CN116695124A - 一种油田用植物复合型缓蚀剂及其制备方法 - Google Patents

一种油田用植物复合型缓蚀剂及其制备方法 Download PDF

Info

Publication number
CN116695124A
CN116695124A CN202310839059.9A CN202310839059A CN116695124A CN 116695124 A CN116695124 A CN 116695124A CN 202310839059 A CN202310839059 A CN 202310839059A CN 116695124 A CN116695124 A CN 116695124A
Authority
CN
China
Prior art keywords
plant
corrosion inhibitor
plant component
corrosion
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310839059.9A
Other languages
English (en)
Inventor
贺三
蔡欣悦
邹永莉
赵玥颖
姚岸林
谢梦雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202310839059.9A priority Critical patent/CN116695124A/zh
Publication of CN116695124A publication Critical patent/CN116695124A/zh
Priority to US18/469,487 priority patent/US11939681B1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/12Oxygen-containing compounds
    • C23F11/122Alcohols; Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/54Compositions for in situ inhibition of corrosion in boreholes or wells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/12Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/16Sulfur-containing compounds
    • C23F11/163Sulfonic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

本发明涉及一种油田用植物复合型缓蚀剂及其制备方法,属于油田化学剂制备技术领域。植物复合型缓蚀剂包括第一植物组分、第二植物组分、缓蚀增效剂以及有机溶剂。第一植物组分由万寿菊经超临界CO2萃取得到的玉米黄质及其衍生物;第二植物组分由丝瓜叶、番石榴叶、墨旱莲以质量比5:8:9制备而成;缓蚀增效剂为碘化钾、8‑羟基喹啉、十二烷基苯磺酸钠按照质量比3:4:2的比例混合制成;有机溶剂为质量浓度82%的乙醇。本发明的复合型缓蚀剂能在碳钢表面形成致密的保护膜,具有良好的缓蚀效果,且主要成分为植物提取物,减少了缓蚀剂中有害化学品成分。

Description

一种油田用植物复合型缓蚀剂及其制备方法
技术领域
本发明属于油田化学剂制备技术领域,具体涉及一种油田用植物复合型缓蚀剂及其制备方法。
背景技术
在油气田开发过程中,常伴随着严重的金属腐蚀问题,使用缓蚀剂是最普遍和最经济的金属防腐方法,它们使用便捷,仅用较低的浓度就能得到良好的缓蚀效果。常用的缓蚀剂根据化学结构可分为无机缓蚀剂和有机缓蚀剂两种。无机缓蚀剂大多含磷、硫、氮、氧等高电负性原子,例如砷酸盐、磷酸盐和铬酸盐等。有机缓蚀剂大多含有不饱和键或大共轭体系的有机杂环化合物,例如酰胺、席夫碱和吡啶等。上述缓蚀剂虽具有较好的缓蚀效率,但其合成路线复杂,价格高昂,不可生物降解,通常具有毒性,大量使用易引起赤潮和藻类繁殖,造成水体富营养化,还会破坏土壤环境。因此需要寻找缓蚀效率高且环境友好型的缓蚀剂。
研究表明,植物中含有不饱和结构、π键、C、N、S、O等杂原子的有机物容易在金属表面发生吸附,形成一层具有防护作用的保护膜,是能够抑制金属腐蚀的潜在缓蚀剂。目前为止,已经有了许多植物提取物用作缓蚀剂的案例,例如橘皮、柚皮、芦荟、苦丁茶、银杏果实和橄榄叶等,均具有良好的腐蚀抑制作用。由于植物无毒无污染,可生物降解,制备和使用过程对人体及环境的危害小,是缓蚀剂及其技术发展的导向。但目前的植物缓蚀剂也存在以下问题:使用时性质不稳定,易分解变质,用量大,当环境条件改变后缓蚀效率会急剧下降,很难应用于工程实践。
发明内容
本发明涉及一种油田用植物复合型缓蚀剂及其制备方法,解决了现有植物提取物缓蚀剂性质不稳定,易分解变质,用量大,应用条件苛刻,很难应用于工程实践等问题,改善了植物缓蚀剂的各项缓蚀性能。
为实现上述目的,本发明采用下述技术方案:
一种油田用植物复合型缓蚀剂,包括以下质量份的原料制备而成:第一植物组分15~25份、第二植物组分9~18份、缓蚀增效剂6~9份、有机溶剂30~50份。
所述第一植物组分的原材料为万寿菊,所述第二植物组分的原材料为丝瓜叶、番石榴叶以及墨旱莲。
进一步地,所述第一植物组分的制备步骤为:取新鲜的万寿菊进行清洗,用无水乙醇进行消毒,40℃烘干,之后研磨粉碎,将得到的万寿菊粉末置于超临界萃取仪的萃取釜中,使用超临界CO2作为溶剂,以0.012kg/min的恒定流速向上流动6小时,无水乙醇作为共溶剂,通过高效液相色谱泵将其送入位于萃取釜前的预热容器中,萃取釜萃取压力为36.7MPa,萃取温度为40.5℃,每个循环结束时,在加热的背压阀中对流出物流进行减压,并将提取物收集在冷却的两室收集容器中,玉米黄质及其衍生物溶解在乙醇中,通过蒸发去除溶剂后,得到第一植物组分。
进一步地,所述第二植物组分的制备步骤为:取新鲜的丝瓜叶,番石榴叶以及墨旱莲进行清洗,消毒,烘干,粉碎,以质量比5:8:9配比后,按照液料比13mL/g添加无水乙醇,浸泡36小时。将浸泡后的混合物用超声波清洗器常温超声30min,随后减压抽滤去除不溶物,再利用旋转蒸发仪在80℃条件下将溶液旋转蒸发浓缩至1/3体积,得到第二植物组分。
进一步地,所述缓蚀增效剂为碘化钾、8-羟基喹啉、十二烷基苯磺酸钠按照质量比3:4:2的比例混合制成。
进一步地,所述有机溶剂为质量浓度82%的乙醇。
本发明所述的一种油田用植物复合型缓蚀剂的制备方法,包括以下步骤:
(1)原料准备:准备第一植物组分、第二植物组分和缓蚀增效剂备用;
(2)制备:将不同质量份的第一植物组分、第二植物组分和缓蚀增效剂加入到有机溶剂中,搅拌混合均匀得到植物复合型缓蚀剂。
与现有技术相比,本发明的有益之处在于:
(1)本发明选用的天然绿色植物提取物含有黄酮类化合物、氨基酸、多糖类物质,其中的玉米黄质和荭草苷都具有较大的吸附能,提取物极性基团中的N、O原子与金属原子空的d轨道形成配位键吸附于金属表面。通过利用天然绿色植物的提取物作为缓蚀剂的主要成分之一,减少了缓蚀剂中的有害化学品成分,为未来新型高效缓蚀剂的开发设计提供了新的思路和视角。
(2)本发明采用两种不同的植物提取方法,超临界流体萃取中超临界CO2扩散系数是液体的近100倍,能够迅速渗入万寿菊粉末中的微孔隙,对玉米黄质及其衍生物进行快速高效提取。超声波提取法可使植物在短时间内释放出更多的有效物质,加速细胞内有效物质的释放、溶解与扩散。
(3)本发明制备植物复合型缓蚀剂所选原料都属于生活中常见植物,通过调整植物提取物与表面活性剂之间的协同性和配伍性,解决了现有植物提取物缓蚀剂性质不稳定,应用条件苛刻,很难应用于工程实践等问题,适用于油田中大规模推广使用。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技及术人员所理解。
附图说明
图1为实施例3中L245N钢在不同浓度缓蚀剂的腐蚀溶液中的极化曲线图;
图2为实施例3中L245N钢在不同浓度缓蚀剂的腐蚀溶液中的阻抗谱图;
图3为实施例3中L245N钢在未添加缓蚀剂(a)和添加体积比4%缓蚀剂(b)的腐蚀溶液浸泡24小时的腐蚀形貌。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例1
一种油田用植物复合型缓蚀剂,包括以下质量份的原料制备而成,第一植物组分15份、第二植物组分9份、缓蚀增效剂6份、有机溶剂30份,有机溶剂为质量浓度82%的乙醇,复合型缓蚀剂各组分在乙醇溶液中溶解度较高。
第一植物组分的原材料为万寿菊,第一植物组分的提取步骤为:取新鲜的万寿菊进行清洗,用无水乙醇进行消毒,40℃烘干,之后研磨粉碎,将得到的万寿菊粉末置于超临界萃取仪的萃取釜中,使用超临界CO2作为溶剂,以0.012kg/min的恒定流速向上流动6小时,无水乙醇作为共溶剂以改变CO2极性,通过高效液相色谱泵将其送入位于萃取釜前的预热容器中,萃取釜萃取压力为36.7MPa,萃取温度为40.5℃,每个循环结束时,在加热的背压阀中对流出物流进行减压,并将提取物收集在冷却的两室收集容器中,玉米黄质及其衍生物溶解在乙醇中,通过蒸发去除溶剂后,得到第一植物组分。
第二植物组分的原材料为丝瓜叶,番石榴叶以及墨旱莲,第二植物组分的提取步骤包括:取新鲜的丝瓜叶,番石榴叶以及墨旱莲进行清洗,消毒,烘干,粉碎,以质量比5:8:9配比后,按照液料比13mL/g添加无水乙醇,浸泡36小时。将浸泡后的混合物用超声波清洗器常温超声30min,超声波功率为125W,随后减压抽滤去除不溶物,再利用旋转蒸发仪在80℃条件下将溶液旋转蒸发浓缩至1/3体积,得到第二植物组分。
缓蚀增效剂为碘化钾、8-羟基喹啉、十二烷基苯磺酸钠按照质量比3:4:2的比例混合制成,作为表面活性剂能够进一步提高缓蚀剂的缓蚀效果。
本实施例所述的植物复合型缓蚀剂的制备方法,包括以下步骤:
(1)原料准备:准备第一植物组分、第二植物组分和缓蚀增效剂备用;
(2)制备:将不同质量份的第一植物组分、第二植物组分和缓蚀增效剂加入到有机溶剂中,搅拌混合均匀得到植物复合型缓蚀剂。
实施例2
本实施例与实施例1基本相同,其不同之处在于:复合型缓蚀剂中各组分原材料的质量分数占比不同。
一种油田用植物复合型缓蚀剂,包括以下质量份的原料制备而成,第一植物组分20份、第二植物组分13份、缓蚀增效剂6份、有机溶剂36份,有机溶剂为质量浓度82%的乙醇。
实施例3
本实施例与实施例1基本相同,其不同之处在于:复合型缓蚀剂中各组分原材料的质量分数占比不同。
一种油田用植物复合型缓蚀剂,包括以下质量份的原料制备而成,第一植物组分20份、第二植物组分15份、缓蚀增效剂7份、有机溶剂42份,有机溶剂为质量浓度82%的乙醇。
实施例4
本实施例与实施例1基本相同,其不同之处在于:复合型缓蚀剂中各组分原材料的质量分数占比不同。
一种油田用植物复合型缓蚀剂,包括以下质量份的原料制备而成,第一植物组分25份、第二植物组分15份、缓蚀增效剂8份、有机溶剂46份,有机溶剂为质量浓度82%的乙醇。
复合型缓蚀剂性能测试1
对实施例1~4中的复合型缓蚀剂进行性能测试,采用行业内通用的缓蚀效率实验方法(失重法)进行评价,方法概要如下:
腐蚀溶液为饱和CO2的模拟油田采出水,组分见下表1,腐蚀温度为45℃,常压。以油田常用的L245N钢片为腐蚀对象,L245N钢切割成50mm×10mm×3mm的金属试样,使用水磨砂纸打磨试样,直至表面镜面光滑,再用去离子水、丙酮、无水乙醇洗净,干燥后进行称重。将试样浸入添加体积比4%缓蚀剂的腐蚀溶液,进行三天失重实验。同条件下计算实施例1~4试样腐蚀前后质量差,计算缓蚀剂效率,结果以质量百分数表示,见下表2。
采用失重法可以计算得到试样的平均腐蚀速率,计算公式:
式中,v为腐蚀速率,mm/y;M为实验前的试样质量,g;M1为实验后的试样质量,g;S为试样的总面积,cm2;t为实验时间,h;D为材料的密度,kg/m3。研究的金属材料为L245N钢,密度为7840kg/m3
缓蚀剂的缓蚀效率计算公式:
式中,η为缓蚀效率,%;v0、vinh分别为添加缓蚀剂前后的腐蚀速率,mm/y。
表1腐蚀溶液配方表
化学试剂 NaCl KCl CaCl2 MgCl2·6H2O Na2SO4 NaHCO3
浓度(g/L) 16.5577 0.5400 0.4500 1.1178 0.3700 1.6490
表2复合型缓蚀剂性能测试结果
实施例 药剂浓度%v/v 缓蚀率%
实施例1 4 86.2
实施例2 4 91.5
实施例3 4 95.6
实施例4 4 92.3
对比实施例1~4的实验结果可以看出,植物复合型缓蚀剂具有良好的缓蚀性能,说明本发明所提供的技术方案有效。
对比实例1~4,当增大第一植物组分、第二植物组分的占比,对复合型缓蚀剂的缓蚀效果有积极影响,缓蚀效果增强,但是不宜过高,以实例3中的复合型缓蚀剂组分配比为最优配比。
复合型缓蚀剂性能测试2
本发明采用电化学法、腐蚀形貌分析对实例3制得的复合型缓蚀剂的抗腐蚀性能进行了以下研究:
①电化学测试:L245N钢切割成10mm×10mm×3mm的正方形金属块,将表面磨净后使用环氧树脂固化封装。电化学实验采用传统的三电极体系,在CS350(武汉科思特仪器有限公司)电化学工作站进行。工作电极由L245N钢制成,参比电极采用的是饱和甘汞电极,辅助电极采用铂电极,实验在45℃恒温水浴中进行。
缓蚀剂浓度以缓蚀剂与腐蚀溶液之间的体积比表示。测试极化曲线时,扫描电位范围设置为相对开路电位±200mV,动电位扫描速率设置为0.166mV/s,然后经过Tafel外推法拟合得到所需要的相关参数,缓蚀效率(η)由如下公式得到:
式中,η为缓蚀效率,%;和Icorr分别为添加缓蚀剂前后的腐蚀电流密度,μA/cm2
②表面形貌观察:用于形貌观察的L245N钢试样尺寸为50mm×10mm×3mm,打磨至表面光亮后分别在未添加缓蚀剂和添加缓蚀剂的腐蚀溶液中腐蚀24小时,腐蚀温度为45℃,取出干燥后采用扫描电子显微镜观测其腐蚀形貌。
图1为L245N钢在不同浓度(0%~5%)缓蚀剂的腐蚀溶液中进行腐蚀实验的极化曲线。加入缓蚀剂后,腐蚀电位发生正移,曲线阴极部分和阳极部分均向低电流值方向移动,说明阴阳两极反应均得到有效抑制。由图拟合可得腐蚀电位Ecorr,腐蚀电流密度Icorr,阳极塔菲尔斜率Ba和阴极塔菲尔斜率Bc等电化学参数,计算结果见下表3。
表3缓蚀实验结果
图2为L245N钢在不同浓度(0%~5%)缓蚀剂的腐蚀溶液中进行腐蚀实验的电化学阻抗谱,高频区容抗弧的曲率半径随缓蚀剂浓度的增加先增后减,表明随着缓蚀剂浓度的增加,缓蚀剂分子吸附在L245N钢表面所形成的防护层愈加完整,电荷转移电阻逐渐升高,但当缓蚀剂添加量过高时,会对缓蚀剂分子的吸附产生不利影响。采用等效电路图拟合EIS参数,拟合后的参数见下表4。
表4电化学阻抗谱拟合结果
图3(a)和图3(b)分别为L245N钢试样在未添加缓蚀剂和添加体积比4%缓蚀剂的腐蚀溶液中腐蚀24小时后的腐蚀形貌。扫描电子显微镜加速电压(EHT)取20kV,工作距离(WD)为13.5mm,放大倍数(Mag)1000倍,选用SE1探测器。未添加缓蚀剂的腐蚀溶液中腐蚀状况较为严重,形成了较多颗粒状的腐蚀产物附着在金属表面。而L245N钢在添加缓蚀剂后的腐蚀溶液中腐蚀程度较轻,金属表面平整,没有明显的大面积腐蚀,说明缓蚀剂能有效抑制L245N钢在腐蚀溶液中的腐蚀。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (6)

1.一种油田用植物复合型缓蚀剂,其特征在于,包括以下质量份的原料制备而成:第一植物组分15~25份、第二植物组分9~18份、缓蚀增效剂6~9份、有机溶剂30~50份;
所述第一植物组分的原材料为万寿菊,所述第二植物组分的原材料为丝瓜叶、番石榴叶以及墨旱莲。
2.根据权利要求1所述的一种油田用植物复合型缓蚀剂,其特征在于,所述第一植物组分的制备步骤具体是:取新鲜的万寿菊进行清洗,用无水乙醇进行消毒,40℃烘干,之后研磨粉碎,将得到的万寿菊粉末置于超临界萃取仪的萃取釜中,使用超临界CO2作为溶剂,以0.012kg/min的恒定流速向上流动6小时,无水乙醇作为共溶剂,通过高效液相色谱泵将其送入位于萃取釜前的预热容器中,萃取釜萃取压力为36.7MPa,萃取温度为40.5℃,每个循环结束时,在加热的背压阀中对流出物流进行减压,并将提取物收集在冷却的两室收集容器中,玉米黄质及其衍生物溶解在乙醇中,通过蒸发去除溶剂后,得到第一植物组分。
3.根据权利要求1所述的一种油田用植物复合型缓蚀剂,其特征在于,所述第二植物组分的制备步骤具体是:取新鲜的丝瓜叶、番石榴叶以及墨旱莲进行清洗,消毒,烘干,粉碎,以质量比5:8:9配比后,按照液料比13mL/g添加无水乙醇,浸泡36小时,将浸泡后的混合物用超声波清洗器常温超声30min,随后减压抽滤去除不溶物,再利用旋转蒸发仪在80℃条件下将溶液旋转蒸发浓缩至1/3体积,得到第二植物组分。
4.根据权利要求1所述的一种油田用植物复合型缓蚀剂,其特征在于,所述缓蚀增效剂为碘化钾、8-羟基喹啉、十二烷基苯磺酸钠按照质量比3:4:2的比例混合制成。
5.根据权利要求1所述的一种油田用植物复合型缓蚀剂,其特征在于,所述有机溶剂为质量浓度82%的乙醇。
6.根据权利要求1~5任一所述的一种油田用植物复合型缓蚀剂的制备方法,其特征在于,包括以下步骤:
(1)原料准备:准备第一植物组分、第二植物组分和缓蚀增效剂备用;
(2)制备:将不同质量份的第一植物组分、第二植物组分和缓蚀增效剂加入到有机溶剂中,搅拌混合均匀得到植物复合型缓蚀剂。
CN202310839059.9A 2023-07-10 2023-07-10 一种油田用植物复合型缓蚀剂及其制备方法 Pending CN116695124A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310839059.9A CN116695124A (zh) 2023-07-10 2023-07-10 一种油田用植物复合型缓蚀剂及其制备方法
US18/469,487 US11939681B1 (en) 2023-07-10 2023-09-18 Plant composite corrosion inhibitor for oil field and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310839059.9A CN116695124A (zh) 2023-07-10 2023-07-10 一种油田用植物复合型缓蚀剂及其制备方法

Publications (1)

Publication Number Publication Date
CN116695124A true CN116695124A (zh) 2023-09-05

Family

ID=87829357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310839059.9A Pending CN116695124A (zh) 2023-07-10 2023-07-10 一种油田用植物复合型缓蚀剂及其制备方法

Country Status (2)

Country Link
US (1) US11939681B1 (zh)
CN (1) CN116695124A (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407623B2 (en) * 2003-12-09 2008-08-05 Ge Betz, Inc. Steam condensate corrosion inhibitor compositions and methods
CN103114289A (zh) 2013-03-07 2013-05-22 天津亿利科能源科技发展股份有限公司 用于高氯、高二氧化碳海上油田集输***的复合型缓蚀剂及其制备方法
CN108823570B (zh) 2018-07-28 2020-11-06 中国石油天然气集团有限公司 一种油田地面集输管线用环保型耐氧缓蚀剂及其制备方法
CN114684931A (zh) 2020-12-28 2022-07-01 中国石油化工股份有限公司 一种适用于高盐高氯工况下的缓蚀剂及其制备方法

Also Published As

Publication number Publication date
US11939681B1 (en) 2024-03-26

Similar Documents

Publication Publication Date Title
Wang et al. Solanum lasiocarpum L. extract as green corrosion inhibitor for A3 steel in 1 M HCl solution
Selvi et al. Corrosion inhibition by beet root extract
Wang et al. The performance and mechanism of bifunctional biocide sodium pyrithione against sulfate reducing bacteria in X80 carbon steel corrosion
Zhang et al. Inhibition of copper corrosion in aerated hydrochloric acid solution by amino-acid compounds
Belarbi et al. Inhibition of calcium carbonate precipitation by aqueous extract of Paronychia argentea
Abbout et al. New formulation based on Ceratonia siliqua L seed oil, as a green corrosion inhibitor of iron in acidic medium
A Negm et al. Impact of synthesized and natural compounds in corrosion inhibition of carbon steel and aluminium in acidic media
Liu et al. Corrosion inhibition of deposit-covered X80 pipeline steel in seawater containing Pseudomonas stutzeri
Chen et al. Study of Polyaspartic Acid and Chitosan Complex Corrosion Inhibition and Mechanisms.
Senhaji et al. Asteriscus imbricatus extracts: Antifungal activity and anticorrosion inhibition
Sharma et al. Inhibitive effect of Prosopis cineraria on mild steel in acidic media
Joycee et al. Corrosion mitigation by an eco-friendly inhibitor: Beta vulgaris (beetroot) extract on mild steel in simulated oil well water medium
Salim et al. Pomegranate peel plant extract as potential corrosion inhibitor for mild carbon steel in a 1 M HCl solution
CN116695124A (zh) 一种油田用植物复合型缓蚀剂及其制备方法
Xie et al. Synergistic effect between chloride and sulfate reducing bacteria in corrosion inhibition of X100 pipeline steel in marine environment
CN110863208B (zh) 一种基于黄精多糖的碳钢酸洗缓蚀剂
Gusti et al. Exploration of coffee bean husks waste as an eco-environmentally friendly corrosion inhibitor on mild steel in sulphuric acid solutions
Özkır An overview of Plagiochila porelloides (Marchantiophyta) as a new environmentally sustainable green corrosion inhibitor for mild steel in acidic solution
Mu’azu et al. Ethanol extract of Avocado leaf as corrosion inhibitor for the protection of mild steel in acidic environment
Wang et al. Preparation of Isoetes sinensis Extract as a Green Corrosion Inhibitor for Q235 Carbon Steel in Hydrochloric Acid
Bahrami Panah et al. Effect of Structural Changes on Corrosion Inhibition Behavior of Synthesized N2O4 Imine Compounds for Steel Pipelines in Oil and Gas Wells
CN113773685A (zh) 一种含有植物提取物的埃米生物质防腐剂及其制备方法
CN110952103A (zh) 一种用于含氧盐水中碳钢缓蚀剂及其制备方法
CN114540819A (zh) 一种基于火棘果的缓蚀剂、制备方法及应用
Verma et al. Inhibition Effect of Bombax ceiba Flower Extract as Green Corrosion Inhibitor of Mild Steel in 0.5 MH2so4 Medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination