CN117127046A - 一种SnO2@In2O3增强银基复合材料的制备方法 - Google Patents

一种SnO2@In2O3增强银基复合材料的制备方法 Download PDF

Info

Publication number
CN117127046A
CN117127046A CN202311104105.7A CN202311104105A CN117127046A CN 117127046 A CN117127046 A CN 117127046A CN 202311104105 A CN202311104105 A CN 202311104105A CN 117127046 A CN117127046 A CN 117127046A
Authority
CN
China
Prior art keywords
sno
silver
powder
composite material
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311104105.7A
Other languages
English (en)
Other versions
CN117127046B (zh
Inventor
周晓龙
张正云
曹建春
黎敬涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202311104105.7A priority Critical patent/CN117127046B/zh
Publication of CN117127046A publication Critical patent/CN117127046A/zh
Application granted granted Critical
Publication of CN117127046B publication Critical patent/CN117127046B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/23Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/12Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • H01H1/02372Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te
    • H01H1/02376Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te containing as major component SnO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/048Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by powder-metallurgical processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开一种SnO2@In2O3增强银基复合材料的制备方法。本发明在惰性气体保护下,将市售的纳米SnO2与铟粉按比例混合后,在高能球磨机中球磨以获得SnO2@In粉体;然后将SnO2@In粉体与银粉、氧化银粉按比例混合均匀,并压制成锭坯后在原位反应烧结炉中烧结,得到SnO2@In2O3增强银基复合材料烧结坯;最后对该烧结坯进行致密化、挤压拉拔制备成丝材。本发明最大的优点在于能够通过原位反应合成获得SnO2@In2O3核壳结构增强银基复合材料,所形成的复合材料界面清洁,界面结合牢固,极大发挥了核壳结构的协同效应,最终获得力学性能优异、导电率基本不降低的SnO2@In2O3增强银基复合材料。

Description

一种SnO2@In2O3增强银基复合材料的制备方法
技术领域
本发明涉及一种SnO2@In2O3增强银基复合材料的制备方法,属于电子信息新材料领域。
背景技术
低压电器开关中的触头材料主要为银基复合材料为主,最早开发应用的Ag/CdO电触头材料由于存在元素Cd会导致环境污染、危害人类健康,而被欧盟ROS指令限制使用;急需开发新型微结构增强的环保型银基复合材料。
目前市场中银金属氧化物复合材料制备工艺包括:粉末冶金法、合金内氧化法、粉末预氧化法。粉末冶金是最基本的银金属氧化物材料制备工艺,其流程简单,添加元素相对容易,且不受材料组分的约束。但是,简单的粉末混合过程难以保证增强相在银基体中的均匀分布,且制备过程中原料易受外界污染,缺陷多,导致材料电接触性能恶化。合金内氧化法制备的银金属氧化物材料往往存在氧化不完全的情况,影响材料的使用性能。粉末预氧化法也是粉末冶金法的一种,也存在原料易受外界污染,缺陷多,导致材料电接触性能恶化的缺点。为了解决传统制备工艺的不足,研究人员相继开发了化学共沉淀法、化学镀、高能球磨、溶胶-凝胶法等新型银金属氧化物材料制备工艺。虽然新型制备工艺在一定程度上弥补了传统制备工艺的不足,但是这些方法所制备的银金属氧化物与预期相比存在较大的差距。主要原因在于无论哪种制备方法所获得的银基电触头材料,其综合性能都达不到传统电触头材料Ag/CdO的优异程度。
基于上述行业背景,本发明提出采用原位反应合成制备技术,制备一种核壳结构金属氧化物增强银基材料的方法。该方法的最大的优点在于能够通过原位反应合成获得SnO2@In2O3核壳结构增强银基复合材料,具有良好的复合材料界面清洁,界面结合牢固,极大发挥了核壳结构的协同效应,最终获得力学性能优异、导电率基本不降低的SnO2@In2O3增强银基复合材料。
发明内容
本发明的目的在于提供一种SnO2@In2O3增强银基复合材料的制备方法,具体包括以下步骤:在惰性气体保护下,将市售的纳米SnO2与铟粉按比例混合后,在高能球磨机中球磨以获得SnO2@In粉体;然后将SnO2@In粉体与银粉、氧化银粉按比例混合均匀,并压制成锭坯后在原位反应烧结炉中烧结,得到SnO2@In2O3增强银基复合材料烧结坯;最后对该烧结坯进行致密化、挤压拉拔制备成丝材。
优选的,本发明所述市售的纳米SnO2粉的粒度为40~80nm,纯度为99.9%。
优选的,本发明所述铟粉粒度为0.5-50μm,纯度为99.9%。
优选的,本发明所述银粉粒度为10-80μm,纯度为99.9%。
优选的,本发明所述氧化银粉粒度为10-50μm,纯度为99.9%。
优选的,本发明所述纳米SnO2与铟粉的质量比为SnO2:In=12:(0.5-3.5)或者10:(2.5-4.5)。
优选的,本发明所述SnO2@In粉体与银粉、氧化银粉按照在银基体中生成质量百分比为13%-15%的SnO2@In2O3为准来配制。
优选的,本发明所述球磨的条件为:以转速为400-800r/min球磨0.5-2h。
优选的,本发明所述压制成锭坯的条件为:150-500MPa。
优选的,本发明所述烧结条件为:100℃,保温2h,然后升温至200℃,保温2h,最后升温至830~840℃,保温1~2h。
本发明所述方法能够通过壳In2O3与银具有良好界面润湿性的特点,改善SnO2增强银基复合材料界面润湿性,提高了银基复合材料的加工性能与成材率。所获得的SnO2@In2O3增强银基复合材料具有优异的力学性能。
本发明的有益效果:与传统银金属氧化物相比,本发明制备得到一种SnO2@In2O3核壳结构的金属氧化物增强银基复合材料;与AgSnO2复合材料相比,该复合材料既改善SnO2与银的界面润湿性,提高了复合材料的加工性能,又获得了力学性能优异的SnO2@In2O3核壳结构增强银基复合材料。
附图说明
图1是本发明的工艺流程图。
图2是实施例1制备的SnO2@In2O3核壳结构增强银基复合材料的高分辨透射电镜图。
具体实施方案
以下结合附图和实施例对本发明作进一步阐述,但本发明的保护内容不限于实施例所述范围。
实施例1
如图1的工艺流程,将市售的纳米SnO2与In粉按SnO2:In=12:2.6比例(质量比)混合后,在惰性氩气保护下,以转速为400r/min球磨0.5h,获得SnO2@In粉体;然后将SnO2@In粉体与银粉、氧化银粉按照在银基体中生成14.8%(质量百分比)的SnO2@In2O3为准来配置,并以转速为300r/min球磨1h获得混料均匀的复合粉体;再将复合粉体装入模具中,以350MPa压制压力条件下成形,并将成形锭坯放入原位反应烧结炉中,按照100℃(保温2h)→200℃(保温2h)→300℃(保温2h)→830℃(保温1h)的烧结工艺烧结,获得SnO2@In2O3增强银基复合材料烧结坯;最后对该烧结坯进行致密化、挤压拉拔制备成丝材;通过此工艺,可以获得抗拉强度达390MPa的银金属氧化物复合材料。
由图2可以看出中间颗粒是SnO2,氧化锡周围是In2O3,本实施例制备得到In2O3包覆SnO2的核壳材料增强银基的复合材料。
实施例2
如图1的工艺流程,将市售的纳米SnO2与In粉按SnO2:In=12:0.5比例(质量比)混合后,在惰性氩气保护下,以转速为400r/min球磨2h,获得SnO2@In粉体;然后将SnO2@In粉体与银粉、氧化银粉按照在银基体中生成14%(质量百分比)的SnO2@In2O3为准来配置,并以转速为200r/min球磨1.5h获得混料均匀的复合粉体;再将复合粉体装入模具中,以350MPa压制压力条件下成形,并将成形锭坯放入原位反应烧结炉中,按照100℃(保温2h)→200℃(保温2h)→390℃(保温2h)→840℃(保温1h)的烧结工艺烧结,获得SnO2@In2O3增强银基复合材料烧结坯;最后对该烧结坯进行致密化、挤压拉拔制备成丝材。通过此工艺,可以获得抗拉强度达380MPa的银金属氧化物复合材料。
实施例3
如图1的工艺流程,将市售的纳米SnO2与Cu粉按SnO2:In=10:3.6比例(质量比)混合后,在惰性氩气保护下,以转速为500r/min球磨1.5h,获得SnO2@In粉体;然后将SnO2@In粉体与银粉、氧化银粉按照在银基体中生成约15%(质量百分比)的SnO2@In2O3为准来配置,并以转速为400r/min球磨1h获得混料均匀的复合粉体;再将复合粉体装入模具中,以500MPa压制压力条件下成形,并将成形锭坯放入原位反应烧结炉中,按照100℃(保温2h)→200℃(保温2h)→400℃(保温1h)→820℃(保温1.5h)的烧结工艺烧结,获得SnO2@In2O3增强银基复合材料烧结坯;最后对该烧结坯进行致密化、挤压拉拔制备成丝材。通过此工艺,可以获得抗拉强度达385MPa的银金属氧化物复合材料。
实施例4
如图1的工艺流程,将市售的纳米SnO2与Cu粉按SnO2:In=10:2.6比例(质量比)混合后,在惰性氩气保护下,以转速为200r/min球磨1h,获得SnO2@In粉体;然后将SnO2@In粉体与银粉、氧化银粉按照在银基体中生成约13%(质量百分比)的SnO2@In2O3为准来配置,并以转速为500r/min球磨1h获得混料均匀的复合粉体;再将复合粉体装入模具中,以450MPa压制压力条件下成形,并将成形锭坯放入原位反应烧结炉中,按照100℃(保温2h)→200℃(保温2h)→600℃(保温1h)→830℃(保温2h)的烧结工艺烧结,获得SnO2@In2O3增强银基复合材料烧结坯;最后对该烧结坯进行致密化、挤压拉拔制备成丝材。通过此工艺,可以获得抗拉强度达370MPa的银金属氧化物复合材料。

Claims (10)

1.一种SnO2@In2O3增强银基复合材料的制备方法,其特征在于,具体包括以下步骤:在惰性气体保护下,将市售的纳米SnO2与铟粉按比例混合后,在高能球磨机中球磨以获得SnO2@In粉体;然后将SnO2@In粉体与银粉、氧化银粉按比例混合均匀,并压制成锭坯后在原位反应烧结炉中烧结,得到SnO2@In2O3增强银基复合材料烧结坯;最后对该烧结坯进行致密化、挤压拉拔制备成丝材。
2.根据权利要求1所述SnO2@In2O3增强银基复合材料的制备方法,其特征在于:所述市售的纳米SnO2粉的粒度为40~80nm,纯度为99.9%。
3.根据权利要求1所述SnO2@In2O3增强银基复合材料的制备方法,其特征在于:所述铟粉粒度为0.5-50μm,纯度为99.9%。
4.根据权利要求1所述SnO2@In2O3增强银基复合材料的制备方法,其特征在于:银粉粒度为10-80μm,纯度为99.9%。
5.根据权利要求1所述SnO2@In2O3增强银基复合材料的制备方法,其特征在于:氧化银粉粒度为10-50μm,纯度为99.9%。
6.根据权利要求1所述SnO2@In2O3增强银基复合材料的制备方法,其特征在于:纳米SnO2与铟粉的质量比为SnO2:In=12:(0.5-3.5)或者10:(2.5-4.5)。
7.根据权利要求1所述SnO2@In2O3增强银基复合材料的制备方法,其特征在于:SnO2@In粉体与银粉、氧化银粉按照在银基体中生成质量百分比为13%-15%的SnO2@In2O3为准来配制。
8.根据权利要求1所述SnO2@In2O3增强银基复合材料的制备方法,其特征在于:球磨的条件为:以转速为400-800r/min球磨0.5-2h。
9.根据权利要求1所述SnO2@In2O3增强银基复合材料的制备方法,其特征在于:压制成锭坯的条件为:150-500MPa。
10.根据权利要求1所述SnO2@In2O3增强银基复合材料的制备方法,其特征在于:烧结条件为:100℃,保温2h,然后升温至200℃,保温2h,最后升温至830~840℃,保温1~2h。
CN202311104105.7A 2023-08-30 2023-08-30 一种SnO2@In2O3增强银基复合材料的制备方法 Active CN117127046B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311104105.7A CN117127046B (zh) 2023-08-30 2023-08-30 一种SnO2@In2O3增强银基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311104105.7A CN117127046B (zh) 2023-08-30 2023-08-30 一种SnO2@In2O3增强银基复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN117127046A true CN117127046A (zh) 2023-11-28
CN117127046B CN117127046B (zh) 2024-04-16

Family

ID=88854194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311104105.7A Active CN117127046B (zh) 2023-08-30 2023-08-30 一种SnO2@In2O3增强银基复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN117127046B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030548A (ja) * 1983-07-31 1985-02-16 Matsushita Electric Works Ltd 電気接点材料の製法
US4680162A (en) * 1984-12-11 1987-07-14 Chugai Denki Kogyo K.K. Method for preparing Ag-SnO system alloy electrical contact material
US20110243783A1 (en) * 2008-11-06 2011-10-06 Helmut Heinzel Method for Producing a Semifinished Product and Semifinished Product for Electrical Contacts and Contact Piece
WO2012071767A1 (zh) * 2010-12-03 2012-06-07 温州宏丰电工合金股份有限公司 纤维状结构银基电接触材料的制备方法
US20130313488A1 (en) * 2010-12-03 2013-11-28 Lesheng Chen Method of Preparing Silver-Based Electrical Contact Materials with Fiber-Like Arrangement of Reinforcing Nanoparticles
CN103681015A (zh) * 2013-11-28 2014-03-26 昆明理工大学 一种复相金属氧化物增强银基电触头材料的制备方法
CN107794389A (zh) * 2017-10-20 2018-03-13 温州宏丰电工合金股份有限公司 一种银氧化锡氧化铟电接触材料及其制备方法
CN108565156A (zh) * 2018-04-26 2018-09-21 昆明理工大学 一种复合纳米颗粒增强银基电触头材料的制备方法
US20210098208A1 (en) * 2019-10-01 2021-04-01 Abb Schweiz Ag Method for Manufacturing an Ag-Based Electrical Contact Material, an Electrical Contact Material and an Electrical Contact Obtained Therewith

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030548A (ja) * 1983-07-31 1985-02-16 Matsushita Electric Works Ltd 電気接点材料の製法
US4680162A (en) * 1984-12-11 1987-07-14 Chugai Denki Kogyo K.K. Method for preparing Ag-SnO system alloy electrical contact material
US20110243783A1 (en) * 2008-11-06 2011-10-06 Helmut Heinzel Method for Producing a Semifinished Product and Semifinished Product for Electrical Contacts and Contact Piece
WO2012071767A1 (zh) * 2010-12-03 2012-06-07 温州宏丰电工合金股份有限公司 纤维状结构银基电接触材料的制备方法
US20130313488A1 (en) * 2010-12-03 2013-11-28 Lesheng Chen Method of Preparing Silver-Based Electrical Contact Materials with Fiber-Like Arrangement of Reinforcing Nanoparticles
CN103681015A (zh) * 2013-11-28 2014-03-26 昆明理工大学 一种复相金属氧化物增强银基电触头材料的制备方法
CN107794389A (zh) * 2017-10-20 2018-03-13 温州宏丰电工合金股份有限公司 一种银氧化锡氧化铟电接触材料及其制备方法
CN108565156A (zh) * 2018-04-26 2018-09-21 昆明理工大学 一种复合纳米颗粒增强银基电触头材料的制备方法
US20210098208A1 (en) * 2019-10-01 2021-04-01 Abb Schweiz Ag Method for Manufacturing an Ag-Based Electrical Contact Material, an Electrical Contact Material and an Electrical Contact Obtained Therewith
CN112593104A (zh) * 2019-10-01 2021-04-02 Abb瑞士股份有限公司 制造Ag基电触头材料的方法、电触头材料和由此获得的电触头

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴春萍, 陈敬超, 鲜春桥, 李玉华: "反应合成AgSnO_2电接触材料烧结坯的显微组织分析", 电工材料, no. 01, 20 March 2004 (2004-03-20) *

Also Published As

Publication number Publication date
CN117127046B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
CN101250639B (zh) 纳米相弥散强化铜及其制备方法和产品生产工艺
CN101121974B (zh) 一种高强高导弥散强化铜合金及其制备方法
CN101956094B (zh) 一种高强高导弥散强化铜合金的制备方法
US9761342B2 (en) Method of preparing silver-based oxide electrical contact materials with fiber-like arrangement
CN107794389A (zh) 一种银氧化锡氧化铟电接触材料及其制备方法
CN101202169A (zh) 新型银氧化锡丝材电触头材料制造方法
CN106048275A (zh) 一种陶瓷相弥散强化铜合金的制备方法
CN106057526A (zh) 一种包套法制造的层状银铜钎三复合电触头材料及其制造方法
CN107119207B (zh) 一种非计量比TiC增强铜基复合材料及其制备方法
CN109576529B (zh) 高性能弥散铜合金及其制备方法
CN101745753B (zh) 一种无银铜基钎焊料及其生产工艺
CN105200262B (zh) 一种高氧化锡含量银基片状电触头材料的制备方法
CN102796914B (zh) 一种细化银氧化锡晶粒的制备方法
CN106067391A (zh) 一种雾化法制备的层状银铜钎三复合电触头材料
CN106449190A (zh) 一种层状银铜钎三复合电触头材料及其制备方法
CN112620640A (zh) 基于AgC废边角料再利用的AgNi电接触材料的制备方法
CN102044347B (zh) 银铜镍陶瓷高抗熔焊合金触头材料的制备方法及其产品
CN117127046B (zh) 一种SnO2@In2O3增强银基复合材料的制备方法
CN115710653B (zh) 银金属氧化物电触头材料的制备方法
CN111363947A (zh) 一种添加镍合金的银碳化钨石墨复合材料及制备方法
WO2012088735A1 (zh) 纤维状组织结构银基氧化物电触头材料的制备方法
CN110423908A (zh) 一种可快速氧化银氧化锡氧化铟电接触材料及制备方法
CN1925078A (zh) 银氧化锡触头材料的制造方法
CN117210713A (zh) 一种SnO2@CuO增强银基复合材料的制备方法
CN102820153A (zh) 一种细化银氧化锡氧化铟晶粒的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant