CN116786136A - 一种高度有序的Cu3Pd金属间化合物纳米催化剂的制备与应用 - Google Patents

一种高度有序的Cu3Pd金属间化合物纳米催化剂的制备与应用 Download PDF

Info

Publication number
CN116786136A
CN116786136A CN202310708581.3A CN202310708581A CN116786136A CN 116786136 A CN116786136 A CN 116786136A CN 202310708581 A CN202310708581 A CN 202310708581A CN 116786136 A CN116786136 A CN 116786136A
Authority
CN
China
Prior art keywords
catalyst
electrolyte
intermetallic compound
preparation
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310708581.3A
Other languages
English (en)
Inventor
周军
秦高梧
李松
杨鑫雨
王紫璇
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Priority to CN202310708581.3A priority Critical patent/CN116786136A/zh
Publication of CN116786136A publication Critical patent/CN116786136A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/347Ionic or cathodic spraying; Electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/163Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
    • C07C7/167Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation for removal of compounds containing a triple carbon-to-carbon bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrochemistry (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高度有序的Cu3Pd金属间化合物纳米催化剂的制备与应用,主要制备方法如下所述:对金属基体Mg丝进行预处理;将合金催化剂前驱体盐混合液与电解液混合并进行微等离子体电解氧化处理;对制备的催化剂进行加热还原处理,最终得到具有高度有序的金属间化合物纳米催化剂;该方法制备过程简单,仅需一步法即可将两种金属元素均匀混合并负载至金属氧化物载体表面,实现高度有序金属间合金纳米催化剂的原位制备;将该催化剂应用于乙炔加氢反应,用于消除乙烯气体中的乙炔杂质,展现出优异的催化选择性;该技术的开发,有利于发展一种微量贵金属合金纳米催化剂的制备,大幅减少乙炔加氢所需的贵金属含量,有利于资源的可持续利用与发展。

Description

一种高度有序的Cu3Pd金属间化合物纳米催化剂的制备与应用
技术领域
本发明属于催化剂制备及加氢应用领域,主要涉及一种Cu3Pd/MgO催化剂的制备方法及应用。
背景技术
催化剂作为社会经济发展的一个重要组成分布,已经广泛应用于社会的各个领域,包括农业,工业,航天等。目前,对于常用的催化剂,主要选用以贵金属为主要原料构建催化材料;贵金属例如Pd,Pt等,由于其独特的电子结构,在各种催化反应中呈现出优异的催化活性。然而,由于这类金属在地球中含量较少,价格较贵,严重抑制了其在催化领域内的使用。将一种非贵金属掺杂进入贵金属,形成合金纳米催化剂(包括金属间化合物),通过调控合金粒子的电子结构,在保持或者提升催化性能的同时,实现贵金属用量的减少,是一种可行且具有发展潜力的方式。目前,对合金纳米催化剂的制备主要通过湿化学法进行,这种方式所需步骤较多,且对合金元素的选择具有一定的局限性;另一方面,这些方法制备的合金粒子,其合金元素之间一般并没有严格的排序,在催化反应中,对催化反应的选择性例如乙炔加氢制备乙烯,将产生不利的影响。因此,开发新的有序合金纳米催化剂制备方法,简化制备步骤,降低贵金属用量,提升催化反应性能,是目前迫切需要解决的问题。
发明内容
针对上述间题,本发明使用一种微等离子体电解氧化技术制备高度有序的Cu3Pd/MgO金属间化合物纳米催化剂;微等离子体电解氧化是一种发生于金属界面的高温高压等离子效应技术,在金属表面可原位氧化金属基体生成金属氧化物形成催化剂载体;同时,这种等离子体效应可在金属基体Mg丝附近分解催化剂前驱体盐,例如螯合的Cu盐与螯合的Pd盐,形成Cu与Pd的合金纳米粒子;由于前驱体盐在Mg丝附近溶液的均匀混合,因此制备得到的合金粒子中Cu与Pd亦呈均匀分布状态;将制备的CuPd合金纳米粒子于氢气气氛中加热还原2h,Cu原子与Pd原子将在热效应下发生重排,最终制备得到高度有序的Cu3Pd金属间化合物纳米催化剂。
本发明可通过以下技术方案实现:
一种高度有序Cu3Pd金属间化合物纳米催化剂的制备方法,包括以下步骤:将硫酸铜与氯钯酸钠分别与EDTA螯合剂混合,并将两种混合物与电解液混合,所得铜元素与钯元素浓度分别为2×10-3-5×10-3mol/L,3×10-4-8×10-4mol/L,电解液温度保持在5-25℃之间,以金属镁丝为阳极,进行微等离子体电解氧化,制备得到CuPd合金纳米催化剂,并通过在氢气气氛中进行热还原处理,最终制备得到Cu3Pd金属间化合物纳米催化剂。
上述技术方案的进一步改进与优化,所用电解液主盐为硅酸钠Na2SjO3·9H2O,浓度为4g/L-9g/L;其他成分包括KF和KOH,其浓度分别为5-9g/L与5-8g/L,电解液总体体积为500mL。
上述技术方案的进一步改进与优化,微等离子体电解氧化过程参数:脉冲数250-400Hz,脉冲宽度50-80μs,恒流模式,设置电流0.5-2A/cm2,作用时间1-2min。
上述技术方案的进一步改进与优化,所述催化剂前驱体盐是将硫酸铜溶液0.1mol/L与氯钯酸钠溶液0.01mol/L分别与EDTA螯合剂配位后,再分别取一定量螯合后的溶液加入至电解液中,经过5分钟搅拌均匀,完成前驱体盐在电解液中的混合。
上述技术方案的进一步改进与优化,所述混合液中催化剂前驱体铜元素与钯元素浓度分别为2×10-3,3×10-4
上述技术方案的进一步改进与优化,所述混合液温度保持在10-25℃,使用液氮进行降温。
上述技术方案的进一步改进与优化,所述金属镁丝用砂纸打磨3次,编织呈螺旋状,并在乙醇中超声清洗15min,烘干保存。
上述技术方案的进一步改进与优化,所用螯合剂EDTA浓度为4×10-3-9×10-3mol/L。
上述技术方案的进一步改进与优化,所述催化剂在氢气气氛中加热(350°C-420℃)还原2h,完成后在密封袋中保存;
所述催化剂是以金属镁丝为基体,丝材表面贴附一层三维多孔MgO,Cu3Pd纳米粒子均匀负载在MgO表面及孔道中,贵金属Pd负载量为100mg/kg。
本发明另一目的是提供一种Cu3Pd/MgO金属间化合物催化剂在乙炔加氢中的应用,所述催化剂应用于转化乙烯中的乙炔杂质形成乙烯。
进一步地,所述催化剂在乙炔加氢反应中转化率为70-80%,催化剂选择性为95%-96%,整体使用寿命可达125h。
本发明利用微等离子体电解氧化技术,结合热还原过程,在金属镁丝基体上原位制备MgO负载的Cu3Pd金属间化合物纳米粒子;与其他方法相比,该技术过程简单,所设计技术更加简便;制备的Cu3Pd金属间化合物,其Cu原子与Pd原子在纳米粒子中呈高度有序排列,提供了均匀的催化环境,在乙炔加氢反应中呈现出优异的催化性能,在80%转化率下,其对乙烯的选择性高达95%;重要的是,这种金属间化合物纳米催化剂大幅降低了贵金属Pd的用量,贵金属Pd负载量仅为100-360mg/kg,实现了贵金属催化剂的等效或增效减量。另外,该催化剂亦呈现出优异的催化稳定性,可保持95%选择性下稳定时效125h。本实验发明的催化剂制备技术,可便捷高效制备乙炔加氢催化剂,极大促进金属催化剂的发展与应用。
附图说明
图1为本发明实施例1中Cu3Pd/MgO催化剂的实物图。
图2为本发明实施例1中Cu3Pd/MgO催化剂的球差电镜(HAADF-STEM)图。
图3为本发明实施例1中Cu3Pd/MgO催化剂催化转化乙炔加氢转化率图。
图4为本发明实施例1中Cu3Pd/MgO催化剂催化乙炔加氢稳定时效图。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
实施例1
一种高度有序的Cu3Pd金属间化合物纳米催化剂制备方法,主要包括以下步骤:
①将1m长金属镁丝编织成螺旋状,用1000#,3000#依次打磨抛光,并在乙醇中超声清洗15min,烘干保存;
②配置电解液,将硅酸钠,氟化钾,氢氧化钾分别加入至500ml水中,溶解;其浓度分别为硅酸钠4g/L,氟化钾5g/L,氢氧化钾6g/L;
③将硫酸铜溶于水,配置成0.1mol/L的硫酸铜溶液;将氯钯酸钠溶于水,配置成0.01mol/L的氯钯酸钠溶液;将EDTA溶于水,配置成0.5mol/L的EDTA溶液;取适量EDTA分别加入至上述催化剂前驱体盐,形成Cu与Pd的螯合物盐;
④取适量步骤③配置的螯合物溶液加入电解液中,混合均匀,电解液中Cu盐与Pd盐最终浓度分别为2×10-3mol/L,3×10-4mol/L;
⑤将步骤④所得溶液进行液氮降温处理,使温度保持在5-10℃之间;
⑥以螺旋状金属镁丝作为阳极进行微等离子体电解氧化处理,其脉冲宽度为80μs,脉冲数为250Hz,脉冲电流密度为0.5A/cm2,作用时间为2min;
⑦将制备的CuPd/MgO催化剂进行氢气气氛下的热还原处理,加热温度为350℃,时间2h,完成后再密封袋中保存。
对本实例制备的以螺旋状镁丝为基体,MgO负载Cu3Pd金属间化合物纳米催化剂,其实物如图1所示:镁丝表面均匀分布呈现灰色的Cu3Pd纳米粒子催化剂。
对本实例制备的以螺旋状镁丝为基体,MgO负载的Cu3Pd金属间化合物纳米催化剂,ICP结果显示制备的催化剂其Pd含量为100mg/kg。
对本实例制备的以螺旋状镁丝为基体,MgO负载的Cu3Pd金属问化合物纳米催化剂,其HAADF-STEM电镜如图2所示:Cu3Pd纳米粒子均匀分布于载体表面及孔道中,Cu原子与Pd原子在纳米粒子中呈高度有序排列状态,为四方结构。
对本实例制备的以螺旋状镁丝为基体,MgO负载的Cu3Pd金属间化合物纳米催化剂,其乙炔加氢转化率如图3所示;随着催化反应温度的提升,乙炔转化率逐渐上升,并最终达到100%。
对本实例制备的以螺旋状镁丝为基体,MgO负载的Cu3Pd金属间化合物纳米催化剂,用于检测乙炔加氢反应的催化稳定性;将催化剂放置于玻璃管反应器中进行催化反应,并用气相色谱进行实时监测;反应过程中每间隔25h进行一次检测,检测其催化反应稳定性,实验结果如图4所示:催化剂在经历125h反应后,其催化反应选择性与转化率依然没有明显改变,呈现出优异的催化稳定性。
实施例2
一种高度有序的Cu3Pd金属间化合物纳米催化剂制备方法,主要包括以下步骤:
①将直径为500μm,长度为1m的镁丝编织螺旋状,使用砂纸打磨后,在乙醇中超声清洗20min,在烘箱中干燥保存;
②配置电解液,将硅酸钠,氟化钾,氢氧化钾分别加入至500ml水中,溶解;其浓度分别为硅酸钠6g/L,氟化钾7g/L,氢氧化钾8g/L;
③将硫酸铜溶于水,配置成0.1mol/L的硫酸铜溶液;将氯钯酸钠溶于水,配置
成0.01mol/L的氯钯酸钠溶液;将EDTA溶于水,配置成0.5mol/L的EDTA溶液;取适量EDTA分别加入至上述催化剂前驱体盐,形成Cu与Pd的螯合物盐;
④取适量步骤③配置的螯合物溶液加入电解液中,混合均匀,电解液中Cu盐与Pd盐最终浓度分别为4×10-3mol/L,6×10-4mol/L;
⑤将步骤④所得溶液进行液氮降温处理,使温度保持在10-15℃之间;
⑥以螺旋状金属镁丝作为阳极进行微等离子体电解氧化处理,其脉冲宽度为50μs,脉冲数为400Hz,脉冲电流密度为1A/cm2,作用时间为1min;
⑦将制备的CuPd/MgO合金纳米催化剂进行氢气气氛下的热还原处理,加热温度为380℃,时间2h,完成后再密封袋中保存。
实施例3
一种高度有序的Cu3Pd金属间化合物纳米催化剂制备方法,主要包括以下步骤:
①将直径为500μm,长度为1.5m的镁丝编织螺旋状,使用砂纸打磨后,在乙醇中超声清洗25min,在烘箱中干燥保存;
②配置电解液,将硅酸钠,氟化钾,氢氧化钾分别加入至500ml水中,溶解;其浓度分别为硅酸钠8g/L,氟化钾8g/L,氢氧化钾5g/L;
③将硫酸铜溶于水,配置成0.1mol/L的硫酸铜溶液;将氯钯酸钠溶于水,配置成0.01mol/L的氯钯酸钠溶液;将EDTA溶于水,配置成0.5mol/L的EDTA溶液;取适量EDTA分别加入至上述催化剂前驱体盐,形成Cu与Pd的螯合物盐;
④取适量步骤③配置的螯合物溶液加入电解液中,混合均匀,电解液中Cu盐与Pd盐最终浓度分别为5×10-3mol/L,8×10-4mol/L;
⑤将步骤④所得溶液进行液氮降温处理,,使电解液温度保持在15-25℃之间;
⑥以螺旋状金属镁丝作为阳极进行微等离子体电解氧化处理,其脉冲宽度为60μs,脉冲数为335Hz,脉冲电流密度为2A/cm2,作用时间为1.5min;
⑦将制备的CuPd/MgO合金纳米催化剂进行氢气气氛下的热还原处理,加热温度为400℃,时间2h,完成后再密封袋中保存。
实施例4
一种高度有序的Cu3Pd金属间化合物纳米催化剂制备方法,主要包括以下步骤:
①将直径为500μm,长度为2m的镁丝编织螺旋状,使用砂纸打磨后,在乙醇中超声清洗30min,在烘箱中干燥保存;;
②配置电解液,将硅酸钠,氟化钾,氢氧化钾分别加入至500ml水中,溶解;其浓度分别为硅酸钠9g/L,氟化钾9g/L,氢氧化钾8g/L;
③将硫酸铜溶于水,配置成0.1mol/L的硫酸铜溶液;将氯钯酸钠溶于水,配置成0.01mol/L的氯钯酸钠溶液;将EDTA溶于水,配置成0.5mol/L的EDTA溶液;取适量EDTA分别加入至上述催化剂前驱体盐,形成Cu与Pd的螯合物盐;
④取适量步骤③配置的螯合物溶液加入电解液中,混合均匀,电解液中Cu盐与Pd盐最终浓度分别为4×10-3mol/L,7×10-4mol/L;
⑤将步骤④所得溶液进行液氮降温处理,,使电解液温度保持在15-25℃之间;
⑥以螺旋状金属镁丝作为阳极进行微等离子体电解氧化处理,其脉冲宽度为70μs,脉冲数为285Hz,脉冲电流密度为2A/cm2,作用时间为1.5min;
⑦将制备的CuPd/MgO合金纳米催化剂进行氢气气氛下的热还原处理,加热温度为420℃,时间2h,完成后再密封袋中保存。

Claims (10)

1.一种高度有序Cu3Pd金属间化合物纳米催化剂的制备方法,其特征在于,包括以下步骤:将硫酸铜与氯钯酸钠分别与EDTA螯合剂混合,并将两种混合物与电解液混合,所得铜元素与钯元素浓度分别为2×10-3-5×10-3mol/L,3×10-4-8×10-4mol/L,电解液温度保持在5-25℃之间,以金属镁丝为阳极,进行微等离子体电解氧化,制备得到CuPd合金纳米催化剂,并通过在氢气气氛中进行热还原处理,最终制备得到Cu3Pd金属间化合物纳米催化剂。
2.根据权利要求1所述的一种高度有序Cu3Pd金属间化合物纳米催化剂的制备方法,其特征在于,所用电解液主盐为硅酸钠Na2SiO3·9H20,浓度为4g/L-9g/L;其他成分包括KF和KOH,其浓度分别为5-9g/L与5-8g/L,电解液总体体积为500mL。
3.根据权利要求2所述的一种高度有序Cu3Pd金属间化合物纳米催化剂的制备方法,其特征在于,微等离子体电解氧化过程参数:脉冲数250-400Hz,脉冲宽度50-80μs,恒流模式,设置电流0.5-2A/cm2,作用时间1-2min。
4.根据权利要求3所述方法,其特征在于,所述催化剂前驱体盐是将硫酸铜溶液0.1mol/L与氯钯酸钠溶液0.01mol/L分别与EDTA螯合剂配位后,再分别取一定量螯合后的溶液加入至电解液中,经过5分钟搅拌均匀,完成前驱体盐在电解液中的混合。
5.根据权利要求1-4中任意一项所述的方法,其特征在于,所述混合液中催化剂前驱体铜元素与钯元素浓度分别为2×10-3,3×10-4
6.根据权利要求1-4中任意一项所述的方法,其特征在于,所述混合液温度保持在10-25℃,使用液氮进行降温。
7.根据权利要求1-4中任意一项所述的方法,其特征在于,所述金属镁丝用砂纸打磨3次,编织呈螺旋状,并在乙醇中超声清洗15min,烘干保存。
8.根据权利要求1-4中任意一项所述的方法,其特征在于,所用螯合剂EDTA浓度为4×10-3-9×10-3mol/L。
9.根据权利要求1-4中任意一项所述的方法,其特征在于,所述催化剂在氢气气氛中加热(350℃-420℃)还原2h,完成后在密封袋中保存;
所述催化剂是以金属镁丝为基体,丝材表面贴附一层三维多孔MgO,Cu3Pd纳米粒子均匀负载在MgO表面及孔道中,贵金属Pd负载量为100mg/kg。
10.权利要求1-4中任意一项所述的一种Cu3Pd/MgO催化剂在乙炔加氢中的应用,其特征在于,所述催化剂应用于消除乙烯气体中的乙炔杂质气体。
CN202310708581.3A 2023-06-15 2023-06-15 一种高度有序的Cu3Pd金属间化合物纳米催化剂的制备与应用 Pending CN116786136A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310708581.3A CN116786136A (zh) 2023-06-15 2023-06-15 一种高度有序的Cu3Pd金属间化合物纳米催化剂的制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310708581.3A CN116786136A (zh) 2023-06-15 2023-06-15 一种高度有序的Cu3Pd金属间化合物纳米催化剂的制备与应用

Publications (1)

Publication Number Publication Date
CN116786136A true CN116786136A (zh) 2023-09-22

Family

ID=88039103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310708581.3A Pending CN116786136A (zh) 2023-06-15 2023-06-15 一种高度有序的Cu3Pd金属间化合物纳米催化剂的制备与应用

Country Status (1)

Country Link
CN (1) CN116786136A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000866A (ja) * 1999-06-22 2001-01-09 Asahi Chem Ind Co Ltd 水処理用触媒組成物及びその触媒を用いた水処理方法
US20050178664A1 (en) * 2004-02-18 2005-08-18 Ilya Ostrovsky Method of anodizing metallic surfaces and compositions therefore
JP2013119634A (ja) * 2011-12-06 2013-06-17 Ulvac Japan Ltd 酸化皮膜の形成方法及び酸化皮膜
WO2018179005A1 (en) * 2017-03-25 2018-10-04 Jawaharlal Nehru Centre For Advanced Scientific Research Shape tailored ordered pdcu3 nanoparticle surpassing the activity of state-of-the-art fuel cell catalyst
CN109289846A (zh) * 2018-10-26 2019-02-01 东北大学 一种Ru/MgO催化剂及其制备方法和应用
CN111013603A (zh) * 2019-11-11 2020-04-17 中国科学院金属研究所 用于乙炔选择性加氢反应的负载型PdCu双金属催化剂及其制备方法
CN113426460A (zh) * 2021-06-23 2021-09-24 中国科学技术大学 一种结构为碳载PdCu3金属间化合物及其制备方法和应用
CN115430429A (zh) * 2022-09-30 2022-12-06 四川轻化工大学 一种负载型高效臭氧氧化催化材料及其制备方法和应用
CN115532269A (zh) * 2022-10-17 2022-12-30 北京化工大学 一种乙炔选择性加氢反应用PdM单原子合金催化剂及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000866A (ja) * 1999-06-22 2001-01-09 Asahi Chem Ind Co Ltd 水処理用触媒組成物及びその触媒を用いた水処理方法
US20050178664A1 (en) * 2004-02-18 2005-08-18 Ilya Ostrovsky Method of anodizing metallic surfaces and compositions therefore
JP2013119634A (ja) * 2011-12-06 2013-06-17 Ulvac Japan Ltd 酸化皮膜の形成方法及び酸化皮膜
WO2018179005A1 (en) * 2017-03-25 2018-10-04 Jawaharlal Nehru Centre For Advanced Scientific Research Shape tailored ordered pdcu3 nanoparticle surpassing the activity of state-of-the-art fuel cell catalyst
CN109289846A (zh) * 2018-10-26 2019-02-01 东北大学 一种Ru/MgO催化剂及其制备方法和应用
CN111013603A (zh) * 2019-11-11 2020-04-17 中国科学院金属研究所 用于乙炔选择性加氢反应的负载型PdCu双金属催化剂及其制备方法
CN113426460A (zh) * 2021-06-23 2021-09-24 中国科学技术大学 一种结构为碳载PdCu3金属间化合物及其制备方法和应用
CN115430429A (zh) * 2022-09-30 2022-12-06 四川轻化工大学 一种负载型高效臭氧氧化催化材料及其制备方法和应用
CN115532269A (zh) * 2022-10-17 2022-12-30 北京化工大学 一种乙炔选择性加氢反应用PdM单原子合金催化剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DINGWANG YUAN等: "Selective hydrogenation of acetylene on Cu–Pd intermetallic compounds and Pd atoms substituted Cu(111) surfaces", 《PHYS. CHEM. CHEM. PHYS.》, vol. 23, no. 14, 9 May 2021 (2021-05-09), pages 8653 - 8660 *
姚建华等: "《多能场激光复合表面改性技术及其应用》", 30 November 2021, 北京:机械工业出版社, pages: 328 *
张谷令等: "《应用等离子体物理学》", 30 September 2008, 北京:首都师范大学出版社, pages: 219 *
郑文娟: "Cu基和Pd基合金催化剂组分及结构对乙炔选择性加氢反应催化性能的影响", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 02, 15 February 2022 (2022-02-15), pages 016 - 190 *

Similar Documents

Publication Publication Date Title
Zhang et al. Carbon-based material-supported single-atom catalysts for energy conversion
Salonen et al. Sustainable catalysts for water electrolysis: Selected strategies for reduction and replacement of platinum-group metals
KR102173226B1 (ko) 산소 발생 촉매, 전극 및 전기화학반응 시스템
Yang et al. TePbPt alloy nanotube as electrocatalyst with enhanced performance towards methanol oxidation reaction
Boukil et al. Enhanced electrocatalytic activity and selectivity of glycerol oxidation triggered by nanoalloyed silver–gold nanocages directly grown on gas diffusion electrodes
CN108191009A (zh) 聚吡咯修饰的Ag-Pd双金属复合电催化阴极及制备方法和应用
JP5664370B2 (ja) 触媒微粒子の製造方法
CN112090436B (zh) 一种镍基催化剂、制备方法及应用
Qiao et al. Active-site engineering in dealloyed nanoporous catalysts for electrocatalytic water splitting
CN109994742B (zh) 一种有序多孔金属催化层及其制备方法、燃料电池
Deng et al. Pt modified NiMoO4-GO/NF nanorods with strong metal-support interaction as efficient bifunctional catalysts for overall water splitting
Zheng et al. Robust FeCoP nanoparticles grown on a rGO-coated Ni foam as an efficient oxygen evolution catalyst for excellent alkaline and seawater electrolysis
Xie et al. Facile surface reconstructions of cobalt–copper phosphide heterostructures enable efficient electrocatalytic glycerol oxidation for energy-saving hydrogen evolution
Zhou et al. Fabrication of amorphous FeCoNiCuMnPx high-entropy phosphide/carbon composites with a heterostructured fusiform morphology for efficient oxygen evolution reaction
Liu et al. Highly dispersed copper-iron nanoalloy enhanced electrocatalytic reduction coupled with plasma oxidation for ammonia synthesis from ubiquitous air and water
JP2012035178A (ja) 触媒の製造方法及び触媒
Wen et al. Reconstruction of FeNi layered dihydroxides by cobalt doping to improve the electrocatalytic activity of oxygen evolution reaction
Chen et al. Constructing abundant interfaces by decorating MoP quantum dots on CoP nanowires to induce electronic structure modulation for enhanced hydrogen evolution reaction
Fan et al. The Promising Seesaw Relationship Between Activity and Stability of Ru‐Based Electrocatalysts for Acid Oxygen Evolution and Proton Exchange Membrane Water Electrolysis
CN116786136A (zh) 一种高度有序的Cu3Pd金属间化合物纳米催化剂的制备与应用
Gao et al. OER catalyst fabricated with ZIF-67 derived carbon and selectively exsolvated perovskite oxide
CN113233514B (zh) 囊泡状磷酸根离子功能化氧化钴纳米材料的制备方法及应用
JP6403046B2 (ja) 燃料電池用触媒の製造方法、それを用いた触媒及び燃料電池
Jiao et al. On-demand continuous H 2 release by methanol dehydrogenation and reforming via photocatalysis in a membrane reactor
Guo et al. Electrochemical tuning of a Cu 3 P/Ni 2 P hybrid for a promoted hydrogen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination