率为3~30%,且特征在于:积层剖面中,通过下述(1a)~(1c)所获得的粒子内间隙个数N为5个以下。
(1a)在上述积层剖面内划定5个930μm×1230μm的测定视野。
(1b)分别针对5个测定视野,对鳞片状石墨粒子内的宽2~5μm的间隙的数量进行计数并设为N1~N5
(1c)算出间隙的数量的平均值((N1+N2+N3+N4+N5)/5)而获得粒子内间隙个数N。
又,本发明是一种使用有上述石墨-铜复合材料的散热器构件。
进而,本发明是一种制造方法,其是上述石墨-铜复合材料的制造方法,其特征在于具备以下步骤:在上下配置的一对磨石之间***石墨粒子,使上侧的磨石以12Hz以下进行旋转,由此对石墨粒子实施预处理而获得鳞片状石墨粒子;将上述鳞片状石墨粒子与铜粒子混合而获得成形原料;及通过多轴通电烧结法对使上述成形原料成形而获得的成形体进行烧结。
[发明的效果]
根据本发明,能够提供一种温度循环后的热劣化得以抑制的石墨-铜复合材料、使用其的散热器构件、及石墨-铜复合材料的制造方法。
附图说明
图1是表示在石墨-铜复合材料的积层剖面的SEM影像中所划定的测定视野的图;
图2是对鳞片状石墨粒子内的间隙进行说明的图;
图3是对石墨粒子的预处理方法进行说明的图;
图4是对多轴通电烧结装置进行说明的示意图;
图5是对冷却基板进行说明的概略图;
图6是表示温度循环试验中的热劣化率的推移的一例的图。
附图标记说明
12:鳞片状石墨粒子 14:铜层
16:间隙 23:石墨粒子
30a,30b:磨石 31a,31b:金属板
32a,32b:接合用金属构件 33a,33b:研磨粒
40:多轴通电烧结装置 42:真空容器
44:碳制模具 45a,45b:加压轴
47a,47b:加热轴 49a,49b:加热轴
50:散热板 51:配线层
52:电气绝缘层 53:应力缓冲层
54:冷却层 55:冷却基板
具体实施方式
以下,对本发明的实施形态详细地进行说明。
<石墨-铜复合材料>
本发明的石墨-铜复合材料(以下也简称为复合材料)是将鳞片状石墨粒子及铜粒子作为原料而获得的烧结体。鳞片状石墨粒子是介隔铜层而积层。此处,所谓“介隔铜层”是指鳞片状石墨粒子通过相邻的铜层而相连。即,复合材料内的鳞片状石墨粒子电性连续。复合材料中的铜层的厚度并无特别限定,但一般而言为3~25μm左右。
复合材料中的铜的体积分率为3~30%。由于导热率较高的石墨的含有率高达70~97%,故本发明的复合材料的导热率非常高。铜作为复合材料中的粘合剂发挥作用。若考虑避免加工时复合材料的断裂,则复合材料中的石墨与铜的体积比(石墨:铜)较佳为70:30~97:3。为了确保750W/(m·K)以上的高导热率及良好的加工性,体积比(石墨:铜)更佳为84:16~95:5。复合材料中的铜的体积分率可通过制造时的原料的掺合比率进行调整。
进而,本发明的复合材料的在积层剖面中通过特定方法所获得的粒子内间隙个数N为5个以下。所谓积层剖面是指供观察积层的鳞片状石墨粒子的剖面,具体而言是指包含对包含鳞片状石墨粒子的成形原料进行烧结而制造复合材料时,积层的鳞片状石墨粒子被加压的方向的面。
在复合材料为圆柱状的情形时,圆柱的纵向相当于鳞片状石墨粒子的积层方向,因此,首先,沿圆柱的纵向切出厚2mm左右的板材。对切出的板材的表面进行研磨后,使用CP(Cross section Polisher)而获得分析部位的积层剖面。
粒子内间隙个数N可通过下述(1a)~(1c)而获得。
(1a)在复合材料的积层剖面内划定5个930μm×1230μm的测定视野。测定视野可在通过扫描式电子显微镜(SEM:Scanning Electron Microscope)以100倍的倍率对复合材料的积层剖面进行观察而获得的SEM影像中任意划定。测定视野中,如图1所示,鳞片状石墨粒子12介隔铜层14而积层,在鳞片状石墨粒子12内确认有间隙16。
(1b)分别针对5个测定视野,对鳞片状石墨粒子内的宽2~5μm的间隙的数量进行计数并设为N1~N5。鳞片状石墨粒子内的间隙的宽度是如图2所示般定义。即,任意选择鳞片状石墨粒子12中的间隙16,以使该间隙16横截画面的方式进行调整。将划定间隙16的上下的两条边L1、L2的最大距离定义为间隙的宽度w。通过市售的图像处理软体对该宽度w进行测定,并对2~5μm的间隙16的数量进行计数,求出N1~N5。视需要对SEM影像的对比度进行适当调整后进行观察。
(1c)算出5个测定视野中的间隙的数量的平均值((N1+N2+N3+N4+N5)/5)而获得粒子内间隙个数N。
本发明中,规定以此方式获得的粒子内间隙个数N为5个以下。本发明人等发现,粒子内间隙个数为5个以下的鳞片状石墨粒子具有抑制复合材料在温度循环后的热劣化的作用。粒子内间隙个数N较佳为5.0个以下,更佳为3.5个以下,尤佳为2.3个以下。
本发明的复合材料较佳为导热率为700W/(m·K)以上。导热率是在与鳞片状石墨粒子的积层方向垂直的方向所测定出的值。为了用于高输出的电子零件等,导热率更佳为750W/(m·K)以上。关于导热率,从复合材料的中央部切出特定尺寸(外径10mm×厚度2.5mm)的试样,依据雷射闪光法(JIS H 7801:2005)并使用NETZSCH公司制造的LFA447进行测定,使用从复合材料切出的5个试样的导热率的平均值。
又,本发明的复合材料较佳为通过下述(2a)~(2c)所获得的热劣化率为10%以下。
(2a)沿鳞片状石墨粒子的积层方向切出板而准备试样。
试样可将上述板加工成例如外径10mm厚度2.5mm而获得。
(2b)求出上述试样的热扩散率TD0后,反复进行自-40℃至220℃的升温下降的循环,求出500次后的热扩散率TD500
热扩散率可依据雷射闪光法(JIS H 7801:2005)并通过NETZSCH公司制造的LFA447而求出。
(2c)通过((TD0-TD500)/TD0×100)而获得热劣化率。
热劣化率为复合材料的热扩散率的耐性的指标,其值越小,特性就越优异。若热劣化率达到10%,则可称作温度循环后的热劣化得以抑制的材料。热劣化率更佳为5%以下。
<制造方法>
本发明的复合材料可通过以下方法来制造,即,对石墨粒子实施特定的预处理而获得所需的鳞片状石墨粒子,与铜粒子混合而制成成形原料,使其成形并在特定条件下进行烧结。以下对各步骤进行说明。
(石墨预处理)
石墨粒子的预处理是通过对石墨粒子施加应力而进行。石墨粒子由于制造过程中所施加的应力,原本便于内部具有间隙。本发明人等发现,包含石墨粒子的复合材料的热劣化与石墨粒子内的间隙的数量有关,通过使用实施特定的预处理而获得的鳞片状石墨粒子,能够抑制复合材料在温度循环后的热劣化。
石墨粒子的预处理中可如图3所示使用2个磨石30a、30b。磨石30b是可旋转的旋转磨石。磨石30a、30b分别具有金属板31a、31b,在对向面设置有金刚石等研磨粒33a、33b。研磨粒33a、33b通过镀覆等的接合金属构件32a、32b而固定,成为处理对象的石墨粒子23配置于研磨粒33a、33b之间。使旋转磨石30b以12Hz以下进行旋转,对石墨粒子23施加应力。若旋转磨石30b的转速为12Hz以下,则能获得所需效果。
若对石墨粒子施加应力,则会产生如单一的石墨粒子成为复数个粒子般的间隙。推测通过将旋转磨石30b的转速规定为12Hz以下,可对石墨粒子施加合适的应力,从而获得间隙较少的鳞片状石墨粒子。预处理也会使石墨粒子薄膜化,因此称作鳞片状石墨粒子。再者,旋转磨石30b的转速较佳为10Hz以下,更佳为6Hz以下。
作为石墨粒子的预处理的条件,若将旋转磨石30b的转速规定为12Hz以下,则此外的条件并无特别规定。例如,可将压力设为0.2~0.8MPa左右,将时间设为10~30秒左右。
(铜粒子的准备)
铜粒子并无特别规定,例如可使用体积基准的中值粒径为1.5μm以下的铜粒子。铜粒子的中值粒径较佳为1.0μm以下。在使用中值粒径为1.5μm以下的较小铜粒子的情形时,能够获得稳定的导热率或加工性的复合材料。中值粒径为1.5μm以下的铜粒子可通过任意方法进行制造。例如,可通过化学还原法或物理制法而获得所需的铜粒子。
(混合)
将实施预处理而获得的鳞片状石墨粒子与铜粒子以特定比率掺合,通过有机溶剂进行湿式混合而获得成形原料。原料的掺合比率是以使复合材料中的石墨与铜的体积比(石墨:铜)成为70:30~97:3的方式选择。从导热率及加工性的观点而言,较佳为以体积比(石墨:铜)成为84:16~95:5的方式选择。作为合适的有机溶剂,具体而言可例举甲苯或二甲苯。
(烧结)
首先,将少量(40g以下的程度)的成形原料填充至特定的成形模具,例如使用手动液压机以3~15MPa左右的压力进行压粉。作为成形模具,例如可使用直径30mm的SUS制模具。反复进行成形原料的填充及压粉而制作所需大小的成形体。通过多轴通电烧结法对所获得的成形体进行烧结,由此获得成为本发明的复合材料的烧结体。
此处,参考图4,对多轴通电烧结装置的概略进行说明。图4中所示的多轴通电烧结装置40可将收容有成形体的碳制模具44通过上下方向的加压轴45a、45b、以及水平方向的加热轴(A)47a、47b及加热轴(B)49a、49b固定于真空容器42内。加热轴(A)47a、47b及加热轴(B)49a、49b构成为能够交替地通电。加热轴(A)于箭头x1、x2的方向上通电,加热轴(B)于箭头y1、y2的方向上通电。
多轴通电烧结装置40中,加压轴45a、45b与加热轴47a、47b、49a、49b分离。具体而言,加压轴45a、45b处于z轴方向上,加热轴(A)47a、47b处于x轴方向上,加热轴(B)49a、49b处于y轴方向上。由此,能够独立地控制加压及加热,因此于成形体的径向上获得均匀的温度分布。
烧结时,将收容有成形体的碳制模具44固定于真空容器42内后,将真空容器42内减压至100Pa以下,为了抑制装置内零件的氧化劣化,较佳为减压至50Pa以下。继而,首先对加热轴(A)47a、47b进行通电,加热至650~750℃左右,较佳为670~730℃左右。
其后,切换成加热轴(B)49a、49b,加热至930~980℃左右,较佳为940~970℃左右。进而,通过上下方向的加压轴45a、45b沿箭头z1方向及箭头z2方向进行加压。此时的压力较佳为10~100MPa左右,更佳为30~50MPa左右。
由于通过多轴通电烧结法在均匀的温度分布下进行烧结,故能够制造出稳定品质的复合材料。并且,作为原料与铜粒子一起使用的是实施特定的预处理而获得的鳞片状石墨粒子,因此,本发明的复合材料在积层剖面中通过特定方法而求出的粒子内间隙个数为5个以下。通过使粒子内间隙个数为5个以下,从而本发明的复合材料抑制了温度循环后的热劣化,且具备更高的导热率。
本发明的复合材料可适宜用作散热板(散热器构件)。散热器构件可用于无线通讯领域、电子控制领域及光通讯领域等广泛领域中。作为用途,具体而言可例举:功率半导体模组、光通讯模组、投影机、珀尔帖(ペルチェ)冷却器、水冷式冷却器、及LED散热风扇等。
图5表示使用有散热板的冷却基板的一例。冷却基板55具备散热板50及冷却层54。散热板50具有依次积层于应力缓冲层53上的电气绝缘层52及配线层51。在配线层51的上表面的搭载面51a搭载半导体元件等发热性元件。本发明的复合材料可用于应力缓冲层53及配线层51中的至少一层。
搭载于散热板50的搭载面51a的发热性元件所产生的热依次传导至配线层51、电气绝缘层52、应力缓冲层53、及冷却层54,并自冷却层54散发。本发明的复合材料由于抑制了温度循环后的热劣化,因此,能够高效率地使发热性元件冷却并使温度下降,此外,能够长期稳定地发挥效果。
[实施例]
继而,举出实施例对本发明具体地进行说明,但本发明并不受以下实施例限制。
实施例1
通过参考图3所说明的方法对市售的原料石墨实施预处理。上下的磨石具备金刚石作为研磨粒,将5g石墨粒子与2mL水一起***其间。使旋转磨石以10Hz进行旋转而对石墨粒子实施20秒左右的预处理。此时的压力设为0.5MPa。
通过网眼500μm的筛网对处理后的石墨粒子进行分离,取出残留于筛网上表面的石墨粒子,进行干燥,将其当作原料的鳞片状石墨粒子。另一方面,作为铜粒子,准备中值粒径为1.5μm的铜粒子。
以使烧结后的铜的体积分率成为30%的方式掺合11.0g的实施预处理并干燥后的鳞片状石墨粒子与19.0g的铜粒子,而获得成形原料。该等粉末与作为溶剂的甲苯50mL一起收容于250mL的茄型烧瓶中,通过蒸发器进行脱溶剂、混合。
在直径30mm的SUS模具中投入3g成形原料,使用油压机以5MPa的压力进行压粉。进行将成形原料的投入、压粉作业反复进行超过10次的程度的成形,从SUS模具中取出成形体。
将取出的成形体收容于圆筒状的碳制模具中,通过多轴通电烧结法进行烧结。将碳制模具44配置于图4中所示的多轴通电烧结装置40的真空容器42内,并通过对角线上的两根加热轴(A)47a、47b及两根加压轴(B)45a、45b加以固定。
通过旋转泵使真空容器42内减压至5Pa,提高装置电源的输出使其升温。通过升温以加热轴(A)47a、47b加热至700℃后,变更为加热轴(B)49a、49b并加热至950℃。
达到950℃后,通过加压轴45a、45b加压至50MPa。加压所导致的筒的位移停止后,保持30秒,使电源的输出下降而使装置冷却。冷却后,从装置中取出碳制模具44,从模具中获得圆柱状的烧结体。
进行5次同样的操作而制作5个烧结体,从而获得实施例1的复合材料。
实施例2
以使烧结后的铜的体积分率成为16%的方式变更成形原料,除此以外与实施例1同样地制造实施例2的复合材料。
实施例3
以使烧结后的铜的体积分率成为5%的方式变更成形原料,除此以外与实施例1同样地制造实施例3的复合材料。
实施例4
将石墨粒子的预处理中的旋转磨石的转速变更为5Hz,除此以外与实施例2同样地制造实施例4的复合材料。
比较例1
将石墨粒子的预处理中的旋转磨石的转速变更为20Hz,除此以外与实施例1同样地制造比较例1的复合材料。
比较例2
将石墨粒子的预处理中的旋转磨石的转速变更为20Hz,除此以外与实施例2同样地制造比较例2的复合材料。
比较例3
将石墨粒子的预处理中的旋转磨石的转速变更为20Hz,除此以外与实施例3同样地制造比较例3的复合材料。
比较例4
使用未经过预处理的石墨粒子,除此以外与实施例2同样地制造比较例4的复合材料。
针对实施例及比较例的复合材料,求出粒子内间隙个数,对导热率及热劣化率进行评价。每一项均对5个复合材料进行测定,并求出平均值。
<鳞片状石墨粒子内的间隙个数>
如上所述,制作复合材料中的积层剖面,根据(1a)~(1c)求出粒子内间隙个数N。
<导热率>
制作导热率测定用试样时,首先,从实施例及比较例的复合材料的圆柱中央沿纵向切出板。圆柱的纵向系鳞片状石墨粒子的积层方向。对该板进行加工,而获得外径10mm×厚度2.5mm的导热率测定用试样。试样的厚度方向为与鳞片状石墨粒子的积层方向(加压方向)垂直的方向。在该厚度方向,依据“金属的利用雷射闪光法的热扩散率的测定方法(JISH 7801:2005)”对试样的导热率进行测定。
<热劣化率>
基于温度循环试验所导致的热扩散率的下降,求出热劣化率。热扩散率是以与雷射闪光法的情形同样的测定试样的形状及测定方法进行测定。求出各测定试样的热扩散率TD0后,反复进行自-40℃至220℃的升温下降的循环,求出500次时的热扩散率TD500。通过((TD0-TD500)/TD0×100),算出热劣化率。
将所获得的结果与铜的体积分率、石墨粒子的预处理中的转速一同汇总于下述表1中。
表1
如上述表1所示,使用以10Hz的转速实施了预处理的鳞片状石墨粒子而制造出的复合材料的粒子内间隙个数均为4.8个以下(实施例1~4)。相对于此,使用以20Hz的转速实施了预处理的鳞片状石墨粒子的复合材料(比较例1~3)、以及使用未经过预处理的石墨粒子的复合材料(比较例4)的粒子内间隙个数为7.0个以上。
以12Hz以下的转速实施预处理而获得的鳞片状石墨粒子的粒子内间隙个数被限制在5个以下。由该结果可知,预处理中的旋转磨石的转速对处理后的鳞片状石墨粒子中的间隙个数有影响。
复合材料的导热率取决于石墨与铜的组成比,因此,如实施例1~3所示,若铜的体积分率减少且有助于导热的石墨的含量增加,则导热率提升。然而,由实施例1~3与比较例1~3的比较可知,若预处理中的旋转磨石的转速变高,则导热率下降。推测以超过12Hz的转速进行了预处理的石墨粒子在尚未被施加足够的应力的情况下便会通过磨石之间。
通过利用光学显微镜所进行的形状观察而确认比较例1~3的鳞片状石墨粒子未经处理。使用未经过预处理的石墨粒子的复合材料(比较例4)的导热率相较于铜体积分率相同的复合材料(比较例2)而言值略低。
如实施例1~4所示,使用以10Hz的转速实施了预处理的鳞片状石墨粒子的复合材料的热劣化率为4.8%以下。将实施例1的复合材料的温度循环试验中的热劣化率的推移示于图6。虽然通过100次温度循环,热劣化率大幅增加,但其后即使反复进行温度循环,热劣化率也未显著增加,大致固定。实施例2~4的复合材料也确认有同样的趋势。
使用以20Hz的转速实施了预处理的鳞片状石墨粒子的复合材料(比较例1~3)、以及使用未经过预处理的石墨粒子的复合材料(比较例4)的热劣化率为18%以上,最大甚至达到25.5%。
该等结果表明,复合材料的热劣化率起因于鳞片状石墨粒子内的间隙数。确认了通过实施合适的预处理,能够控制鳞片状石墨粒子内的间隙数,通过使用此种鳞片状石墨粒子,可获得温度循环后的热劣化得以抑制的石墨-铜复合材料。

Claims (5)

1.一种石墨-铜复合材料,包含铜层及介隔上述铜层而积层的鳞片状石墨粒子且铜的体积分率为3~30%,其特征在于:积层剖面中,通过下述(1a)~(1c)所获得的粒子内间隙个数N为5个以下:
(1a)在上述积层剖面内划定5个930μm×1230μm的测定视野;
(1b)分别针对5个测定视野,对鳞片状石墨粒子内的宽2~5μm的间隙的数量进行计数并设为N1~N5
(1c)算出间隙的数量的平均值((N1+N2+N3+N4+N5)/5)而获得粒子内间隙个数N。
2.根据权利要求1所述的石墨-铜复合材料,其在与上述鳞片状石墨粒子的积层方向垂直的方向的导热率为700W/(m·K)以上。
3.根据权利要求2所述的石墨-铜复合材料,其通过下述(2a)~(2c)而获得的热劣化率为10%以下:
(2a)沿上述鳞片状石墨粒子的积层方向切出板而准备试样;
(2b)求出上述试样的热扩散率TD0后,反复进行自-40℃至220℃的升温下降的循环,求出500次后的热扩散率TD500
(2c)通过((TD0-TD500)/TD0×100)而获得热劣化率。
4.一种散热器构件,其使用有权利要求1至3中任一项的石墨-铜复合材料。
5.一种权利要求1的石墨-铜复合材料的制造方法,其特征在于具备以下步骤:
在上下配置的一对磨石之间***石墨粒子,使上侧的磨石以12Hz以下进行旋转,由此对上述石墨粒子实施预处理而获得鳞片状石墨粒子;
将上述鳞片状石墨粒子与铜粒子混合而获得成形原料;及
通过多轴通电烧结法对使上述成形原料成形而获得的成形体进行烧结。
CN202280025526.8A 2021-03-31 2022-03-24 石墨-铜复合材料、使用其的散热器构件、及石墨-铜复合材料的制造方法 Pending CN117136247A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021-061152 2021-03-31
JP2021061152A JP2022157111A (ja) 2021-03-31 2021-03-31 黒鉛-銅複合材料、それを用いたヒートシンク部材、および黒鉛-銅複合材料の製造方法
PCT/JP2022/014138 WO2022210298A1 (ja) 2021-03-31 2022-03-24 黒鉛-銅複合材料、それを用いたヒートシンク部材、および黒鉛-銅複合材料の製造方法

Publications (1)

Publication Number Publication Date
CN117136247A true CN117136247A (zh) 2023-11-28

Family

ID=83458896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280025526.8A Pending CN117136247A (zh) 2021-03-31 2022-03-24 石墨-铜复合材料、使用其的散热器构件、及石墨-铜复合材料的制造方法

Country Status (7)

Country Link
US (1) US20240191120A1 (zh)
EP (1) EP4317954A1 (zh)
JP (1) JP2022157111A (zh)
KR (1) KR20230156745A (zh)
CN (1) CN117136247A (zh)
TW (1) TW202306894A (zh)
WO (1) WO2022210298A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168502A (ja) * 1996-12-10 1998-06-23 Osaka Gas Co Ltd 高熱伝導率複合材
US8501048B2 (en) * 2007-10-18 2013-08-06 Shimane Prefectural Government Metal-graphite composite material having high thermal conductivity and production method therefor
JP5640239B2 (ja) * 2009-03-26 2014-12-17 島根県 鱗状黒鉛含有板状前駆体および焼結成形体
JP2017128802A (ja) 2016-01-15 2017-07-27 昭和電工株式会社 金属−黒鉛複合材料及びその製造方法
KR20170128802A (ko) 2016-05-16 2017-11-24 (주)굿엠 개별 대기전력 제어시스템
KR101961466B1 (ko) * 2018-05-30 2019-03-22 한국생산기술연구원 메탈 하이브리드 방열소재의 제조방법
CN114761588A (zh) * 2019-12-17 2022-07-15 Ube株式会社 石墨-铜复合材料、使用了该石墨-铜复合材料的散热器构件、和石墨-铜复合材料的制造方法

Also Published As

Publication number Publication date
TW202306894A (zh) 2023-02-16
KR20230156745A (ko) 2023-11-14
JP2022157111A (ja) 2022-10-14
US20240191120A1 (en) 2024-06-13
WO2022210298A1 (ja) 2022-10-06
EP4317954A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
CN112334408B (zh) 块状氮化硼粒子、氮化硼粉末、氮化硼粉末的制造方法、树脂组合物、及散热构件
JP7165341B2 (ja) 黒鉛-銅複合材料、それを用いたヒートシンク部材、および黒鉛-銅複合材料の製造方法
EP2213756B1 (en) Metal-graphite composite material having high thermal conductivity and method for producing the same
US11034623B2 (en) Thermal conductive member and heat dissipation structure including the same
CN109863117B (zh) 石墨/石墨烯复合材料、集热体、传热体、散热体及散热***
KR101525634B1 (ko) 세라믹 히터 및 그 제조 방법
KR20160016857A (ko) 수지 함침 질화 붕소 소결체 및 그 용도
EP2796579A1 (en) Cu-diamond based solid phase sintered body having excellent heat resistance, heat sink using the same, electronic device using the heat sink, and method for producing Cu-diamond based solid phase sintered body
Chmielewski et al. Microstructure and thermal properties of Cu-SiC composite materials depending on the sintering technique
US10615096B2 (en) Heat dissipation structure for electric circuit device
US20230303461A1 (en) Molded article and method for producing same
CN100363131C (zh) 一种晶粒尺寸可控的超细晶粒钨及钨铜复合材料的制备方法
KR101961466B1 (ko) 메탈 하이브리드 방열소재의 제조방법
CN117136247A (zh) 石墨-铜复合材料、使用其的散热器构件、及石墨-铜复合材料的制造方法
WO2023032919A1 (ja) 黒鉛-銅複合材料、それを用いたヒートシンク部材、および黒鉛-銅複合材料の製造方法
CN115213409B (zh) 一种利用微波等离子体快速成型金刚石/金属基复合材料构件的方法
CN115261659B (zh) 一种两步法快速成型致密金刚石金属基复合材料构件的方法
Chang Fabrication of advanced heat sink materials by powder metallurgy approach
JP2023111633A (ja) 熱伝導性シート及び熱伝導性シートの製造方法
CN116234770A (zh) 碳氮化硼粉末及其制造方法、粉末组合物、氮化硼烧结体及其制造方法以及复合体及其制造方法
JP2013533193A (ja) 熱管理複合材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination