CN116507755A - 具有改善的锌涂层的扁钢产品 - Google Patents

具有改善的锌涂层的扁钢产品 Download PDF

Info

Publication number
CN116507755A
CN116507755A CN202180076463.4A CN202180076463A CN116507755A CN 116507755 A CN116507755 A CN 116507755A CN 202180076463 A CN202180076463 A CN 202180076463A CN 116507755 A CN116507755 A CN 116507755A
Authority
CN
China
Prior art keywords
steel
coating
steel substrate
corrosion protection
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180076463.4A
Other languages
English (en)
Inventor
斯特凡·比恩霍尔茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of CN116507755A publication Critical patent/CN116507755A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating With Molten Metal (AREA)

Abstract

本发明涉及一种扁钢产品(13),其包括钢基材(15),该钢基材具有至少在钢基材(15)的一侧存在的、由锌和不可避免的杂质组成的防腐蚀覆层(17)。在此,该防腐蚀覆层(17)具有贯通的微通道(19),该微通道将钢基材(15)与环境气氛(21)相连。此外,本发明还涉及一种用于生产这种扁钢产品的方法。

Description

具有改善的锌涂层的扁钢产品
技术领域
本发明涉及一种扁钢产品,其包括钢基材,该钢基材具有至少在钢基材的一侧存在的、由锌和不可避免的杂质组成的防腐蚀覆层。
本发明还涉及一种用于生产这种扁钢产品的方法。
背景技术
“扁钢产品”在本文中被理解为长度和宽度均大大超过其厚度的轧制产品。其尤其包括钢带和钢板或板坯。
在本文中,如果没有任何明确的相反说明,合金成分的含量数据总是以质量%来表示。
除非有相反的说明,扁钢产品的钢基材组织结构中特定成分的比例以面积%给出。
本文中钢、锌或其他合金的“不可避免的杂质”是指技术上不可避免的钢伴随元素,其在生产过程中进入钢中或不能完全从钢中去除,但其含量总是很低,对钢或涂层的性能没有影响。
汽车和卡车的高负载部件,如汽车车身的防撞结构和底盘,要求厚度超过1.5mm,抗拉强度超过590MPa(高强度钢),尤其是超过780MPa(超高强度钢)的镀锌钢板。本申请中的抗拉强度是根据DIN EN ISO 6892,样品类型1确定的。
随着电动汽车的发展,这种钢的重要性在不断增加。例如,电池外壳的部件必须被设计成在发生碰撞时不会对锂离子电池造成损害。此外,高强度和超高强度材料适合于通过减少板材厚度来以较轻的重量设计部件。然而,随着强度的增加,即使材料中存在少量可扩散的氢气,氢气引起的脆性断裂的风险也会上升。
KR20190077200A说明了一种影响氢气渗透的热浸镀锌覆层。在这里,100nm到1000nm大小的颗粒被嵌入涂层中,以减少氢气渗透。通过这种措施,最多可以减少钢的氢吸收。在预处理阶段(带材清洗、退火)已经吸收的氢气在那里不再能够逃逸。
US8048285B2说明了一种电解沉积的ZnNi层,它表现出低氢脆性。低氢脆性是由于涂层对氢气的可透过性。可透过性通过在电解Zn层中掺入Ni来实现。然而,由于对健康的有害影响,Ni不应该被使用。对ZnNi涂层部件的焊接会产生含Ni的焊接烟气,其已知有致癌作用。
在EP3020842B1中,通过在内部氧化层中目的性捕集氢来减少氢脆性。
发明内容
本发明的目的是提供一种具有由锌和不可避免的杂质组成的防腐蚀覆层的扁钢产品,其中氢脆性被降低。
根据本发明的目的通过一种扁钢产品来实现,其包括钢基材,该钢基材具有至少在钢基材的一侧存在的、由锌和不可避免的杂质组成的防腐蚀覆层。在此,该防腐蚀覆层具有贯通的微通道,其将钢基材与环境气氛相连。
通过微通道实现了使例如在锌涂层之前的预处理过程中扩散到钢基材中的可扩散氢,能够通过防腐蚀覆层再次逸出,而不会继续被封闭在钢基材中。
为了能够给通常要用防腐油保护其不被氧化的无涂层的扁钢产品进行涂层,必须进行预处理。预处理尤其包括除油(例如,碱性脱脂结合电解脱脂)和表面处理步骤或活化步骤(例如,酸洗)。在所有这些步骤中,可扩散的氢可能被钢基材吸收。普通的锌涂层会阻碍这种氢气的脱气,使其保持在钢基材中,并导致氢脆化。相反,根据本发明的微通道允许被吸收的氢气脱气。
在一个优选的实施变体中,微通道的密度大于1mm-1(即每1mm一个通道),10mm-1(即每100μm一个通道),优选大于50mm-1(即每20μm一个通道),尤其是大于100mm-1(即每10μm一个通道)。微通道的密度在扁钢产品的垂直的、金相学磨片中确定。借助于图像识别来确定磨片的代表性区段上的贯通的微通道的数量。密度是以磨片的每单位长度(在扁钢产品的延伸方向)的数量获得的。由于钢基材中的氢气具有相对的自由流动性,低密度的微通道已经足以实现氢气的脱气。随着微通道密度的增加,防腐蚀覆层对氢气扩散的阻挡作用会下降。这是有利的,因为由此加速了脱气过程。
在一个具体的扩展方案中,微通道基本上垂直于钢基材的表面延伸。在本申请的意义中,这意味着90%以上的微通道具有这样的走向,即在垂直磨片中,各个相应微通道长度的70%以上与钢基材表面成75°-105°的角度。
微通道的这种走向的优点是,微通道相对直接地、即通过短的路径,从钢基材通过防腐蚀覆层延伸到环境气氛中。由此确保了氢气通过微通道的顺利扩散。
在一个具体的扩展方案中,微通道的角度分布具有超过30°,尤其是超过35°,优选是超过40°的半值全宽。微通道角度分布的半值全宽是通过使用图像识别首先确定至少100个在磨片中相邻的微通道的倾斜角度而确定的。为此,确定每个微通道的近基材端中心点,并与各微通道的远基材端中心点连接。该连接线与基材表面的角度被指定为该微通道的倾斜角。因此,在一个完全垂直的微通道的情况下,倾斜角将是90°。基于至少100个相邻微通道的倾斜角的频率分布,通过统计评估来确定半值全宽(FWHM-Full Width Half Maximum)。超过30°的半值全宽意味着微通道并不都是相互平行的,而是基本分布在75°-105°范围内。
这种角度分布有很多优点。首先,与垂直的微通道相比,倾斜的微通道更长,因此腐蚀介质更不容易渗透到基材上。因此,耐腐蚀性更好。其次,这种具有变化的倾斜角的结构在成型过程中能承受更高的负荷。相比之下,在成型过程中,具有平行微通道的均匀排列更容易在涂层中产生裂纹。
扁钢产品尤其这样进一步扩展,使得防腐蚀覆层的厚度d为1-20μm。该厚度优选为5μm或更大。独立于此,厚度尤其是不超过10μm。更优选的是厚度为5-10μm。小于1μm的涂层通常不能提供足够的防腐蚀保护。对于典型的由扁钢产品制成的汽车部件,在涂层厚度为5μm或更大的情况下,可以达到足够的腐蚀保护,直到产品寿命结束。直至厚度20μm,腐蚀保护会得到改善。超过这个厚度,就不再有任何明显的改善。此外,过厚的涂层(大于20μm)由于相应的涂层时间更长,材料成本更高而并不优选。
在扁钢产品的一个具体扩展方案中,防腐蚀覆层对氢气渗透的阻断作用S最大90%,优选最大80%。
氢渗透的阻断效果是通过Devanathan/Stachursky氢渗透池,使用DIN EN ISO17081标准测量的。在此,一面涂有锌的样品被夹在两个半池之间,其中一个池作为H负载池,另一个作为测量池。样品没有涂层的一面被涂上钯。然后将样品安装在渗透池中,使带镀锌的一面朝向H-负载池。0.2m的氯化钠溶液作为电解质。向测试溶液中添加20mg/l的硫脲作为重组抑制剂。选择10mA/cm2作为用于H加载的阴极电流密度并选择50℃的测试温度。在这种配置下,加载电流IZn被测量。为了进行比较,用相同的脱锌样品对加载电流I0进行了同样的测量。阻断效应被定义为:
S=1-IZn/I0
由于形成了一个相对于参考样品的比率,阻断效应的测量值与样品的几何形状(样品的尺寸和厚度)和钯涂层的厚度无关。
较低的阻断效应的优点是,被基材吸收的氢气能够有效地通过防腐蚀覆层逃逸到环境气氛中。
在一个优选的实施变体中,防腐蚀覆层的氢气渗透时间小于500s,优选小于150s。氢气渗透时间是指,直到在Devanathan/Stachursky渗透池中产生的氢气被检测到时,与无涂层产品相比,镀锌扁钢产品额外经历的时间。
扁钢产品的钢基材尤其是高强度的,优选是超高强度的钢。这意味着抗拉强度超过590MPa,尤其是超过780MPa。特别优选的是,抗拉强度超过1000MPa,尤其是超过1200MPa。基材的抗拉强度越高,本发明的涂层就越有意义,因为随着抗拉强度的提高,对氢脆化的敏感性提高,以及由此对脆性断裂的敏感性提高。
钢基材尤其由多相钢,尤其是由复相钢(CP)或双相钢(DP)或马氏体相钢(MS)形成。复相钢具有主要由贝氏体组成的组织结构。CP钢具有高的抗拉强度,但变形能力相对较低,这妨碍了复杂几何形状部件的设计。双相钢具有由硬组织结构成分(如马氏体和/或贝氏体)和软组织结构成分(如铁素体)的组合组成的组织结构。DP钢凭借其高强度和良好的变形性的组合,适合于复杂的部件。
根据一个优选的实施变体,钢基材由多相钢组成,具有以下分析成分(数据单位为重量%):
C:0.06-0.25重量%
Si:0.01-2.00重量%
Mn:1.00-3.00重量%
选择性以下一种或多种元素:
P:最多0.05重量%
S:最多0.01重量%
Al:最多1.00重量%
Cr:最多1.00重量%
Cu:最多0.20重量%
Mo:最多0.30重量%
N:最多0.01重量%
Ni:最多0.30重量%
Nb:最多0.08重量%
Ti:最多0.25重量%。
V:最多0.15重量%
B:最多0.005重量%
Sn:最多0.05重量%
Ca:最多0.01重量%
其余为铁和不可避免的杂质。
钢基材尤其是具有以下分析成分的冷轧多相钢(数据单位为重量%):
C:0.06-0.25重量%。
Si:0.10-2.00重量%
Mn:1.50-3.00重量%
选择性以下一种或多种元素:
P:最多0.05重量%
S:最多0.01重量%
Al:最多1.00重量%
Cr:最多1.00重量%
Cu:最多0.20重量%
Mo:最多0.30重量%
N:最多0.01重量%
Ni:最多0.20重量%
Nb:最多0.06重量%
Ti:最多0.20重量%。
V:最多0.10重量%
B:最多0.005重量%
Sn:最多0.05重量%
Ca:最多0.01重量%
其余为铁和不可避免的杂质。
在另一种替代性变体中,钢基材尤其是具有以下分析成分的热轧多相钢(数据单位为重量%):
C:0.06-0.25重量%
Si:0.01-2.00重量%
Mn:1.00-3.00重量%。
可选择以下一种或多种元素:
P:最多0.05重量%
S:最多0.005重量%
Al:最多1.00重量%
Cr:最多1.00重量%
Cu:最多0.20重量%
Mo:最多0.30重量%
N:最多0.01重量%
Ni:最多0.25重量%
Nb:最多0.08重量%
Ti:最多0.25重量%。
V:最多0.15重量%
B:最多0.005重量%
Sn:最多0.05重量%
Ca:最多0.01重量%
其余为铁和不可避免的杂质。
在一个优选的实施变体中,防腐蚀覆层是通过物理气相沉积(英文:physicalvapour deposition,PVD)施加的。为此,最初以固体或液体形式存在的涂层材料通常通过物理过程被汽化。例如,这可以通过直接加热涂层材料(例如通过电弧)、通过利用电子束或离子束轰击或通过利用激光束照射来实现。为了使汽化的涂层材料的蒸汽颗粒能够到达要涂层的工件,并且不因与环境气氛中的气体颗粒碰撞而损失不再用于涂层,PVD涂层的过程是在负压下的涂层室中进行的。
这种涂层方法有多种优点。首先,已知这种方法本身由工艺导致只向起始基材引入很少的氢气,或不引入氢气。其次,没有必要对钢基材进行过于强烈的加热。例如,在热浸镀锌的情况下,钢基材必须被加热到460℃以上的温度(锌浴温度)。然而,在这些温度下,基材组织结构的硬成分,尤其是马氏体成分被退火,由此使钢基材失去其特性。尤其是在DP钢作为钢基材的情况下,这一点尤为重要。试验总体上表明,所有上述具有相应高的抗拉强度的钢基材都可以通过气相沉积的方式进行涂覆而不出现故障。
根据本发明的目的也同样通过用于生产上述扁钢产品的方法来实现。该方法包括以下步骤:
-生产或提供钢基材
-对钢基材进行选择性的除油处理
-对钢基材进行选择性的酸洗
-通过物理气相沉积法将由锌和不可避免的杂质组成的防腐蚀覆层施加在钢基材上,其中防腐蚀覆层的厚度为d,并且防腐蚀覆层的厚度d与施加防腐蚀覆层时的涂层速率r之比小于1000s,优选小于800s。
即:
d/r<1000s,优选d/r<800s
试验表明,如果这个比例特别小,就能获得较低的氢气渗透的阻挡效果。
在一个具体的、特别优选的实施方案中,比例d/r小于10s,尤其是小于5s,优选小于2.0s,尤其小于1.5s,非常优选小于1.0s。因此,可以在很短的时间内施加防腐蚀覆层,其厚度相当大(优选是5-10μm的厚度),但其对氢气渗透的阻挡作用非常低。因此,这种方法非常适用于长钢带的连续涂层。
该方法尤其以这样的方式扩展,即,在施加防腐蚀覆层时,钢基材的温度大于50℃,优选大于100℃,特别优选大于1 50℃,尤其是大于200℃。已经显示,这种预调温是有利的,以便实现足够的层附着力。在这种情况下,通过根据SEP1931的球冲击试验,确定是否有足够的涂层附着力。如果在球冲击试验中出现了涂层的剥落,涂层的附着力就被归类为“不正常(ni0)”。在没有剥落的情况下,涂层的附着力被归类为“正常(i0)”。
根据一个优选的实施方案设定,由锌和不可避免的杂质组成的防腐蚀覆层通过物理气相沉积的方式施加到钢基材上,方法是将钢基材提供在涂层室中,其中涂层室的压力被调节。在这里,锌作为涂层材料在流入点处流入涂层室,其中将锌调节到一个温度。
根据本发明的一个优选实施方案设定,调节压力和温度,使温度高于涂层材料的露点。在高于涂层材料露点的温度下,涂层材料以其气态存在。如果压力被调整,例如增加,露点就会移位,在实例中朝着更高温度移动。相应的温度调节可以确保涂层材料以气态形式存在。
根据本发明的另一个优选实施方案设定,将压力调整到1mbar和100mbar之间,优选10mbar和100mbar之间。这确保了在涂层室中由于颗粒的散射而损失不再用于涂层的涂层材料很少。同时,该压力在一个范围内,该范围可以在工业设备的商业应用过程中,例如在钢带涂层中实现。
根据本发明的另一个优选实施方案设定,除了涂层材料外,还使惰性气体在另一个流入点处流入涂层室,并且选择由涂层材料的分压和惰性气体的分压组成的总压力作为压力,其中调整涂层材料的分压和惰性气体的分压,以便调整压力。如果涂层材料的分压不足以形成滑流或连续流,那么通过惰性气体就有可能将总压力提高到一个程度,从而形成滑流或连续流。可以设想,进一步的流入点可以远离流入点布置。然而,也可以设想,涂层材料以与惰性气体混合的形式流入涂层室。
下表旨在说明压力和温度组合的一些例子。表中示出了针对作为涂层材料的锌计算的露点。
压力[mbar] 露点[K]
100 985
10 851
1 750
根据本发明的另一个优选实施方案设定,使用氮气和/或氩气作为惰性气体。氮气和氩气作为惰性气体是非常合适的。这两种气体不会对PVD涂层产生负面影响,并且此外还适用于冲洗涂层室。
根据本发明的另一个优选实施方案设定,惰性气体尤其是在流入点之前被预热,以防止涂层材料的冷却。
附图说明
通过附图对本发明进行更详细的说明,其中
图1示出了具有防腐蚀覆层的扁钢产品的示意图;
图2示出了具有防腐蚀覆层的扁钢产品的磨片的图像;
图3示出了微通道的示意性细节;
图4示出了微通道的示意性细节;
图5示出了微通道的角度分布。
具体实施方式
图1示出了扁钢产品13的示意图。扁钢产品13包括钢基材15和存在于钢基材15一侧的防腐蚀覆层17。防腐蚀覆层17由锌和不可避免的杂质组成。防腐蚀覆层17具有贯通的微通道19,这些微通道将钢基材15与环境气氛21连接起来。(为了更加清晰,在所示出的18个微通道中,只有布置在最右边的微通道设有附图标记)。
图2示出了扁钢产品13的垂直磨片。这是下文将对其进行说明的表1中编号为10的实施例。扁钢产品13包括由冷轧多相钢组成的钢基材15,其分析成分A如下所示:
C:0.11重量%
Si:0.43重量%
Mn:2.44重量%。
选择性以下一种或多种元素:
P:0.01重量%
S:0.002重量%
Al:0.03重量%
Cr 0.62重量%铬
Cu:0.05重量%
Mo:0.07重量%
N:0.004重量%
Ni:0.05重量%
Nb:0.038重量%
Ti:0.022重量%
V:0.007重量%
B:0.0013重量%
Sn:0.02重量%
Ca:0.002重量%
其余为铁和不可避免的杂质。
扁钢产品13还包括存在于钢基材15一侧的防腐蚀覆层17。防腐蚀覆层17的厚度d为9μm,并且由锌和不可避免的杂质组成。防腐蚀覆层17有贯通的微通道19,这些微通道将钢基材15与环境气氛21连接起来。(为了更加清晰,这里也只有其中一个微通道设置有附图标记)。在所示的图像片段中,大约有27个微通道,这对应于每100μm或290mm-129个通道的密度。
下表显示了一些实施例和这些实施例生产过程中的方法参数。此外,在所有的样品中,涂层的附着力是通过根据SEP1931的球冲击试验来确定的。如果在球冲击试验中出现了涂层的剥落,涂层的附着力就被归类为“不正常(niO)”。在没有剥落的情况下,涂层的附着力被归类为“正常(iO)”。
在所有的实施例中,使用的基材是厚度为1.8mm的钢板坯。在此,该钢坯由具有参考图2所示的分析成分的钢组成。
实例1是用于确定阻断效应S的参考样品。样品1-10是通过气相沉积(PVD)的方式进行涂层。在实例2-8中,使用了电子束蒸发器,以便熔化和蒸发锌涂层材料。在实施例9和10中,锌涂层材料通过电弧熔化和蒸发。实例2-5是在室温的基材温度(即低于50℃)下进行涂层。在这些情况下,制造具有0.5μm和12μm之间不同厚度的防腐蚀覆层。在所有四个情况中,涂层的附着力是不充分的。在实例6至8中,基材被预调温到200℃的温度。以8nm/s的涂层速度制造了1至8μm的涂层厚度。样品6和7不仅表现出良好的涂层附着力,而且还表现出良好的氢渗透性。在样品9和10中,基材被预调温到240℃的温度。以7000nm/s和10000nm/s的明显较高的涂层速率制造了6.5μm和9μm的涂层厚度。样品9和10不仅表现出良好的涂层附着力,而且还表现出良好的氢渗透性。作为比较,样品11和12进行了电解镀锌。此外,样品12通过在保护性气体气氛中在200°的温度下保持60分钟来进行热后处理。在这两种情况下,显示出了极高的阻断效应S,使得引入的氢气仍然留在基材中。因此,这些样品很容易受到氢脆化的影响。
图3示出了防腐蚀覆层17内的微通道19的细节示意图。微通道19将钢基材15与环境气氛连接起来。微通道19基本上垂直于钢基材15的表面23延伸。所示微通道19的底部三分之一与钢基材15的表面23成110°角延伸。这由钢基材15的表面23和切线27之间的角度25显示。切线27与底部三分之一处的微通道19的走向相匹配。在进一步的延伸中,微通道形成直角曲线,并且首先几乎垂直延伸,然后与钢基材15的表面23成大约70°的角度,然后微通道19以漏斗的方式扩展到防腐蚀覆层的表面。漏斗状扩展区域内的走向又几乎垂直于钢基材15的表面23。与底部三分之一相类似,各自相应的角度通过拟合切线并测量切线与表面23的角度来确定。为了更加清晰,只显示了与底部三分之一的走向拟合的切线27。
图4示出了防腐蚀覆层17内的微通道19的细节示意图。微通道19将钢基材15与环境气氛连接起来。微通道19具有倾斜的角度31。倾斜角度31是通过确定微通道19的近基材端中心点并将其与微通道19的远基材端中心点相连接而确定的。该连接线29与基材表面23的角度被称为微通道19的倾斜角31。
图5以倾斜角直方图的形式显示了微通道的角度分布。在各个线相应间隔内确定的倾斜角的数量被绘制出来。选择的步幅为5°。总共有930个微通道被评估。半值全宽是42°。

Claims (14)

1.扁钢产品(13),其包括钢基材(15),所述钢基材具有至少在钢基材(15)的一侧存在的、由锌和不可避免的杂质组成的防腐蚀覆层(17),其特征在于,所述防腐蚀覆层(17)具有贯通的微通道(19),所述微通道将钢基材(15)与环境气氛(21)相连。
2.根据权利要求1所述的扁钢产品(13),其特征在于,微通道(19)的密度大于1mm-1,尤其大于10mm-1,优选大于50mm-1,特别是大于100mm-1
3.根据权利要求1至2中任意一项所述的扁钢产品(13),其特征在于,微通道(19)基本上垂直于钢基材(15)的表面(19)延伸。
4.根据权利要求1至3中任意一项所述的扁钢产品(13),其特征在于,微通道(19)的角度分布具有超过30°的半值全宽。
5.根据权利要求1至4中任意一项所述的扁钢产品(13),其特征在于,防腐蚀覆层(17)的厚度d为1-10μm,优选为5-10μm。
6.根据权利要求1至5中任意一项所述的扁钢产品(13),其特征在于,防腐蚀覆层(17)对氢气渗透的阻断作用为最大90%,优选最大80%。
7.根据权利要求1至6中任意一项所述的扁钢产品(13),其特征在于,防腐蚀覆层(17)的氢气渗透时间小于500s,优选小于150s。
8.根据权利要求1至7中任意一项所述的扁钢产品(13),其特征在于,防腐蚀覆层(17)是通过物理气相沉积施加的。
9.根据权利要求1至8中任意一项所述的扁钢产品(13),其特征在于,钢基材(15)的抗拉强度超过590MPa,尤其是超过1000MPa,优选超过1200MPa。
10.根据权利要求1至9中任意一项所述的扁钢产品(13),其特征在于,钢基材(15)是多相钢,尤其是冷轧或热轧的多相钢。
11.用于生产根据权利要求1至10中任意一项所述的扁钢产品(13)的方法,所述方法包括以下步骤:
-生产或提供钢基材(15)
-选择性除油处理
-选择性酸洗
-通过物理气相沉积法将由锌和不可避免的杂质组成的防腐蚀覆层施加在钢基材(15)上,
其中防腐蚀覆层(17)具有厚度d,并且防腐蚀覆层的厚度d与施加防腐蚀覆层时的涂层速率r之比小于1000s,优选小于800s。
12.根据权利要求11所述的方法,其特征在于,在施加防腐蚀覆层时,钢基材(15)的温度大于50℃,优选大于100℃,特别优选大于150℃。
13.根据权利要求11至12中任意一项所述的方法,其特征在于,由锌和不可避免的杂质组成的防腐蚀覆层通过物理气相沉积的方式施加到钢基材(15)上,方法是将钢基材(15)提供在涂层室中,其中涂层室的压力被调节,并且其中锌作为涂层材料在流入点处流入涂层室,其中将锌调节到一个温度。
14.根据权利要求11至13中任意一项所述的方法,其特征在于,调节压力和温度,使温度高于涂层材料的露点,并且将压力调整到1mbar和100mbar之间,优选10mbar和100mbar之间。
CN202180076463.4A 2020-11-13 2021-11-03 具有改善的锌涂层的扁钢产品 Pending CN116507755A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102020214293.9A DE102020214293B4 (de) 2020-11-13 2020-11-13 Stahlflachprodukt mit verbesserter Zinkbeschichtung
DE102020214293.9 2020-11-13
PCT/EP2021/080485 WO2022101068A1 (de) 2020-11-13 2021-11-03 Stahlflachprodukt mit verbesserter zinkbeschichtung

Publications (1)

Publication Number Publication Date
CN116507755A true CN116507755A (zh) 2023-07-28

Family

ID=78621831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180076463.4A Pending CN116507755A (zh) 2020-11-13 2021-11-03 具有改善的锌涂层的扁钢产品

Country Status (6)

Country Link
US (1) US20230407455A1 (zh)
EP (1) EP4214349A1 (zh)
JP (1) JP2023552071A (zh)
CN (1) CN116507755A (zh)
DE (1) DE102020214293B4 (zh)
WO (1) WO2022101068A1 (zh)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788877A (en) * 1972-07-20 1974-01-29 Steel Corp Method for producing adherent,ductile zinc coating on ferrous substrates by vacuum deposition
IT1291883B1 (it) 1997-04-18 1999-01-21 Sviluppo Materiali Spa Procedimento per la produzione in continuo, tramite deposizione fisica da fase vapore, di nastri metallici rivestiti con elevata
US8048285B2 (en) 2005-05-11 2011-11-01 The Boeing Company Low hydrogen embrittlement zinc/nickel plating for high strength steels
DE102009045076A1 (de) 2009-09-28 2011-04-07 Voestalpine Stahl Gmbh Korrosionsschutz auf Zink-Legierungsbasis
DE102009053367A1 (de) 2009-11-14 2011-05-19 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Erzeugung einer Korrosionsschutzbeschichtung auf einem höherfesten Stahlblechmaterial
JP2015034334A (ja) 2013-07-12 2015-02-19 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
EP3409806B1 (en) * 2016-01-29 2021-03-10 JFE Steel Corporation High strength galvanized steel sheet, high strength member, and method for producing high strength galvanized steel sheet
US11377708B2 (en) * 2016-12-27 2022-07-05 Jfe Steel Corporation High-strength galvanized steel sheet and method for producing the same
KR102010078B1 (ko) 2017-12-24 2019-08-12 주식회사 포스코 수소 크랙 저항성이 우수한 용융아연도금강판 및 그 제조방법
EP3778980A4 (en) * 2018-03-28 2021-02-17 JFE Steel Corporation HIGH STRENGTH ALLOY HOT GALVANIZED STEEL SHEET AND MANUFACTURING METHOD FOR IT
DE102018220678A1 (de) * 2018-11-30 2020-06-04 Thyssenkrupp Ag Verfahren zum PVD-Beschichten von Werkstücken

Also Published As

Publication number Publication date
EP4214349A1 (de) 2023-07-26
JP2023552071A (ja) 2023-12-14
DE102020214293B4 (de) 2022-09-15
DE102020214293A1 (de) 2022-05-19
WO2022101068A1 (de) 2022-05-19
US20230407455A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
KR100825975B1 (ko) 경화 강판 부품의 제조 방법
JP5586224B2 (ja) 防食コーティングを有するフラット鋼生成物並びに防食コーティングを有するフラット鋼生成物の製造方法
JP6348105B2 (ja) 犠牲カソード防食を提供するコーティングを備えた鋼板、こうした鋼板を用いる部品の製造方法、および得られた部品
KR102384093B1 (ko) 란탄을 포함하는 희생 음극 보호 코팅을 구비한 강 시트
US20160319415A1 (en) Hot dip galvanized steel sheet having excellent resistance to cracking due to liquid metal embrittlement
WO2015001367A1 (en) Cold rolled steel sheet, method of manufacturing and vehicle
CA2755389A1 (en) High-strength hot-dip galvanized steel sheet and method for producing same
KR101692179B1 (ko) 고강도 강판 및 그 제조 방법
EP3128017A1 (en) Hot-stamped steel material
EP4316718A1 (en) Automotive member and resistance-spot-welding method therefor
EP2145973A1 (en) Alloyed hot-dip galvanized steel sheet and production method thereof
US11920243B2 (en) Method for manufacturing a sheet metal component from a flat steel product provided with a corrosion protection coating
CN114555838B (zh) 模压淬火方法
EP2759617B1 (en) Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance after coating
CN111936659B (zh) 高强度合金化熔融镀锌钢板及其制造方法
US8691396B2 (en) Galvannealed steel sheet and production method thereof
KR20220072861A (ko) 프레스 경화 방법
EP3072982B1 (en) Method for manufacturing a high-strength steel sheet
JPWO2020095682A1 (ja) ジルコニウム系化成処理用冷延鋼板およびその製造方法ならびにジルコニウム系化成処理鋼板およびその製造方法
CN116507755A (zh) 具有改善的锌涂层的扁钢产品
KR101500282B1 (ko) 도금표면 품질 및 도금밀착성이 우수한 고강도 용융아연도금강판 제조방법
CN115667571A (zh) 热压部件
KR101568614B1 (ko) 도금성 및 점용접성이 우수한 용융아연도금강판 및 그 제조방법
KR102665904B1 (ko) 프레스 경화 방법
CN115003848B (zh) 具有含锰防腐蚀覆层的钢部件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination