CN116590795A - 一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法 - Google Patents

一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法 Download PDF

Info

Publication number
CN116590795A
CN116590795A CN202310604790.3A CN202310604790A CN116590795A CN 116590795 A CN116590795 A CN 116590795A CN 202310604790 A CN202310604790 A CN 202310604790A CN 116590795 A CN116590795 A CN 116590795A
Authority
CN
China
Prior art keywords
ceramic substrate
gan
substrate
ceramic
thick film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310604790.3A
Other languages
English (en)
Inventor
杨学林
沈波
吴俊慷
杨鸿才
王豪捷
刘伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN202310604790.3A priority Critical patent/CN116590795A/zh
Publication of CN116590795A publication Critical patent/CN116590795A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明公开了一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法,首先在在陶瓷衬底表面沉积填充材料,通过研磨抛光获得光滑表面;然后在表面形成二维材料层,并进行等离子体处理和/或原位NH3处理;接着生长单晶GaN厚膜材料,最后将单晶GaN厚膜材料从陶瓷衬底上分离,形成GaN自支撑衬底。该方法充分利用了陶瓷衬底与GaN热膨胀系数匹配的优点,并利用二维材料层为GaN的生长提供有序的六方结构,通过等离子体处理和/或NH3处理解决了二维材料表面难成核和外延层存在两种面内取向的问题,实现了高质量GaN自支撑衬底的制备。基于引入的二维材料层,可采用剥离技术将单晶GaN厚膜材料从陶瓷衬底上分离下来,基于成熟的产业链还可以实现大尺寸、低成本的晶圆级制造。

Description

一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法
技术领域
本发明属于半导体技术领域,具体涉及一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法。
背景技术
GaN材料作为宽禁带半导体材料的代表,具有禁带宽度大、击穿场强高、电子饱和漂移速率大以及耐高温抗辐照等诸多优点,在功率电子、射频电子以及光电器件方面具有重要应用。然而,由于GaN自支撑衬底发展缓慢,大量GaN材料与器件集中于异质外延,常用的异质外延衬底包括SiC、Si和蓝宝石衬底。以上异质衬底与外延层之间均存在较大热失配和晶格失配。所以,发展GaN自支撑衬底是解决这一问题的关键。
氢化物气相外延(HVPE)是目前生长GaN自支撑衬底最常用的方法,具有生长速度快、晶体质量好的优点。但是,HVPE生长GaN自支撑衬底时也需要引入衬底材料,目前常用的衬底材料为蓝宝石衬底。然而,使用蓝宝石衬底同样会在HVPE生长过程中由于热失配和晶格失配引入巨大的应力,从而导致GaN中存在较高的位错密度,或者开裂。另外,由于应力导致的翘曲和蓝宝石巨大的莫氏硬度,也导致HVPE生长的GaN难以从蓝宝石上剥离下来。
为了解决HVPE生长GaN自支撑衬底过程中的应力问题和剥离困难问题,同时兼顾大尺寸、低成本、质量好的需要,陶瓷衬底逐渐受到重视。陶瓷衬底包括AlN陶瓷、SiC陶瓷等,具有与GaN十分接近的热膨胀系数,可以极大限度的减小热应力。目前陶瓷材料通常因其优异的导热性能和机械强度,被用作电子器件的封装散热基板,相关产业成熟,能够提供低成本、大尺寸、质量好的陶瓷衬底。
但是,陶瓷衬底表面粗糙度大,且没有长程有序的晶格结构,所以在陶瓷衬底上生长单晶GaN自支撑衬底难度很大。本发明人在专利ZL202310044590.7中采用范德华外延技术,引入二维材料来为外延的生长提供晶格结构。但是,范德华外延技术存在缺乏悬挂键难以成核,和外延层存在两种近乎等效的面内取向两个严重问题。所以该专利技术必须额外引入PVD-AlN来调控成核与面内取向,优选地还需要引入Al-O化合物层等额外结构,不仅结构复杂,难度大成本高,而且不利于单晶GaN自支撑衬底的生长。
发明内容
为了解决现有技术中在陶瓷衬底上生长单晶GaN自支撑衬底难度大的问题,本发明旨在提供一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法。
本发明采用准范德华外延技术。首先,陶瓷衬底表面通常粗糙度较大,无法达到HVPE生长的要求,本发明引入填充材料来解决这一问题。其次,陶瓷衬底表面没有长程有序的晶格结构,无法支撑单晶材料的生长,本发明引入二维材料来解决这一问题。再者,为了解决二维材料表面难以成核和外延层存在两种面内取向的问题,需要精准调控准范德华外延技术中的等离子体(Plasma)处理和/或原位NH3处理。最后,利用陶瓷衬底较小的莫氏硬度或者准范德华外延技术引入的二维材料,实现GaN自支撑衬底的剥离。
为了实现上述技术目的,本发明采用以下技术方案:
一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法,包括以下步骤:
1)选取陶瓷衬底;
2)在陶瓷衬底表面沉积填充材料,然后研磨抛光,获得光滑表面;
3)在表面形成二维材料层,然后对二维材料层表面进行等离子体处理和/或原位NH3处理;
4)在表面生长单晶GaN厚膜材料;
5)将单晶GaN厚膜材料从陶瓷衬底上分离,形成GaN自支撑衬底。
上述步骤1)选取的陶瓷衬底可以是AlN陶瓷、SiC陶瓷或其他陶瓷材料。
上述步骤2)在陶瓷衬底表面沉积的填充材料可以是AlN、SiC、GaN、SiO2、SiN、Al2O3或其他材料,优选为与衬底具有相同的元素组成的材料。
上述步骤2)沉积填充材料的方法可以是PVD(物理气相沉积)、CVD(化学气相沉积)、MOCVD(金属有机气相外延)、PLD(脉冲激光沉积)、MBE(分子束外延)、ALD(原子层沉积)或HVPE。沉积的填充材料厚度可以是100~100 000纳米,然后进行研磨抛光,优选减薄至100~10000纳米,一般采用机械研磨和机械抛光(或先机械抛光再化学机械抛光)的方法获得光滑表面。该处理可以解决陶瓷衬底表面粗糙度大的问题。
上述步骤3)中在表面形成二维材料层的方法可以是湿法转移或干法转移,所述二维材料层可以生长自金属衬底或晶圆衬底上,然后转移到陶瓷衬底上。所述二维材料层可以是选自石墨烯、BN、过渡金属硫化物(如MoS2)中的一种或多种的单原子层或多原子层的组合。所述二维材料是单晶二维材料。
上述步骤3)形成的二维材料层为单晶III族氮化物的外延生长提供有序六方结构,并可能提供极化场。
上述步骤3)在表面形成二维材料后,可以对表面进行等离子体处理。优选的,等离子体处理采用的气体为N2或Ar或其组合,处理时间为1~600秒。
上述步骤3)在表面形成二维材料层后,或形成二维材料层并进行等离子体处理后,可以利用生长设备的高温和NH3对表面进行原位NH3处理。优选的,原位NH3处理的温度为600~1300摄氏度,NH3流量为100~8000sccm。
上述步骤4)中,在表面生长单晶GaN厚膜材料的方法优选是HVPE。所述单晶GaN厚膜材料的厚度为1~10000微米。
上述步骤5)中,将单晶GaN厚膜材料从陶瓷衬底上分离的方法可以是机械研磨去除陶瓷衬底。优选的,在对陶瓷衬底机械研磨后,对研磨表面进行机械抛光和化学机械抛光。
优选的,将单晶GaN厚膜材料从陶瓷衬底上分离的方法可以是机械剥离。优选的,在机械剥离后,对剥离表面进行机械抛光和化学机械抛光。
本发明的有益效果:
本发明提供了一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法。其中,陶瓷衬底与GaN具有接近的热膨胀系数,特别适合GaN单晶自支撑衬底的生长。填充材料可覆盖陶瓷表面的孔隙与晶粒高度差。对填充材料进行研磨和抛光可以在陶瓷衬底表面实现光滑的表面。在表面形成二维材料层为GaN的生长提供有序的六方结构,保证生长出单晶GaN,如果采用具有极性的二维材料,二维材料还会为GaN的生长提供极性,并且,二维材料还有助于缓解面内应力,对GaN自支撑衬底的生长有益。对二维材料层表面进行等离子体处理和/或NH3处理,不仅解决了二维材料表面难成核和外延层存在两种面内取向的问题,还比传统范德华外延技术的结构更加简单,适合于单晶GaN自支撑衬底的生长。另外,基于陶瓷材料较低的莫氏硬度,机械研磨去除衬底也比较容易。特别的,基于引入的二维材料层,本发明还可以采用更为容易的机械剥离技术。
本发明不仅突破了传统HVPE生长技术中对单晶衬底的严格要求,实现了在陶瓷衬底上生长单晶GaN自支撑衬底,还充分利用了陶瓷衬底与GaN热膨胀系数匹配的优点,实现了低热失配的高质量GaN自支撑衬底。而且,基于引入的二维材料层,本发明可以采用更为容易的剥离技术将单晶GaN厚膜材料从陶瓷衬底上分离下来。另外,基于成熟的产业链,还可以实现大尺寸、低成本的晶圆级制造。
附图说明
图1是本发明实施例一利用陶瓷衬底生长单晶GaN自支撑衬底的方法流程图。
图2是本发明实施例二利用陶瓷衬底生长单晶GaN自支撑衬底的方法流程图。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
实施例一
请参见图1,本实施例采用的利用陶瓷衬底生长单晶GaN自支撑衬底的方法流程包括以下步骤11-19:
步骤11,选取陶瓷衬底。具体地,所述陶瓷衬底为AlN陶瓷,厚度为500微米,形状为4英寸晶圆形状。
步骤12,在陶瓷衬底表面沉积AlN填充层。具体地,所述AlN填充层的沉积方法为PVD,厚度为1.5微米。
步骤13,对表面进行研磨和抛光。具体地,对表面进行研磨的方法为机械研磨;对表面进行抛光的方法为先机械抛光,后化学机械抛光。
步骤14,转移石墨烯。具体地,转移石墨烯的方法为湿法转移,石墨烯层的厚度为单原子层,石墨烯层为单晶石墨烯。
步骤15,对石墨烯表面进行等离子体处理。具体地,产生等离子体的气体为N2,处理时间为5秒。
步骤16,对表面进行原位NH3处理。具体地,利用HVPE腔室进行原位NH3处理,原位NH3处理的温度为1000摄氏度,NH3流量为1000sccm。
步骤17,生长单晶GaN厚膜材料。具体地,生长方法为HVPE,生长厚度为500微米。
步骤18,机械剥离。具体的,利用石墨烯与陶瓷衬底之间的弱结合力,将单晶GaN厚膜材料从陶瓷衬底上剥离。
步骤19,对剥离表面进行机械研磨抛光和化学机械抛光。
实施例二
请参见图2,本实施例采用的利用陶瓷衬底生长单晶GaN自支撑衬底的方法流程包括以下步骤21-28:
步骤21,选取陶瓷衬底。具体地,所述陶瓷衬底为AlN陶瓷,厚度为400微米,形状为2英寸晶圆形状。
步骤22,在陶瓷衬底表面沉积AlN填充层。具体地,所述AlN填充层的沉积方法为PVD,厚度为1微米。
步骤23,对表面进行研磨和抛光。具体地,对表面进行研磨的方法为机械研磨;对表面进行抛光的方法为先机械抛光,后化学机械抛光。
步骤24,转移石墨烯。具体地,转移石墨烯的方法为湿法转移,石墨烯层的厚度为单原子层,石墨烯层为单晶石墨烯。
步骤25,对石墨烯表面进行等离子体处理。具体地,产生等离子体的气体为N2,处理时间为8秒。
步骤26,生长单晶GaN厚膜材料。具体地,生长方法为HVPE,生长厚度为800微米。
步骤28,机械研磨去除陶瓷衬底。
步骤29,对表面进行机械抛光和化学机械抛光。

Claims (10)

1.一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法,其特征在于,包括以下步骤:
1)选取陶瓷衬底;
2)在陶瓷衬底表面沉积填充材料,然后研磨抛光,获得光滑表面;
3)在表面形成二维材料层,然后对二维材料层表面进行等离子体处理和/或原位NH3处理;
4)在表面生长单晶GaN厚膜材料;
5)将单晶GaN厚膜材料从陶瓷衬底上分离,形成GaN自支撑衬底。
2.如权利要求1所述的方法,其特征在于,步骤1)选取的陶瓷衬底是AlN陶瓷或SiC陶瓷。
3.如权利要求1所述的方法,其特征在于,步骤2)在陶瓷衬底表面沉积的填充材料选自下列材料中的一种或多种:AlN、SiC、GaN、SiO2、SiN、Al2O3
4.如权利要求1所述的方法,其特征在于,步骤3)中所述的二维材料层是选自石墨烯、BN、过渡金属硫化物中的一种或多种单晶材料的单原子层或多原子层的组合。
5.如权利要求1所述的方法,其特征在于,步骤3)中采用湿法转移或干法转移的方法将二维材料从其生长衬底上转移到陶瓷衬底上。
6.如权利要求1所述的方法,其特征在于,步骤3)中所述等离子体处理采用的气体为N2或Ar或其组合,处理时间为1~600秒。
7.如权利要求1所述的方法,其特征在于,步骤3)中所述原位NH3处理的温度为600~1300摄氏度,NH3流量为100~8000sccm。
8.如权利要求1所述的方法,其特征在于,步骤4)采用氢化物气相外延生长单晶GaN厚膜材料,其厚度为1~10000微米。
9.如权利要求1所述的方法,其特征在于,步骤5)将单晶GaN厚膜材料从陶瓷衬底上分离的方法是通过机械研磨去除陶瓷衬底。
10.如权利要求1所述的方法,其特征在于,步骤5)将单晶GaN厚膜材料从陶瓷衬底上分离的方法是机械剥离。
CN202310604790.3A 2023-05-25 2023-05-25 一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法 Pending CN116590795A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310604790.3A CN116590795A (zh) 2023-05-25 2023-05-25 一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310604790.3A CN116590795A (zh) 2023-05-25 2023-05-25 一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法

Publications (1)

Publication Number Publication Date
CN116590795A true CN116590795A (zh) 2023-08-15

Family

ID=87611359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310604790.3A Pending CN116590795A (zh) 2023-05-25 2023-05-25 一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法

Country Status (1)

Country Link
CN (1) CN116590795A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117552111A (zh) * 2023-11-16 2024-02-13 东南大学苏州研究院 一种GaN单晶衬底的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117552111A (zh) * 2023-11-16 2024-02-13 东南大学苏州研究院 一种GaN单晶衬底的制备方法

Similar Documents

Publication Publication Date Title
CN109585269B (zh) 一种利用二维晶体过渡层制备半导体单晶衬底的方法
US7811902B2 (en) Method for manufacturing nitride based single crystal substrate and method for manufacturing nitride based light emitting diode using the same
US8030176B2 (en) Method for preparing substrate having monocrystalline film
CN113206003B (zh) 一种在任意自支撑衬底上生长单晶氮化镓薄膜的方法
EP2037013B1 (en) Method for preparing substrate for growing gallium nitride and method for preparing gallium nitride substrate
US9437688B2 (en) High-quality GaN high-voltage HFETs on silicon
CN111540684A (zh) 一种金刚石基异质集成氮化镓薄膜与晶体管的微电子器件及其制备方法
US7968438B2 (en) Ultra-thin high-quality germanium on silicon by low-temperature epitaxy and insulator-capped annealing
KR20200041289A (ko) Ⅲ족-질화물 및 다이아몬드층을 갖는 웨이퍼
US20180158672A1 (en) Crystalline Semiconductor Growth on Amorphous and Poly-Crystalline Substrates
CN111809154B (zh) 一种制备高质量硅基氮化铝模板的方法
CN116590795A (zh) 一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法
CN113130296B (zh) 一种六方氮化硼上生长氮化镓的方法
US20140159055A1 (en) Substrates for semiconductor devices
CN116575123A (zh) 一种在陶瓷衬底上生长单晶iii族氮化物厚膜外延层的方法
CN116666196A (zh) 无旋转畴的κ-Ga2O3薄膜及κ-(AlxGa1-x)2O3/κ-Ga2O3异质结的制备方法
US20050211988A1 (en) Method for production of a layer of silicon carbide or a nitride of a group III element on a suitable substrate
WO2022181163A1 (ja) 窒化物半導体基板およびその製造方法
TWI703243B (zh) 單晶三族氮化物的形成方法
CN115896947B (zh) 一种在陶瓷衬底上生长单晶iii族氮化物的方法
CN117587513A (zh) 一种制备高质量单晶iii族氮化物自支撑衬底的方法
Chang et al. A GeSi-buffer structure for growth of high-quality GaAs epitaxial layers on a Si substrate
CN110670138A (zh) 用于氮化铝单晶生长的复合籽晶及其制备方法
US20240047205A1 (en) Transfer of Epitaxial Compound Semiconductor Layers From a Van Der Waals Interface Using Direct Wafer Bonding
TWI752256B (zh) 基底及其製備方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination