CN116514901B - 一种双响应荧光铁纳米簇探针及其制备方法和应用 - Google Patents

一种双响应荧光铁纳米簇探针及其制备方法和应用 Download PDF

Info

Publication number
CN116514901B
CN116514901B CN202310808039.5A CN202310808039A CN116514901B CN 116514901 B CN116514901 B CN 116514901B CN 202310808039 A CN202310808039 A CN 202310808039A CN 116514901 B CN116514901 B CN 116514901B
Authority
CN
China
Prior art keywords
solution
reduced glutathione
probe
aqueous solution
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310808039.5A
Other languages
English (en)
Other versions
CN116514901A (zh
Inventor
张菲
陈韦妍
陈家伟
韩亚萌
李书鹏
郭丽莉
王蓓丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Normal University
BCEG Environmental Remediation Co Ltd
Original Assignee
Tianjin Normal University
BCEG Environmental Remediation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Normal University, BCEG Environmental Remediation Co Ltd filed Critical Tianjin Normal University
Priority to CN202310808039.5A priority Critical patent/CN116514901B/zh
Publication of CN116514901A publication Critical patent/CN116514901A/zh
Application granted granted Critical
Publication of CN116514901B publication Critical patent/CN116514901B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • C07K5/0215Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing natural amino acids, forming a peptide bond via their side chain functional group, e.g. epsilon-Lys, gamma-Glu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/187Metal complexes of the iron group metals, i.e. Fe, Co or Ni
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Genetics & Genomics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明涉及环境检测技术领域,具体涉及一种双响应荧光铁纳米簇探针及其制备方法和应用。一种双响应荧光铁纳米簇探针的制备方法,包括如下步骤:1)向还原型谷胱甘肽水溶液中加入亚铁盐水溶液,搅拌得到还原型谷胱甘肽‑Fe2+前驱体溶液,所述还原型谷胱甘肽水溶液中的还原型谷胱甘肽与所述亚铁盐水溶液中的亚铁离子的摩尔比为(3.6‑4.6):1;2)向步骤1)中得到的还原型谷胱甘肽‑Fe2+前驱体溶液中加入还原剂,在15‑35℃下搅拌反应30‑120min,得到所述双响应荧光铁纳米簇探针。本发明所述双响应荧光铁纳米簇探针其制备与使用成本低,能够同时对氨和硫化氢产生荧光响应,其荧光能够被氨猝灭、被硫化氢增强。

Description

一种双响应荧光铁纳米簇探针及其制备方法和应用
技术领域
本发明涉及环境检测技术领域,具体涉及一种双响应荧光铁纳米簇探针及其制备方法和应用。
背景技术
恶臭气体是一类对人体健康极具危害的大气污染物,人们吸入恶臭气体后不仅会造成生活质量的降低,更容易导致呼吸困难、中枢神经障碍、组织器官病变、急性中毒等疾病,亦会引发各种慢性病变,甚至诱发癌症。因此,在环境体系中开展恶臭气体污染物的监测与控制是环境保护领域的一项重要任务。当前,生态环境中常见的恶臭气体主要分为含氮恶臭气体和含硫恶臭气体两大类,包括氨气、酰胺、三甲胺、吲哚、硫化氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳等。该类污染物来源广泛,物质组分复杂,且涉及的排污行业众多,既有石油炼制、化工、制药、橡胶、造纸、食品加工等工业污染源,又有污水处理厂、畜禽养殖、餐饮油烟等服务行业污染源,同时这些污染源中恶臭气的检测识别方法也多种多样。
与气相色谱法、分光光度法、离子迁移谱法、电子鼻法、色谱-质谱联用法等传统的恶臭气体分析检测方法相比,荧光光谱法因其灵敏度高、重现性好、方法简便快速、分析成本低廉等优点,目前已成为在复杂的环境介质中构建针对恶臭气体污染物的精准、快速、高效、灵敏的分析检测方法的有力手段。荧光金属纳米簇(Metal naonoclusters,MNCs)是由几个到数百个金属原子堆积而成的小团簇,其尺寸大约为1-2 nm或者更小,导致其能带结构变得不连续而被分立成不同的能级,因而使其表现出高水溶性、高分散性和荧光可调节性等分子才具备的化学与光学性质,在荧光传感、环境监测、生物成像等领域发挥了重要的作用,可用于氨、硫化氢等恶臭气体的检测。
然而,现有的荧光金属纳米簇环境检测探针在发展和应用过程中存在着一些瓶颈问题。一方面,应用较为成熟的荧光金属纳米簇探针仅有金、银、铂、铜四种,种类较少且以贵金属为主,制备与使用成本较高;另一方面,在现有的荧光金属纳米簇探针中,同一个探针极少能够对多个目标物产生信号响应,大大限制了荧光金属纳米簇探针的发展和应用。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中荧光金属纳米簇环境检测探针成本高、不能既对氨产生信号响应又对硫化氢产生信号响应的缺陷,从而提供一种双响应荧光铁纳米簇探针及其制备方法和应用。
本发明提供一种双响应荧光铁纳米簇探针的制备方法,包括如下步骤:
1)向还原型谷胱甘肽水溶液中加入亚铁盐水溶液,搅拌得到还原型谷胱甘肽-Fe2+前驱体溶液,所述还原型谷胱甘肽水溶液中的还原型谷胱甘肽与所述亚铁盐水溶液中的亚铁离子的摩尔比为(3.6-4.6):1;
2)向步骤1)中得到的还原型谷胱甘肽-Fe2+前驱体溶液中加入还原剂,在15-35℃下搅拌反应30-120 min,得到所述双响应荧光铁纳米簇探针。
可以理解的,上述制备得到的双响应荧光铁纳米簇探针为双响应荧光铁纳米簇探针溶液。
优选的,步骤1)中所述还原型谷胱甘肽水溶液中还原型谷胱甘肽的质量浓度为10-15mg/mL。
优选的,所述亚铁盐水溶液中亚铁离子的摩尔浓度为0.07-0.15 mol/L;
和/或,所述亚铁盐水溶液为FeCl2水溶液。
优选的,步骤1)中所述亚铁盐水溶液的加入方式为滴加;
可选的,所述滴加为逐滴滴加。
优选的,步骤1)中所述搅拌时间为10-20 min。
优选的,步骤2)中所述还原剂为NaBH4
和/或,所述还原剂与所述亚铁盐水溶液中亚铁离子的摩尔比为(2-7):1。
优选的,配制还原型谷胱甘肽水溶液所用水为高纯水;
和/或,配制亚铁盐水溶液所用水为高纯水、蒸馏水中的至少一种。
优选的,所述还原型谷胱甘肽-Fe2+前驱体溶液为淡黄色的水凝胶状;
所述双响应荧光铁纳米簇探针为红棕色的荧光铁纳米簇溶液。
本发明提供一种双响应荧光铁纳米簇探针,由上述所述的制备方法制备得到。
本发明还提供一种上述所述的制备方法制备得到的双响应荧光铁纳米簇探针或上述所述双响应荧光铁纳米簇探针在氨和/或硫化氢的检测中的应用。
可选的,所述双响应荧光铁纳米簇探针在用于氨和/或硫化氢的检测时需稀释50-1000倍。探针浓度取决于被分析物的浓度,被分析物浓度低时,探针浓度过高猝灭不明显,影响检测灵敏度。分子荧光具有内滤光效应和自吸现象,浓度较大的探针荧光强度反而低;控制双响应荧光铁纳米簇探针在检测氨或硫化氢时稀释50-1000倍,探针荧光强度适当,可以有效提高检测灵敏度。
可选的,应用在检测氨的方法包括:构建不同浓度NH3标准溶液对双响应荧光铁纳米簇探针的荧光信号猝灭率(ΔF/F0)的模型,该模型以荧光信号猝灭率(ΔF/F0)为纵坐标,NH3标准溶液浓度为横坐标绘制标准曲线,依据该标准曲线测定待测样品中NH3的浓度;
其中,ΔF=F0-F,F0为不加入NH3标准溶液时双响应荧光铁纳米簇探针的荧光强度,F为加入NH3标准溶液后双响应荧光铁纳米簇探针的荧光强度。
可选的,应用在检测硫化氢的方法包括:构建不同浓度H2S标准溶液对双响应荧光铁纳米簇探针的荧光信号增强量(F-F0)的模型,该模型以荧光信号增强量(F-F0)为纵坐标,H2S标准溶液浓度为横坐标绘制标准曲线,依据该标准曲线测定待测样品中H2S的浓度;
其中,F0为不加入H2S标准溶液时双响应荧光铁纳米簇探针的荧光强度,F为加入H2S标准溶液后双响应荧光铁纳米簇探针的荧光强度。
本发明技术方案,具有如下优点:
本发明提供的双响应荧光铁纳米簇探针的制备方法,包括如下步骤:1)向还原型谷胱甘肽水溶液中加入亚铁盐水溶液,搅拌得到还原型谷胱甘肽-Fe2+前驱体溶液,所述还原型谷胱甘肽水溶液中的还原型谷胱甘肽与所述亚铁盐水溶液中的亚铁离子的摩尔比为(3.6-4.6):1;2)向步骤1)中得到的还原型谷胱甘肽-Fe2+前驱体溶液中加入还原剂,在15-35℃下搅拌反应30-120 min,得到所述双响应荧光铁纳米簇探针。本发明所述双响应荧光铁纳米簇探针能够对氨和硫化氢产生荧光响应,其荧光能够被氨猝灭、被硫化氢增强。本发明提供的双响应铁纳米簇探针由无机亚铁盐在水溶液中被直接还原为零价铁原子并堆积在还原型谷胱甘肽模板上构成,合成过程中通过控制还原型谷胱甘肽与亚铁离子的摩尔比为(3.6-4.6):1,以及还原型谷胱甘肽-Fe2+前驱体溶液与还原剂特定的反应温度和反应时间,形成新的双响应荧光铁纳米簇探针,该双响应荧光铁纳米簇探针在加氨之后,可以形成特定的探针-氨的复合物,使探针在激发光位置的吸收降低,从而猝灭探针荧光;在探针中加硫化氢之后,S2-离子的还原性弥补了探针的表面缺陷,使探针的荧光增强,该探针可以同时对氨和硫化氢两种环境污染物具有灵敏的荧光响应,无需额外的功能化修饰过程即可实现只采用一款探针既对氨又对硫化氢的高选择性、高灵敏度荧光检测。同时本发明提供的双响应荧光铁纳米簇探针中的铁元素来源广泛且较贵金属廉价易得,其制备与使用成本大大低于金、银等贵金属纳米簇荧光探针。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1本发明实施例1的双响应荧光铁纳米簇探针的场发射透射电子显微镜图;
图2本发明实施例1的双响应荧光铁纳米簇探针在加入目标物氨、目标物硫化氢前后以及各反应原料混合物的荧光发射光谱图;
图3本发明实施例2的双响应荧光铁纳米簇探针在加入目标物氨、目标物硫化氢前后以及各反应原料混合物的荧光发射光谱图;
图4本发明实施例3的双响应荧光铁纳米簇探针在加入目标物氨、目标物硫化氢前后以及各反应原料混合物的荧光发射光谱图;
图5本发明实施例4中GSH-Fe NCs探针检测氨构建的标准曲线图;
图6本发明实施例5中GSH-Fe NCs探针检测硫化氢构建的标准曲线图;
图7本发明对比例1中的探针在加入目标物前后的荧光强度对比图;
图8本发明对比例2中的探针在加入目标物前后的荧光强度对比图;
图9本发明对比例3中的探针在加入目标物前后的荧光强度对比图;
图10本发明测试例1的紫外可见吸收光谱图;
图11本发明实施例1和对比例1的探针在加入不同浓度氨后的荧光猝灭率对比图;
图12本发明实施例1和对比例1的探针在加入不同浓度硫化氢后的荧光增强率对比图。
具体实施方式
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
本实施例提供一种双响应荧光铁纳米簇探针,包括如下步骤:
1)将0.1200 g还原型谷胱甘肽溶于10 mL高纯水中,于室温下充分搅拌至其完全溶解形成还原型谷胱甘肽水溶液,向还原型谷胱甘肽水溶液中逐滴滴加1 mL浓度为0.1mol/L的FeCl2高纯水溶液,搅拌15 min得到淡黄色的水凝胶状还原型谷胱甘肽-Fe2+前驱体溶液;
2)向步骤1)中的还原型谷胱甘肽-Fe2+前驱体溶液加入0.0180 g还原剂NaBH4,在25℃下搅拌反应90 min得到红棕色的双响应荧光铁纳米簇探针溶液。
将本实施例的双响应荧光铁纳米簇探针(记为GSH-Fe NCs)分散到高纯水中,均匀滴涂于铜网上,晾干,制得观测样品,利用场发射透射电子显微镜观测其形貌。如图1所示,GSH-Fe NCs形貌近似球形且分散均匀,粒径较小且分布均一,从放大图可以看出其粒径约为3 nm,晶格宽度约为0.22 nm。
测定本实施例GSH-Fe NCs的荧光光谱以及对氨、硫化氢两种目标物的荧光响应:
设定激发波长为510 nm,利用荧光分光光度计测定实施例1中还原型谷胱甘肽-Fe2+前驱体溶液(记为GSH+Fe2+)、实施例1中的还原型谷胱甘肽溶液和NaBH4混合的混合溶液(记为GSH+NaBH4)、实施例1中的GSH-Fe NCs探针稀释100倍的溶液、500 μL 500 nM的氨溶液+4.5 mL实施例1中的GSH-Fe NCs探针稀释100倍的溶液、500 μL 500 nM的硫化氢溶液+4.5 mL实施例1中的GSH-Fe NCs探针稀释100倍的溶液等五个测试体系的荧光发射光谱。结果如图2所示,GSH+Fe2+前驱体溶液和GSH+NaBH4混合物溶液均无荧光发射,只有形成了GSH-Fe NCs后才在695 nm处有很强的荧光发射峰,说明该荧光发射来自于经过化学反应而新形成的GSH-Fe NCs,而不是来自于各原材料的简单混合物或者复合物,说明该GSH-Fe NCs具有作为荧光探针的基本能力。当检测体系中加入目标物氨和硫化氢后,GSH-Fe NCs的荧光明显被氨所猝灭而被硫化氢所增强,说明该GSH-Fe NCs探针同时对氨和硫化氢有荧光响应,且响应方向相反,其荧光能够被氨猝灭、被硫化氢增强,二者可以有效区分,该GSH-FeNCs探针有能力同时对氨和硫化氢开展荧光检测。
实施例2
本实施例提供一种双响应荧光铁纳米簇探针,包括如下步骤:
1)将0.1000 g还原型谷胱甘肽溶于10 mL高纯水中,于室温下充分搅拌至其完全溶解形成还原型谷胱甘肽水溶液,向还原型谷胱甘肽水溶液中逐滴滴加1 mL浓度为0.071mol/L的FeCl2高纯水溶液,搅拌10 min得到淡黄色的水凝胶状还原型谷胱甘肽-Fe2+前驱体溶液;
2)向步骤1)中的还原型谷胱甘肽-Fe2+前驱体溶液加入0.01 g还原剂NaBH4,在20℃下搅拌反应30 min得到红棕色的双响应荧光铁纳米簇探针。
设定激发波长为510 nm,利用荧光分光光度计测定实施例2中还原型谷胱甘肽-Fe2+前驱体溶液(记为GSH+Fe2+)、实施例2中的还原型谷胱甘肽溶液和NaBH4混合的混合溶液(记为GSH+NaBH4)、实施例2中的GSH-Fe NCs探针稀释100倍的溶液、4.5 mL实施例2中的GSH-Fe NCs探针稀释100倍的溶液+500 μL 500 nM的氨溶液、4.5 mL实施例2中的GSH-FeNCs探针稀释100倍的溶液+500 μL 500 nM的硫化氢溶液等5个测试体系的荧光发射光谱,如图3所示,GSH+Fe2+前驱体溶液和GSH+NaBH4混合物溶液均无荧光发射,只有形成了GSH-FeNCs后在695 nm处才有很强的荧光发射峰,当检测体系中加入目标物氨和硫化氢后,GSH-FeNCs的荧光明显被氨所猝灭而被硫化氢所增强。
实施例3
本实施例提供一种双响应荧光铁纳米簇探针,包括如下步骤:
1)将0.1500 g还原型谷胱甘肽溶于10 mL高纯水中,于室温下充分搅拌至其完全溶解形成还原型谷胱甘肽水溶液,向还原型谷胱甘肽水溶液中逐滴滴加1 mL浓度为0.13mol/L的FeCl2高纯水溶液,搅拌20 min得到淡黄色的水凝胶状还原型谷胱甘肽-Fe2+前驱体溶液;
2)向步骤1)中的还原型谷胱甘肽-Fe2+前驱体溶液加入0.03 g还原剂NaBH4,在30℃下搅拌反应120 min得到红棕色的双响应荧光铁纳米簇探针。
设定激发波长为510 nm,利用荧光分光光度计测定实施例3中还原型谷胱甘肽-Fe2+前驱体溶液(记为GSH+Fe2+)、实施例3中的还原型谷胱甘肽溶液和NaBH4混合的混合溶液(记为GSH+NaBH4)、实施例3中的GSH-Fe NCs探针稀释100倍的溶液、4.5 mL实施例3中的GSH-Fe NCs探针稀释100倍的溶液+500 μL 500 nM的氨溶液、4.5 mL实施例3中的GSH-FeNCs探针稀释100倍的溶液+500 μL 500 nM的硫化氢溶液等5个测试体系的荧光发射光谱,如图4所示,GSH+Fe2+前驱体溶液和GSH+NaBH4混合物溶液均无荧光发射,只有形成了GSH-FeNCs后在695 nm处才有很强的荧光发射峰,当检测体系中加入目标物氨和硫化氢后,GSH-FeNCs的荧光明显被氨所猝灭而被硫化氢所增强。
实施例4
本实施例提供一种实施例1的双响应荧光铁纳米簇探针在氨检测的方法:
1)不同浓度氨标准溶液的配制:移取500 μL浓度为0.1 M的氨水溶液于50 mL容量瓶中,加高纯水定容,配制成50.00 mL浓度为1 mM的氨高标储备液,再以其为基础通过逐级稀释配制成浓度分别为10 nM、1000 nM、5000 nM、8000 nM、10000 nM的氨标准溶液;
2)将实施例1制备好的GSH-Fe NCs原溶液加高纯水稀释100倍,制成GSH-Fe NCs稀释液;
3)于5 mL离心管中加入500 μL步骤2)中的GSH-Fe NCs稀释液和4.5 mL高纯水,混合均匀后稳定30 min,测试该试液的荧光强度作为探针的初始荧光强度F0
4)取5只5 mL离心管,向每只离心管中加入500 μL 步骤2)中的GSH-Fe NCs稀释液和4.0 mL高纯水,再向不同离心管中分别加入500 μL浓度为10 nM、1000 nM、5000 nM、8000nM、10000 nM的氨标准溶液,此时检测体系中氨的检测浓度分别为1 nM、100 nM、500 nM、800 nM、1000 nM,将各检测体系摇匀,使氨标准溶液与铁纳米簇充分作用30 min后,检测各体系中探针的荧光强度F;
5)计算各体系的探针荧光猝灭率ΔF/F0= (F0-F)/F0,并以其为纵坐标,以各体系氨的检测浓度[NH3]为横坐标绘制标准曲线,构建模型。
如图5所示,实验结果表明,在氨浓度为1-1000 nM范围内,GSH-Fe NCs荧光强度的猝灭率与氨的检测浓度呈现线性关系,线性方程为ΔF/F0= 0.03588[NH3] + 0.18285,检出限为0.23 nM。可见该GSH-Fe NCs可用于环境污染物氨的高灵敏检测。
实施例5
本实施例提供一种实施例1的双响应荧光铁纳米簇探针在硫化氢的检测的方法:
1)不同浓度硫化氢标准溶液的配制(为确保实验安全,采用硫化钠水溶液模拟硫化氢水溶液):称取0.12 g硫化钠固体溶解于5 mL高纯水中制得硫化氢高标储备液,再以其为基础通过逐级稀释配制成浓度分别为4000 nM、6000 nM、8000 nM、9000 nM、10000 nM的硫化氢标准溶液;
2)将制备好的GSH-Fe NCs原溶液加高纯水稀释100倍,制成GSH-Fe NCs稀释液;
3)于5 mL离心管中加入500 μL 步骤2)中的GSH-Fe NCs稀释液和4.5 mL高纯水,混合均匀后稳定30 min,测试该试液的荧光强度作为探针的初始荧光强度F0
4)取5只5 mL离心管,向每只离心管中加入500 μL 步骤2)中的GSH-Fe NCs稀释液和4.0 mL高纯水,再向不同离心管中分别加入500 μL浓度为4000 nM、6000 nM、8000 nM、9000 nM、10000 nM的硫化氢标准溶液,此时检测体系中硫化氢的检测浓度分别为400 nM、600 nM、800 nM、900 nM、1000 nM,将各检测体系摇匀,使硫化氢标准溶液与铁纳米簇充分作用15 min后,检测各体系中探针的荧光强度F;
5)计算各体系的探针荧光增强量F-F0,并以其为纵坐标,以各体系硫化氢的检测浓度[H2S]为横坐标绘制标准曲线,构建模型。
如图6所示,实验结果表明,在硫化氢浓度为400-1000 nM范围内,GSH-Fe NCs荧光强度的增强量与硫化氢的检测浓度呈现线性关系,线性方程为F-F0= 0.03078[H2S] +7.79503,检出限为96 nM。可见该GSH-Fe NCs可用于环境污染物硫化氢的高灵敏检测。
对比例1
本对比例提供一种荧光铁纳米簇探针,包括如下步骤:
1)称取0.1000g还原型谷胱甘肽(GSH)溶于15mL高纯水中;移取1mL 0.1M的FeCl2高纯水溶液加入到步骤1)的GSH溶液中,充分搅拌20min;
2)在搅拌条件下向上述反应混合溶液中加入硼氢化钠固体0.0190g,在25℃下搅拌反应15 min,反应溶液颜色由无色变为浅黄色,得到最终的产品溶液。
将本对比例的荧光铁纳米簇探针稀释100倍后加入不同浓度的氨和硫化氢控制检测体系中的检测物浓度为200nM、600nM、1000nM后,设定激发波长为510 nm,利用荧光分光光度计测定其荧光强度。实验结果如图7所示,该探针的荧光并没有被明显猝灭或者增强。
对比例2
本对比例提供一种双响应荧光铁纳米簇探针,包括如下步骤:
1)将0.1200 g还原型谷胱甘肽溶于10 mL高纯水中,于室温下充分搅拌至其完全溶解形成还原型谷胱甘肽水溶液,向还原型谷胱甘肽水溶液中逐滴滴加1 mL浓度为0.1mol/L的FeCl2高纯水溶液,搅拌15 min得到还原型谷胱甘肽-Fe2+前驱体溶液;
2)向步骤1)中的还原型谷胱甘肽-Fe2+前驱体溶液加入0.0180 g还原剂NaBH4,在25℃下搅拌反应15 min得到所述双响应荧光铁纳米簇探针。
将本对比例的荧光铁纳米簇探针稀释100倍后加入不同浓度的氨和硫化氢控制检测体系中的检测物浓度为200nM、600nM、1000nM后,设定激发波长为510 nm,利用荧光分光光度计测定其荧光强度,如图8所示,该探针的荧光没有被明显猝灭或者增强。
对比例3
本对比例提供一种双响应荧光铁纳米簇探针,包括如下步骤:
1)将0.1000 g还原型谷胱甘肽溶于10 mL高纯水中,于室温下充分搅拌至其完全溶解形成还原型谷胱甘肽水溶液,向还原型谷胱甘肽水溶液中逐滴滴加1 mL浓度为0.1mol/L的FeCl2高纯水溶液,搅拌15 min得到还原型谷胱甘肽-Fe2+前驱体溶液;
2)向步骤1)中的还原型谷胱甘肽-Fe2+前驱体溶液加入0.0180 g还原剂NaBH4,在25℃下搅拌反应90 min得到双响应荧光铁纳米簇探针。
将本对比例的荧光铁纳米簇探针稀释100倍后加入不同浓度的氨和硫化氢控制检测体系中的检测物浓度为200nM、600nM、1000nM后,设定激发波长为510 nm,利用荧光分光光度计测定其荧光强度,如图9所示,该探针的荧光没有被明显猝灭或者增强。
测试例1
本测试例针对实施例1所制备的荧光铁纳米簇探针稀释100倍的溶液、对比例1所制备的荧光铁纳米簇探针稀释100倍的溶液、500 nM的NH3溶液、500 nM的硫化氢溶液、4.5mL实施例1所制备的荧光铁纳米簇探针稀释100倍的溶液+500μL 500 nM的NH3溶液、4.5 mL实施例1所制备的荧光铁纳米簇探针稀释100倍的溶液+500μL 500 nM的硫化氢溶液进行紫外可见吸收光谱检测,波长范围200-600nm。检测结果如图10所示,在改变荧光铁纳米簇探针的制备条件后,实施例1的荧光铁纳米簇探针的紫外吸收峰较对比例1的紫外吸收峰发生明显的蓝移,说明二者的结构存在不同。实施例1在加入NH3之后,其吸收峰明显蓝移,说明实施例1的GSH-Fe NCs和NH3生成了新的复合物,同时,加入NH3之后在激发波长处的吸收发生了明显下降,说明目标物NH3能够通过形成新复合物的方式降低实施例1的荧光铁纳米簇探针对激发光的吸收效率,猝灭其荧光发射,这是一个典型的静态猝灭机理。实施例1的GSH-Fe NCs在激发波长处的吸收在加入H2S之后发生了明显上升,说明目标物H2S能够增强实施例1的荧光铁纳米簇探针对激发光的吸收效率,增强其荧光发射。
测试例2
本测试例针对实施例1和对比例1所制备的荧光铁纳米簇探针对不同浓度的目标检测物氨和硫化氢进行检测。检测方法包括如下步骤:
1)配制不同浓度的目标检测物:分别配制2000 nM、6000 nM、10000 nM的氨标准溶液、硫化氢标准溶液;
2)将实施例1或对比例1制备好的GSH-Fe NCs原溶液加高纯水稀释100倍,制成GSH-Fe NCs稀释液;
3)于5 mL离心管中加入500 μL 步骤2)中的GSH-Fe NCs稀释液和4.5 mL高纯水,混合均匀后稳定30 min,测试该试液的荧光强度作为探针的初始荧光强度F0
4)取5只5 mL离心管,向每只离心管中加入步骤2)中的500 μL GSH-Fe NCs稀释液和4.0 mL高纯水,再向不同离心管中分别加入500 μL浓度为2000 nM、6000 nM、10000 nM的目标检测物标准溶液,此时检测体系中目标检测物的检测浓度分别为200 nM、600 nM、1000nM,将各检测体系摇匀,使目标检测物标准溶液与铁纳米簇充分作用30 min后,检测各体系中探针的荧光强度F;
当目标检测物为氨时,计算各体系的探针荧光猝灭率(F0-F)/F0,并以其值为纵坐标,获得实施例1和对比例1的柱状对比图,检测结果如图11所示。当目标检测物为硫化氢时,计算各体系的探针荧光增强率(F-F0)/F0,并以其值为纵坐标,获得实施例1和对比例1的柱状对比图,检测结果如图12所示。本发明实施例1的荧光铁纳米簇探针有明显被氨所猝灭而被硫化氢所增强的关系,而对比例1的荧光铁纳米簇探针没有此规律。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (6)

1.一种双响应荧光铁纳米簇探针在氨和/或硫化氢的检测中的应用,其特征在于,所述双响应荧光铁纳米簇探针的制备方法包括如下步骤:
1)向还原型谷胱甘肽水溶液中加入亚铁盐水溶液,搅拌得到还原型谷胱甘肽-Fe2+前驱体溶液,所述还原型谷胱甘肽-Fe2+前驱体溶液为淡黄色的水凝胶状,所述还原型谷胱甘肽水溶液中的还原型谷胱甘肽与所述亚铁盐水溶液中的亚铁离子的摩尔比为(3.6-4.6):1;
2)向步骤1)中得到的还原型谷胱甘肽-Fe2+前驱体溶液中加入还原剂,在15-35℃下搅拌反应30-120 min,得到所述双响应荧光铁纳米簇探针,所述双响应荧光铁纳米簇探针为红棕色的荧光铁纳米簇溶液,所述还原剂为NaBH4,所述还原剂与所述亚铁盐水溶液中亚铁离子的摩尔比为(2-7):1。
2.根据权利要求1所述的应用,其特征在于,步骤1)中所述还原型谷胱甘肽水溶液中还原型谷胱甘肽的质量浓度为10-15mg/mL。
3.根据权利要求1或2所述的应用,其特征在于,所述亚铁盐水溶液中亚铁离子的摩尔浓度为0.07-0.15 mol/L;
和/或,所述亚铁盐水溶液为FeCl2水溶液。
4.根据权利要求1或2所述的应用,其特征在于,步骤1)中所述亚铁盐水溶液的加入方式为滴加。
5.根据权利要求1或2所述的应用,其特征在于,步骤1)中所述搅拌时间为10-20 min。
6.根据权利要求1所述的应用,其特征在于,配制还原型谷胱甘肽水溶液所用水为高纯水;
和/或,配制亚铁盐水溶液所用水为高纯水、蒸馏水中的至少一种。
CN202310808039.5A 2023-07-04 2023-07-04 一种双响应荧光铁纳米簇探针及其制备方法和应用 Active CN116514901B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310808039.5A CN116514901B (zh) 2023-07-04 2023-07-04 一种双响应荧光铁纳米簇探针及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310808039.5A CN116514901B (zh) 2023-07-04 2023-07-04 一种双响应荧光铁纳米簇探针及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116514901A CN116514901A (zh) 2023-08-01
CN116514901B true CN116514901B (zh) 2023-09-29

Family

ID=87401581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310808039.5A Active CN116514901B (zh) 2023-07-04 2023-07-04 一种双响应荧光铁纳米簇探针及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116514901B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109596580A (zh) * 2018-09-06 2019-04-09 天津师范大学 基于铜纳米簇荧光探针定量检测溶液中谷丙转氨酶的方法
CN111269715A (zh) * 2020-02-13 2020-06-12 中国科学院合肥物质科学研究院 一种比率荧光探针及其在可视化检测谷胱甘肽中的应用
CN112175605A (zh) * 2020-10-10 2021-01-05 天津师范大学 一种近红外荧光磁性Fe NCs双模探针及其合成方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3983809A4 (en) * 2019-06-17 2023-04-19 Board of Regents, The University of Texas System BIOTHIOL-ACTIVATED PROBE AND METHOD OF USE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109596580A (zh) * 2018-09-06 2019-04-09 天津师范大学 基于铜纳米簇荧光探针定量检测溶液中谷丙转氨酶的方法
CN111269715A (zh) * 2020-02-13 2020-06-12 中国科学院合肥物质科学研究院 一种比率荧光探针及其在可视化检测谷胱甘肽中的应用
CN112175605A (zh) * 2020-10-10 2021-01-05 天津师范大学 一种近红外荧光磁性Fe NCs双模探针及其合成方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Using Gold Nanoclusters As Selective Luminescent Probes for Phosphate-Containing Metabolites;Po-Han Li,等;analytical chemistry;第84卷(第13期);第5484-5488页 *
铜纳米簇荧光探针高灵敏定量检测谷丙转氨酶;张菲,等;吉林师范大学学报;第41卷(第1期);第84-88页 *

Also Published As

Publication number Publication date
CN116514901A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
Choudhary et al. Green biomimetic silver nanoparticles as invigorated colorimetric probe for Hg2+ ions: A cleaner approach towards recognition of heavy metal ions in aqueous media
Rahimi et al. Ultra-sensitive electrochemical aptasensor for label-free detection of Aflatoxin B1 in wheat flour sample using factorial design experiments
Zhu et al. Colorimetric detection of lead (II) ions based on accelerating surface etching of gold nanorods to nanospheres: the effect of sodium thiosulfate
Khantaw et al. Selective turn-on fluorescence sensor for Ag+ using cysteamine capped CdS quantum dots: Determination of free Ag+ in silver nanoparticles solution
Kaewanan et al. A fluorescence switching sensor based on graphene quantum dots decorated with Hg 2+ and hydrolyzed thioacetamide for highly Ag+-sensitive and selective detection
CN110118769B (zh) 一种用于检测重金属离子的金纳米粒子及其制备方法
CN108760715A (zh) 检测多氯联苯表面增强拉曼散射核酸适配体传感器及应用
Bi et al. Room-temperature phosphorescence sensor based on manganese doped zinc sulfide quantum dots for detection of urea
Li et al. Fabricating a nano-bionic sensor for rapid detection of H2S during pork spoilage using Ru NPs modulated catalytic hydrogenation conversion
Dong et al. Polymerizing dopamine onto Q-graphene scaffolds towards the fluorescent nanocomposites with high aqueous stability and enhanced fluorescence for the fluorescence analysis and imaging of copper ions
CN110669510A (zh) 碳量子点荧光探针溶液及其制备方法和应用
Lei et al. Preparation of gold nanoparticles using pyridine-formaldehyde as a reducing agent and its application in high sensitivity colorimetric detection of Pb 2+
Zeng et al. Novel N, F co-doped carbon dots to detect sulfide and cadmium ions with high selectivity and sensitivity based on a “turn-off-on” mechanism
Wang et al. A highly reproducible SERS sensor based on an Au nanoparticles/graphene oxide hybrid nanocomposite for label-free quantitative detection of antibiotics
CN103487430B (zh) 一种三价铝离子检测试剂及检测方法
Guo et al. Facile one-pot synthesis of tannic acid-stabilized fluorescent copper nanoclusters and its application as sensing probes for chlortetracycline based on inner filter effect
Bayen et al. Design and sonochemical synthesis of water-soluble fluorescent silver nanoclusters for Hg2+ sensing
CN116514901B (zh) 一种双响应荧光铁纳米簇探针及其制备方法和应用
Huang et al. Aqueous synthesis of CdTe quantum dots by hydride generation for visual detection of silver on quantum dot immobilized paper
Kondekar et al. Ultrasensitive, highly specific, colorimetric recognition of sulfide ions [S 2−] in aqueous media: applications to environmental analysis
Liu et al. A fluorescence sensing method for brilliant blue with gold nanoclusters based on the inner filter effect
CN109053711B (zh) 一种用于汞离子检测的探针化合物及其制备方法和应用
Chen et al. Quantitative determination of proteins at nanogram levels by the resonance light-scattering technique with composite nanoparticles of CdS/PAA
CN107632000B (zh) 水杨酸掺杂二氧化硅铁离子荧光传感器、制备方法及应用
LU502866B1 (en) Iodine-doped Carbon Quantum Dots and Preparation Method and Application Thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant