CN116535209A - 一种高熵稳定立方氧化锆和四方氧化锆相结构的方法 - Google Patents

一种高熵稳定立方氧化锆和四方氧化锆相结构的方法 Download PDF

Info

Publication number
CN116535209A
CN116535209A CN202310482118.1A CN202310482118A CN116535209A CN 116535209 A CN116535209 A CN 116535209A CN 202310482118 A CN202310482118 A CN 202310482118A CN 116535209 A CN116535209 A CN 116535209A
Authority
CN
China
Prior art keywords
zirconia
ceramic
cubic
entropy
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310482118.1A
Other languages
English (en)
Other versions
CN116535209B (zh
Inventor
李爱军
张燕
霍彩霞
彭雨晴
张方舟
海潍斌
王启帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaoxing Institute Of Shanghai University
University of Shanghai for Science and Technology
Original Assignee
Shaoxing Institute Of Shanghai University
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaoxing Institute Of Shanghai University, University of Shanghai for Science and Technology filed Critical Shaoxing Institute Of Shanghai University
Priority to CN202310482118.1A priority Critical patent/CN116535209B/zh
Publication of CN116535209A publication Critical patent/CN116535209A/zh
Application granted granted Critical
Publication of CN116535209B publication Critical patent/CN116535209B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开一种高熵稳定立方氧化锆和四方氧化锆相结构的方法,包括以下步骤:1)首先需要计算熵值并制备非水基陶瓷浆料,利用离子混合熵公式计算氧化锆陶瓷的理论熵值并且通过将分散剂粘结剂加入粉末进行球磨充分混合制备非水基陶瓷浆料;2)制备陶瓷混合粉末,所述的非水基陶瓷浆料进行烘干、粉粹、过筛形成氧化锆混合粉末;3)制备陶瓷坯体,所述氧化锆混合粉末通过压力机压制成陶瓷坯体:4)无压烧结得到氧化锆陶瓷,所述陶瓷坯体在管式炉中由氮气保护下烧结成型。

Description

一种高熵稳定立方氧化锆和四方氧化锆相结构的方法
技术领域
本发明涉及一种高熵稳定立方氧化锆和四方氧化锆相结构的方法。
背景技术
氧化锆由于其具有良好热稳定性、可还原性、高活化性能、耐腐蚀性、良好导电性而受到广泛应用。但是氧化锆具有三种相结构即单斜氧化锆(m-phase)、四方氧化锆(t-phase)、立方氧化锆(c-phase),相结构会根据温度或者晶粒尺寸变化而发生转变,晶体结构不稳定。发现四方氧化锆相稳定性小于立方氧化锆且抗烧结性能较差,这是因为四方氧化锆相结构不稳定,容易在室温下转变为单斜相,会使得样品发生裂纹,相稳定对提升氧化锆的性能具有极大意义,但是四方氧化锆完全转化为立方氧化锆的温度需达到2450℃以上,有效降低相变温度是规模化低成本制取氧化锆的关键。不难发现纯相的二氧化锆想要发生相转变所需要的温度是比较高的,为了解决这一难点,研究发现可以通过掺杂离子或者缩小晶粒尺寸等方法来降低烧结温度,例如Mommer通过沉淀法制备出纳米级别晶粒尺寸的ZrO2可以使得其在温度1100℃下煅烧成为四方相ZrO2,除此之外,研究发现通过稀土元素Y、Ca、Ce的掺杂可以在低温下稳定氧化锆相。例如JINSHUANG W等人发现通过稀土掺杂,在1500℃下完全可以制备出具有立方相结构的Sc2O3-0.2CeO2-ZrO2。CHOI T-Y等人利用Ce元素和Co元素共掺杂的ZrO2具有很好地晶格稳定性。高熵概念自从2004年被提出,由其高熵效应、鸡尾酒效应被广泛用于提升传统陶瓷的性能,高熵陶瓷是五种以上的阳离子和一种阴离子混合在高温下由于高混合熵使得原子加速重排,形成的一种晶体材料,高的熵值可以降低晶粒形成能,补充热力学能垒,从而降低相变温度。
烧结方法:热压烧结是利用压力辅助烧结来在模具两端加压的同时进行加热烧结陶瓷材料的一种工艺,由于材料在受热过程中受到均匀的压力,在应力和热能的同时作用下材料可以达到较为理想的致密度是这一工艺的明显优势,袁正希等人利用热压烧结法在氧气氛围中在1450℃下制备出了具有良好的力学性能的Y-TZP陶瓷。但是由于设备中的压力容器经常受到100MPa甚至更大的压力所以对于仪器的精密度和安全性能要求很高,所以热压烧结的操作安全要求和仪器成本都较高。
等离子烧结法:制备的氧化钇稳定的氧化锆陶瓷致密化速度快,晶粒尺寸小,并且拥有良好的力学性能。但是此烧结方法装置成本大,技术要求高。
原位烧结法是利用原料原位合成高纯度致密陶瓷材料的一种小规模工艺,原位烧结过程所产生的热能为材料反应提供能量补充,可以加快物质之间的反应,促进晶粒长大成形。原位反应由于能量的补给,所以形成的材料性能较好,但是由于自发产生增强相所以对于材料的热力学稳定性能要求较高,并不适合所有的陶瓷材料制备。
发明内容
本发明的目的主要是利用高熵效应和稀土离子掺杂通过简单的无压烧结工艺来制备具有稳定相结构的立方萤石氧化锆陶瓷。
本发明利用的无压烧结法指的是在烧结过程中无外力的只提供热能的烧结,由于烧结工艺简单,设备成本低,方便加工大尺寸工件等许多优点,所以很多工业生产制备的陶瓷产品都是利用常压烧结法制备所得。但是由于其只单受温度影响,所以烧结速率过快会导致陶瓷开裂的情况发生,也因为烧结时无压力辅助,所以烧结出的陶瓷往往存在致密度小或力学性能较差的的情况,有研究发现,通过加入掺杂离子可以保证陶瓷的良好性能,Yong Pang等人利用5wt%和30wt%的Al2O3掺杂制备了相稳定的四方氧化锆和单斜氧化锆,并对其热冲击断裂韧性进行模拟研究,掺杂离子的加入大大提升了氧化锆陶瓷的断裂韧性和抗冲击能力。陈伦泰等人通过加入助烧剂可以保证向相结构稳定的陶瓷,Ragurajan等人利用Al2O3和MnO2助烧剂无压烧结制备了钇稳定的二氧化锆。J.A.Badenes等人在二氧化锆中掺杂Pr和Ca元素获得了显色度高且致密度良好的黄色陶瓷,所以通过离子掺杂等方法可以优化无压烧结工艺,本专利正是利用离子掺杂和高熵效应来提升无压烧结工艺的情况下获取具有良好相稳定性的氧化锆陶瓷,具有创新性和实际应用价值。
本发明利用的高熵效应中五组元素掺杂的概念不同于单掺杂的离子或多掺杂的离子概念,与普通的离子置换固溶体不同的是高熵效应还利用了高熵值所带来的混乱度和鸡尾酒效应可以加速离子重排的速率以及提供更多晶粒长大的能量势垒来降低烧结温度的同时并且保证立方萤石相结构的稳定性,通过多组分元素的掺杂,不仅充分发挥自身地耐热、良好的化学稳定性的的同时不破坏整体晶体结构的同时综合地提升氧化锆陶瓷的相结构稳定性和物理化学稳定性,除此之外,本发明掺杂中的Ce稀土离子由于具有良好的光电磁方面的性能被广泛的应用于固体电解质、光催化、生物医疗等,被誉为“工业味精”,其具有良好的氧空位形成能,可以很好地稳定氧化锆相结构,并且掺杂中的Y元素因为其具有良好的氧化锆稳定元素被广泛研究应用于,8YSZ(氧化钇稳定的氧化锆)已经是市面最多销售的四方氧化锆陶瓷,所以对于稳定立方氧化锆和四方氧化锆相结构是具有真实性和实际性的。
本发明可通过以下技术方案予以实现:
一种高熵稳定立方氧化锆和四方氧化锆相结构的方法,包括以下步骤:
1)首先需要计算熵值并制备非水基陶瓷浆料,利用离子混合熵公式计算氧化锆陶瓷的理论熵值并且通过将分散剂粘结剂加入粉末进行球磨充分混合制备非水基陶瓷浆料;
2)制备陶瓷混合粉末,所述的非水基陶瓷浆料进行烘干、粉粹、过筛形成氧化锆混合粉末;3)制备陶瓷坯体,所述氧化锆混合粉末通过压力机压制成陶瓷坯体:
4)无压烧结得到氧化锆陶瓷,所述陶瓷坯体在管式炉中由氮气保护下烧结成型。
进一步地,熵值计算需要利用表示熵混乱度的公式(1)和晶格图来计算,所述步骤1)中粉末为ZrO2、Al2O3、Y2O3、SiO2、CeO2,该粉末的中阳离子原子比范围为0.2-0.8:0.04-0.2:0.04-0.2:0.04-0.2:0.04-0.2,所述分散剂粘接剂中的聚乙烯醇浓度范围为0.02-0.05wt%,球磨速度范围为400-600r/min,球磨时间范围2-6h;
其中X:阴离子原子占比,Y:阳离子原子占比,R是气体常数,为8.314J/(mol·K),xi是摩尔分数,N是组元数,熵值公式的计算代表其运用了高熵效应,这属于高熵效应带来的高混乱度使得原子重排从而加速固溶这是主要的表现和原理所在。
进一步地,所述晶格图是利用Vesta软件绘制的理想立方萤石相氧化锆,立方萤石相ZrO2中一个锆原子周围有八个氧原子排布,这是典型的八面体配位结构,对于立方萤石相ZrO2来说,由于其Zr原子和O原子之间的键长相同,所以晶胞常数a=b=c,晶面夹角为90°,其晶体具有优异的对称性,其中,利用Vesta软件将掺杂离子随机的占位Zr的位置形成单一理想晶体结构,成为一种理想的立方萤石氧化锆固溶体,软件使得离子随机分布占位,具有普遍性和通用性,这种理想晶格分布符合高熵效应所带来的使得每一个原子都具有重新排序的能力。熵值计算只是按照理论公式和理想晶格去计算因为熵值是无法通过手段去计算的,有无数原子排列的可能性和氧空位的排列可能性,高熵效应利用的并非是要去计算这个准确值而是通过高熵陶瓷所带来的高熵效应的原理提高原子重排能力,加速固溶,来降低温度,与计算值是否准确无直接影响,以及后续中计算熵值一方面是因为五组元以上的固溶体才可以定义为高熵陶瓷所以为了让看的人知道其为高熵陶瓷所以必须计算,另一方面熵值的作用是推动原子重排,加速固溶,提供能量势垒,这些都与熵值有关,所以需要计算。
进一步地,所述步骤2)中陶瓷混合粉末的制备,烘干的温度范围为50-80℃,烘干时间为12-18h,将烘干好的粉末过200-1000目筛网得到细腻的氧化锆混合粉末。
进一步地,所述步骤3)中制备陶瓷坯体,压制所用的压力范围为0.5MPa-5 MPa,并且使用的模具为长*宽*高范围为30-40mm*3-5mm*3-5mm的长方体模具。
进一步地,所述步骤4)中烧结的温度范围为1300℃-1600℃。
有益效果
本发明干压硬质陶瓷粉末坯体成型所需要的压力极小这是由于在烘干水基浆料时利用的是65℃低温慢烘干所以使得高分子的键合力还很大程度的保留在粉体之间提高粉体的粘结力,所以只需要很小的压力也可以保证硬质陶瓷粉末干压成型;
对于烧结时的添加剂由于熵值的作用,所以掺杂的离子的含量非常少,这与其它需要加入20%以上的稀土含量相比极大地降低了材料成本,稀土元素一般成本较高;
烧结保温时间只需要60min,相比其它助烧剂掺杂的方法来说,由于附加混乱度的作用,所以加快了离子重排的速度和固溶体的形成,所以晶体成型时间短;
1460℃可以得到立方萤石氧化锆陶瓷与其它的烧结温度和完成的立方萤石氧化锆陶瓷的相浓度占比来更加优异。
附图说明
图1为本发明熵值计算使用的理想晶格图;
图2为本发明使用的氧化锆原料的XRD图;
图3为实例中样品的XRD图;
图4为实例中样品的SEM图
具体实施方式
以下通过特定的具体实施例说明本发明的实施方式,本领域的技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。
实施例一
1)非水基陶瓷浆料的制备,首先制备粘结剂和分散剂液:利用电子天平称取5g的聚乙烯醇溶入装有100g的去离子水的烧杯中室温下浸泡30min,之后将利用保鲜膜将烧杯封口放在磁力搅拌器上,95℃下,20r/min下搅拌30min,室温下自然冷却消泡12h后使用,利用天平称量四组不同原子比为0.8:0.06:0.06:0.04:0.04的ZrO2、Al2O3、Y2O3、SiO2、CeO2粉末;熵值计算:利用公式(1)和晶格图(1)通过利用vesta软件随机占位得出Ce#0的熵值为0.7185R;
2)将1)中粉末利用球磨机在400r/min下球磨12h,球磨好的粉末加入总体质量分数6wt%的制备好的聚乙烯醇液在球磨机中再次球磨400r/min中球磨2h充分混合消除团聚;3)将2)中制备好的充分混合的非水基陶瓷混合液体在烘箱中65℃烘干16h,将烘干后的陶瓷粘结体放入粉粹机中粉粹过200目筛,并将粉末放入40mm*5mm*5mm的长方体模具中,压力设置1MPa干压成型;
4)将3)中压好的陶瓷坯体在烧结气氛为氮气氛围下,以2℃/min的烧结速率升温至1460℃下保温60℃制备立方氧化锆陶瓷并记为Ce#0;
图3为Ce#0的XRD图,其中Ce#0样品中未出现其它峰,这说明原子重新排列固溶进氧化锆晶体中但是没有产生其它杂相,并且XRD的衍射峰的位置与标准PDF卡片83-0492吻合,这说明Ce#0很好地形成了立方氧化锆相,根据相浓度计算结果发现,其中立方氧化锆相浓度占比51%,图4a为其SEM图像,可以发现形成的氧化锆陶瓷晶界清晰,这表示了极高的结晶度,说明利用高熵效应和稀土Ce掺杂的氧化锆陶瓷在常温下具有稳定的晶体结构,这说明利用熵值和Ce稀土掺杂可以取得在1460℃下利用简单的无压烧结法稳定二氧化锆相结构为立方和单斜与四方混合相的稳定。
实施例二
1)非水基陶瓷浆料的制备,首先制备粘结剂和分散剂液:利用电子天平称取5g的聚乙烯醇溶入装有100g的去离子水的烧杯中室温下浸泡30min,之后将利用保鲜膜将烧杯封口放在磁力搅拌器上,95℃下,20r/min下搅拌30min,室温下自然冷却消泡12h后使用,利用天平称量四组不同原子比为0.8:0.05:0.05:0.05:0.05的ZrO2、Al2O3、Y2O3、SiO2、CeO2粉末;熵值计算:利用公式(1)和晶格图(1)通过利用vesta软件随机占位得出Ce#1的熵值为0.7185R;
2)将1)中粉末利用球磨机在400r/min下球磨12h,球磨好的粉末加入总体质量分数6wt%的制备好的聚乙烯醇液在球磨机中再次球磨400r/min中球磨2h充分混合消除团聚;3)将2)中制备好的充分混合的非水基陶瓷混合液体在烘箱中65℃烘干16h,将烘干后的陶瓷粘结体放入粉粹机中粉粹过200目筛,并将粉末放入40mm*5mm*5mm的长方体模具中,压力设置1MPa干压成型;
4)将3)中压好的陶瓷坯体在烧结气氛为氮气氛围下,以2℃/min的烧结速率升温至1460℃下保温60℃制备立方氧化锆陶瓷并记为Ce#1;
图3为Ce#1的XRD图,其中Ce#1样品中未出现其它峰,这说明原子重新排列固溶进氧化锆晶体中但是没有产生其它杂相,并且XRD的衍射峰的位置与标准PDF卡片83-0492吻合,这说明Ce#1很好地形成了立方氧化锆相,根据相浓度计算结果发现,其中立方氧化锆相浓度占比67.61%%,图4b为其SEM图像,可以发现形成的氧化锆陶瓷晶粒尺寸分布均匀,晶界处无杂质形成,晶界清晰可见,这说明通过高熵效应形成了氧化锆陶瓷晶体具有良好的结晶度,此种方法制备的氧化锆陶瓷在常温下具有更大立方萤石氧化锆相占比的稳定的晶体结构。
实施例三
1)非水基陶瓷浆料的制备首先制备粘结剂和分散剂液:利用电子天平称取5g的聚乙烯醇溶入装有100g的去离子水的烧杯中室温下浸泡30min,之后将利用保鲜膜将烧杯封口放在磁力搅拌器上,95℃下,20r/min下搅拌30min,室温下自然冷却消泡12h后使用,利用天平称量四组不同原子比为0.7:0.075:0.075:0.075:0.075的ZrO2、Al2O3、Y2O3、SiO2、CeO2粉末;熵值计算:利用公式(1)和晶格图(1)通过利用vesta软件随机占位得出Ce#2的熵值为0.7185R;
2)将1)中粉末利用球磨机在400r/min下球磨12h,球磨好的粉末加入总体质量分数6wt%的制备好的聚乙烯醇液在球磨机中再次球磨400r/min中球磨2h充分混合消除团聚;3)将2)中制备好的充分混合的非水基陶瓷混合液体在烘箱中65℃烘干16h,将烘干后的陶瓷粘结体放入粉粹机中粉粹过200目筛,并将粉末放入40mm*5mm*5mm的长方体模具中,压力设置1MPa干压成型;
4)将3)中压好的陶瓷坯体在烧结气氛为氮气氛围下,以2℃/min的烧结速率升温至
1460℃下保温60℃制备立方氧化锆陶瓷并记为Ce#2;
图3为Ce#2的XRD图,其中Ce#2样品中未出现其它峰,这说明原子重新排列固溶进氧化锆晶体中但是没有产生其它杂相,并且XRD的衍射峰的位置与标准PDF卡片83-0492吻合,这说明Ce#2很好地形成了立方氧化锆相,根据相浓度计算结果发现,其中立方氧化锆相浓度占比91%,已经形成完成稳定立方萤石氧化锆晶体,图4c为其SEM图像,可以发现形成的氧化锆陶瓷晶界清晰,晶粒尺寸分布均匀,并且晶粒尺寸较大,这说明在高熵效应的熵值使得晶粒得到了过多的吉布斯自由能长大,这表示在此浓度下Ce离子掺杂由于具有较高的熵值,使得二氧化锆晶体从单斜相完成相立方萤石氧化锆晶相的完全转变,这说明通过高熵效应和稀土Ce掺杂共同作用下可以使得二氧化锆的晶体结构稳定为立方萤石氧化锆相。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种高熵稳定立方氧化锆和四方氧化锆相结构的方法,其特征在于,包括以下步骤:
1)首先需要计算熵值并制备非水基陶瓷浆料,利用离子混合熵公式计算氧化锆陶瓷的理论熵值并且通过将分散剂粘结剂加入粉末进行球磨充分混合制备非水基陶瓷浆料;
2)制备陶瓷混合粉末,所述的非水基陶瓷浆料进行烘干、粉粹、过筛形成氧化锆混合粉末;
3)制备陶瓷坯体,所述氧化锆混合粉末通过压力机压制成陶瓷坯体:
4)无压烧结得到氧化锆陶瓷,所述陶瓷坯体在管式炉中由氮气保护下烧结成型。
2.如权利要求1所述的一种高熵稳定立方氧化锆和四方氧化锆相结构的方法,其特征在于,熵值计算需要利用表示熵混乱度的公式(1)和晶格图来计算,所述步骤1)中粉末为ZrO2、Al2O3、Y2O3、SiO2、CeO2,该粉末的中阳离子原子比范围为0.2-0.8:0.04-0.2:0.04-0.2:0.04-0.2:0.04-0.2,所述分散剂粘接剂中的聚乙烯醇浓度范围为0.02-0.05wt%,球磨速度范围为400-600r/min,球磨时间范围2-6h;
其中X:阴离子原子占比,Y:阳离子原子占比,R是气体常数,为8.314J/(mol·K),xi是摩尔分数,N是组元数。
3.如权利要求1所述的一种高熵稳定立方氧化锆和四方氧化锆相结构的方法,其特征在于,所述晶格图是利用Vesta软件绘制的理想立方萤石相氧化锆,立方萤石相ZrO2中一个锆原子周围有八个氧原子排布,这是典型的八面体配位结构,对于立方萤石相ZrO2来说,由于其Zr原子和O原子之间的键长相同,所以晶胞常数a=b=c,晶面夹角为90°,其晶体具有优异的对称性,其中,利用Vesta软件将掺杂离子随机的占位Zr的位置形成单一理想晶体结构,成为一种理想的立方萤石氧化锆固溶体,软件使得离子随机分布占位,具有普遍性和通用性,这种理想晶格分布符合高熵效应所带来的使得每一个原子都具有重新排序的能力。
4.如权利要求1的一种高熵稳定立方氧化锆和四方氧化锆相结构的方法,其特征在于,所述步骤2)中陶瓷混合粉末的制备,烘干的温度范围为50-80℃,烘干时间为12-18h,将烘干好的粉末过200-1000目筛网得到细腻的氧化锆混合粉末。
5.如权利要求1的一种高熵稳定立方氧化锆和四方氧化锆相结构的方法,其特征在于,所述步骤3)中制备陶瓷坯体,压制所用的压力范围为0.5MPa-5MPa,并且使用的模具为长*宽*高范围为30-40mm*3-5mm*3-5mm的长方体模具。
6.如权利要求1的一种高熵稳定立方氧化锆和四方氧化锆相结构的方法,其特征在于,所述步骤4)中烧结的温度范围为1300℃-1600℃。
CN202310482118.1A 2023-04-29 2023-04-29 一种高熵稳定立方氧化锆和四方氧化锆相结构的方法 Active CN116535209B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310482118.1A CN116535209B (zh) 2023-04-29 2023-04-29 一种高熵稳定立方氧化锆和四方氧化锆相结构的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310482118.1A CN116535209B (zh) 2023-04-29 2023-04-29 一种高熵稳定立方氧化锆和四方氧化锆相结构的方法

Publications (2)

Publication Number Publication Date
CN116535209A true CN116535209A (zh) 2023-08-04
CN116535209B CN116535209B (zh) 2023-12-15

Family

ID=87455438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310482118.1A Active CN116535209B (zh) 2023-04-29 2023-04-29 一种高熵稳定立方氧化锆和四方氧化锆相结构的方法

Country Status (1)

Country Link
CN (1) CN116535209B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070179041A1 (en) * 2004-09-01 2007-08-02 Advanced Nanotechnology Limited Zirconia Ceramic
CN109987935A (zh) * 2019-03-20 2019-07-09 太原理工大学 具有萤石型结构的(ZrHfCeTiZn)O2-δ高熵氧化物陶瓷粉体及块体制备方法
CN111875389A (zh) * 2020-08-13 2020-11-03 西安科技大学 一种无铅压电陶瓷性能调控的方法
CN112358301A (zh) * 2020-10-23 2021-02-12 中国航天空气动力技术研究院 一种基于电子结构协同的高熵陶瓷热防护材料设计方法
US20210347699A1 (en) * 2018-10-09 2021-11-11 Oerlikon Metco (Us) Inc. High-entropy oxides for thermal barrier coating (tbc) top coats
CN114988873A (zh) * 2022-06-17 2022-09-02 清华大学 一种铋基焦绿石介电储能陶瓷及其制备方法
CN115124339A (zh) * 2022-07-29 2022-09-30 中钢集团洛阳耐火材料研究院有限公司 多元素高熵掺杂氧化锆基陶瓷材料及其制备方法和应用
CN115259853A (zh) * 2022-08-01 2022-11-01 太原理工大学 一种高熵萤石氧化物靶材及其制备方法
CN115536388A (zh) * 2021-06-29 2022-12-30 中国科学院上海硅酸盐研究所 一种高熵陶瓷电介质材料及其制备方法
CN115863625A (zh) * 2022-09-30 2023-03-28 湖南驼峰新能源有限公司 一种层状钠离子中高熵复合氧化物正极材料

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070179041A1 (en) * 2004-09-01 2007-08-02 Advanced Nanotechnology Limited Zirconia Ceramic
US20210347699A1 (en) * 2018-10-09 2021-11-11 Oerlikon Metco (Us) Inc. High-entropy oxides for thermal barrier coating (tbc) top coats
CN109987935A (zh) * 2019-03-20 2019-07-09 太原理工大学 具有萤石型结构的(ZrHfCeTiZn)O2-δ高熵氧化物陶瓷粉体及块体制备方法
CN111875389A (zh) * 2020-08-13 2020-11-03 西安科技大学 一种无铅压电陶瓷性能调控的方法
CN112358301A (zh) * 2020-10-23 2021-02-12 中国航天空气动力技术研究院 一种基于电子结构协同的高熵陶瓷热防护材料设计方法
CN115536388A (zh) * 2021-06-29 2022-12-30 中国科学院上海硅酸盐研究所 一种高熵陶瓷电介质材料及其制备方法
CN114988873A (zh) * 2022-06-17 2022-09-02 清华大学 一种铋基焦绿石介电储能陶瓷及其制备方法
CN115124339A (zh) * 2022-07-29 2022-09-30 中钢集团洛阳耐火材料研究院有限公司 多元素高熵掺杂氧化锆基陶瓷材料及其制备方法和应用
CN115259853A (zh) * 2022-08-01 2022-11-01 太原理工大学 一种高熵萤石氧化物靶材及其制备方法
CN115863625A (zh) * 2022-09-30 2023-03-28 湖南驼峰新能源有限公司 一种层状钠离子中高熵复合氧化物正极材料

Also Published As

Publication number Publication date
CN116535209B (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
Chandratreya et al. Reaction mechanisms in the formation of PZT solid solutions
CN103130499B (zh) 一种微波介质陶瓷材料的制备方法
US20070179041A1 (en) Zirconia Ceramic
Pikalova et al. Structure, stability, and thermomechanical properties of Ca-substituted Pr 2 NiO 4+ δ
CN110128126B (zh) 一种铁酸铋-钛酸钡-锌钛酸铋-铝酸铋高温无铅压电陶瓷及其制备方法
Zhao et al. Fabrication of Na0. 5Bi0. 5TiO3–BaTiO3‐textured ceramics templated by plate‐like Na0. 5Bi0. 5TiO3 particles
US7022262B2 (en) Yttrium aluminum garnet powders and processing
Guo et al. Characterization and microwave dielectric properties of wolframite-type MgZrNb2O8 ceramics
CN109704762A (zh) 一种铌酸锶基类反铁电陶瓷及其制备方法和应用
CN113620722B (zh) 一种稀土铌酸盐高熵粉体、多孔高熵陶瓷及制备方法和应用
Li et al. Improved ferroelectric and piezoelectric properties of (Na 0. 5 K 0. 5) NbO3 ceramics via sintering in low oxygen partial pressure atmosphere and adding LiF
Li et al. Reactive yttrium aluminate garnet powder via coprecipitation using ammonium hydrogen carbonate as the precipitant
CN102875143A (zh) 微波介质陶瓷材料的制备方法
CN116535209B (zh) 一种高熵稳定立方氧化锆和四方氧化锆相结构的方法
Tong et al. Densification and mechanical properties of YAG ceramics fabricated by air pressureless sintering
CN110835264A (zh) 一种四价离子掺杂增韧氧化铪基高温热防护材料制备方法
Shahzad et al. Structural and electrical properties of cation and anion doped BiScO3-PbTiO3 ceramics
CN115010491A (zh) 一种高熵稀土钽酸盐陶瓷材料及其制备方法
CN102557638B (zh) 锆钛铝硅碳固溶体材料及其制备方法
CN111499380B (zh) 一种锆铝基多相复合陶瓷及其制备方法
CN109678504B (zh) 一种二价镁离子掺杂钽酸钇高温陶瓷及其制备方法
Ptáček Rare-earth Element-bearing Apatites and Oxyapatites
Banlue et al. Ferroelectric phase stabilization, phase transformations and thermal properties in (1− x) PbZrO 3–x Pb (Co 1/3 Nb 2/3) O 3 solid solution
Zhao et al. Electrical Properties of Ba0. 96Ca0. 04Ti0. 90Sn0. 10O3 Lead-Free Ceramics with the Addition of Nano-CeO2
CN101723677B (zh) 一种高介电常数低介电损耗铁电陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant