CN116348237A - 使用激光烧蚀生产纳米流体的方法,相应的纳米流体和用于制造纳米流体的激光烧蚀*** - Google Patents

使用激光烧蚀生产纳米流体的方法,相应的纳米流体和用于制造纳米流体的激光烧蚀*** Download PDF

Info

Publication number
CN116348237A
CN116348237A CN202180067940.0A CN202180067940A CN116348237A CN 116348237 A CN116348237 A CN 116348237A CN 202180067940 A CN202180067940 A CN 202180067940A CN 116348237 A CN116348237 A CN 116348237A
Authority
CN
China
Prior art keywords
target
laser
liquid
laser beam
nanofluids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180067940.0A
Other languages
English (en)
Inventor
马利克·马扎
萨利赫·哈姆利奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOUTH AFRICA, University of
Original Assignee
SOUTH AFRICA, University of
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOUTH AFRICA, University of filed Critical SOUTH AFRICA, University of
Publication of CN116348237A publication Critical patent/CN116348237A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0043Preparation of sols containing elemental metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0047Preparation of sols containing a metal oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0086Preparation of sols by physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/122Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in a liquid, e.g. underwater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/089Liquid-solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明涉及一种制造纳米流体(30)的方法,包括激光烧蚀在其表面上流动液体的靶(14)。该方法包括使于彼此移动靶(14)和激光束(A1)的步骤。该方法还包括相对于激光束(A1)移动靶(14)的步骤,使得当激光束(A1)在Y方向上取向并且靶(14)面对激光束(A1)时,激光束(A1)在X或Z方向上扫描靶的表面。还限定了相应的装置,以及根据该方法制造的纳米流体。

Description

使用激光烧蚀生产纳米流体的方法,相应的纳米流体和用于 制造纳米流体的激光烧蚀***
发明领域
本发明涉及在开放气氛中以改进形式的激光烧蚀一步批量生产各种纳米流体的新方法。
发明背景
在纳米流体的新兴领域中已知的是,从科学和工业的观点来看,这样的混合流体正获得全球的兴趣。
具有良好前景的纳米颗粒的技术应用之一是它们作为在各种主体流体中的悬浮液的用途,以总体上增强其热性质,特别是增强这种流体的传热特性。这将面对各种热***中的挑战性冷却问题。术语“纳米流体”是指通过将纳米级金属或非金属固体颗粒分散在液体中产生的固-液混合物或悬浮液。
液体混合物中纳米颗粒的尺寸(通常小于100nm)赋予它们在分子水平上与液体相互作用的能力,因此比标准传热流体更好地传热。纳米流体可显示出增强的热传递,这是因为除了纳米颗粒本身的提高的固有热导率之外,对流和传导以及通过颗粒动力学和碰撞的额外能量传递的组合。
在液体中的毫米和微米尺寸的固体颗粒的悬浮液已经被研究用于冷却和其它应用,但是由于颗粒的相对大的尺寸,它们倾向于引起磨蚀作用,其侵蚀***部件。而且,它们阻塞小的流动通道,并且具有在重力下沉降的倾向,导致不希望的压降。这种沉降现象必须最大限度地最小化。
相反,流体中的纳米颗粒具有低动量,这大大降低了磨蚀磨损,并且纳米流体可被描述为胶体,因为胶体是由不溶但仍保留在溶液中并分散在另一流体介质中的颗粒***构成的物质。纳米流体由美国能源部的斯蒂芬S.Choi首创,通过单步或多步方法制备,即:
1-直接蒸发技术
2-埋弧纳米粒子合成技术
3-激光烧蚀
4-微波照射
5-多元醇方法
6-相转移方法
铂族金属(PGMs)是六种化学、物理和解剖学上相似的过渡金属元素。PGMs是最致密的已知金属元素。
六个PGMs为:
1-铱(Ir)
2-锇(Os)
3-钯(Pd)
4-铂(Pt)
5-铑(Rh)
6-钌(Ru)。
出于此定义的目的,我们包括金和银来定义PGM。
因此,本发明的一个目的是提供一种发明,该发明涉及一种新的激光烧蚀方法,该方法采用由金属、氧化物、碳化物和氮化物靶一步批量生产纳米颗粒,该纳米颗粒可以在各种液体如油、H2O、乙二醇(EG)中制成纳米流体,并且该纳米流体具有增强的热导率。
发明内容
根据本发明的第一方面,提供了一种生产纳米流体的方法,该方法包括激光烧蚀在其表面上流动液体的靶。
在一个实施例中,该方法可以包括相对于彼此移动靶和激光束,优选地相对于激光束移动靶,使得当激光束在Y方向上定向并且靶面对激光束时,激光束在X和/或Z方向上扫描靶的表面。
在一个实施例中,液体可以在正被激光烧蚀的靶的表面上连续地流动,并且液体可以布置成以预定速度在靶上流动,以便保持在靶上流动的液体的预定厚度。
在一个实施例中,液体可以被加热到预定温度。
在一个实施例中,该液体可以是以下组中的任何一种或多种的形式,该组包括水、蓖麻油、发动机油、鲁比亚油或类似物。
在一个实施例中,靶可以是包括金属靶、氧化物靶、氮化物靶、碳化物靶等的组中的任何一种或多种的形式。更优选地,金属靶可以是基于铂族金属(PGMs)的非氧化但原始金属的形式。此外,金属靶可以是Cu和/或Al的形式。更进一步地,氧化物靶可以是氧化金属的形式,所述氧化金属可以选自包括CuO Al2O3、TiO2、MgO等的组。此外,氮化物靶可以是锡的形式。此外,碳化物靶可以是TiC和/或WC的形式。
在一个实施方案中,该方法可包括收集携带激光烧蚀颗粒的液体,其中激光烧蚀颗粒悬浮在收集的液体中,其中液体和悬浮的激光烧蚀颗粒限定纳米流体。
在一个实施例中,该方法可以包括在开放大气中激光烧蚀靶。
根据本发明的第二方面,提供了一种根据本发明第一方面的方法制造的纳米流体。
根据本发明的第三方面,提供了一种用于制造纳米流体的激光烧蚀***,该***包括:
用于产生激光束的激光束源;
被布置成处于该激光束的路径中的靶;
以及液体源,用于排放布置成被激光烧蚀的靶表面上的液体。
在一个实施例中,该***可以包括与靶流体连通的一系列出口,用于将液体从液体源排放到被布置成被激光烧蚀的靶的表面上。
在一个实施例中,该***可以包括用于调节液体在靶表面上排放的速率的装置。
在一个实施例中,该***可以包括用于加热液体的加热装置,该液体被布置成排到靶的表面上。
在一个实施例中,该***可以包括收集器,该收集器布置成收集流过靶的液体,该液体布置成从靶携带激光烧蚀的颗粒。
在一个实施例中,该***可以包括耦合到移位装置的计算机***,该计算机***和移位装置被布置成使靶和激光器相对于彼此移位,优选地使靶相对于激光束的路径移位,以便使激光束能够在靶的表面上扫描,并因此在激光束烧蚀靶时***地扫描靶的表面。
附图说明
通过下面结合附图的描述,本发明的目的和特征将变得完全清楚。考虑到这些附图仅描绘了本发明的典型实施例并且因此不被认为限制其范围,将通过使用附图以附加的具体细节来描述和解释本发明,在附图中:
在附图中:
图1显示了用于生产根据本发明的纳米流体的激光烧蚀***。
图2示出了在所述方法中制备的纳米级Cu纳米颗粒的典型透射电子显微图,其中Cu的Z-X移动靶覆盖有标准发动机油的流动层状膜;
图3示出了在所述方法中制备的纳米级Cu纳米颗粒的典型高分辨率透射电子显微图;
图4显示了通过标准Pt丝技术测量的Cu纳米悬浮液在标准发动机油中和纯发动机油中的热导率;
图5示出了通过标准Pt丝技术测量的Cu&Al纳米悬浮液在标准传动油中和纯传动油中的热导率;
图6显示了通过标准Pt丝测量的Cu&Al纳米悬浮液在标准Motui油中和纯Motui油中的热导率;以及
图7显示了通过标准Pt丝测量的Cu&Al纳米悬浮液在标准蓖麻油中和纯蓖麻油中的热导率。
具体实施方式
虽然本发明的各种发明方面,概念和特征可在本文中描述和说明为在示例性实施例中组合体现,但这些各种方面、概念、化学组合物和特征可单独或以其各种组合和子组合用于许多替代实施例中。除非在此明确排除,否则所有这样的组合和子组合都意图在本发明的范围内。此外,虽然本文中可描述关于本发明的各种方面、概念和特征的各种替代实施例-此类替代结构、配置、方法、化学组合物和组件,关于形式、配合和功能的替代等。这样的描述并不旨在是可用的替代实施例的完整或穷尽的列表,无论是当前已知的还是以后开发的。
所属领域的技术人员可容易地将发明性方面、特征概念中的一者或多者采用到额外实施例中并在本发明的范围内使用,即使此类实施例并未明确地揭示于本文中。更进一步地,可以包括示例性或代表性的值和范围以帮助理解本发明;然而,这样的值和范围不应解释为限制性的,并且仅在明确地如此陈述的情况下旨在是临界值或范围。此外,虽然各种方面、特征和概念可在本文中明确地标识为发明性的或形成本发明的一部分,但此类标识并不旨在是排他性的,而是可能存在本文中充分描述的发明性方面、概念和特征,而不明确地标识为特定发明的此类或一部分。
如附图中的图1所示,提供了一种激光烧蚀***,其总体上由附图标记10表示。***10包括激光束源12,该激光束源12示出为布置在Y方向上并面向基本上矩形或立方体的靶14。靶14装配到移位装置16,移位装置16包括一对直立臂18;长形支撑件20,该长形支撑件被装配在该对直立臂18之间;支撑件20限定纵向凹部22,该纵向凹部22容纳靶14上的互补构件(未示出),该互补构件(未示出)布置成将靶14连接到支撑件20,并且还布置成在凹部内滑动以允许靶相对于支撑件在X方向上相对于激光源12在Y方向上发射的激光束的束路径移动;以及致动器(现在示出),例如电动机(未示出),其被布置成相对于激光源12在Y方向上发射的激光束的束路径A'在Z方向上沿着臂18.2、18.4移动/平移支撑件20,并且还被布置成通过互补构件(未示出)在凹部22中的滑动运动在X方向上相对于支撑件20移动靶14。
***10包括计算机***(未示出),该计算机***包括处理器(未示出)和包含指令的存储器设备(未示出),该指令被布置成使移位装置16以预定顺序在X和Z方向上移位靶14,以便使激光束能够扫描靶14的面向激光束的表面,并使激光束能够烧蚀与激光束接触的靶14的表面。
***10还包括限定一系列纵向间隔的出口26的导管24,出口26与靶14流体连通,并且布置成将通过导管24上的入口28接收的液体排放到靶14的面向束路径A'方向的表面上。***10还包括液体源(未示出),该液体源布置成将液体提供到入口28中,该液体布置成经由出口26排放到靶14的表面上。当烧蚀发生在液体和靶的界面时,液体在靶的表面上以受控的层流流动,优选形成移动的薄涂层。
存储器设备(未示出)还可以布置成使处理器(未示出)调节经由出口26排放到靶14的表面上的液体的流速,以便保持液体在靶14的表面上的层流,并且还保持液体和靶14的表面之间限定的界面的最小厚度。因此,存储器设备中的指令可以布置成对应于激光烧蚀***10中使用的液体类型和靶类型。例如,对于作为碳化物的靶和在碳化物靶上使用的相应液体可以有预定的指令,以便确保预定的液体流保持在要烧蚀的靶的表面上。
***10还包括加热装置(未示出),该加热装置布置成将液体加热到预定温度,以将液体的粘度调节到适于保持液体的预定厚度或涂层厚度的预定粘度。
此外,***10包括收集器28,该收集器28布置在靶14下方并与靶14流体连通以收集从靶14滴落或流动的液体,该液体携带已经被激光束激光烧蚀的靶14的颗粒。
收集在收集器28中的液体限定了根据本发明的纳米流体,烧蚀颗粒悬浮在液体中,优选均匀分散在液体中。所形成的纳米颗粒不团聚并且长时间悬浮在纳米流体中,从而使重力沉降现象最小化。
靶可以是金属靶、氧化物靶、氮化物靶或碳化物靶。激光烧蚀源的性质由靶材料的吸收系数决定。如果需要,液体应该被加热以改变其粘度,从而允许在靶上的层流,以避免到达靶的激光束的任何显著散焦。
在使用中,X-Z移动靶上的层流和薄厚度的流体确保激光束在液体-靶界面处不受几何影响。当靶被烧蚀时,所形成的纳米颗粒(即来自靶的烧蚀颗粒)被移动的液体膜拖动/移位,从而产生靶纳米流体,该靶纳米流体被收集在收集器28中的靶的底部。靶14布置成沿X-Z方向移动,以确保在任何激光点-靶相互作用下烧蚀新表面。如图1中突出显示的,主体流体(即,液体)以降低其粘度的主流体(即液体)以预定的速度供应到靶14,确保主流体涂层的规则连续薄层同时在靶上连续流动。激光的波长由靶材料的最大吸收限定。激光的通量和重复率以及靶14的X-Z速度决定了随后形成的纳米流体的浓度。在基于H2O的纳米流体的情况下,金属形成的纳米颗粒的直接氧化可以如在标准LLSI/PLAL中进行。
图2示出了在所述方法中制备的纳米级Cu纳米颗粒的典型透射电子显微图,其中Cu的Z-X移动靶覆盖有标准发动机油的流动层状膜。
图3示出了在所述方法中制备的纳米级Cu纳米颗粒的典型高分辨率透射电子显微图,其中Cu的Z-X移动靶覆盖有标准发动机油的流动层状膜。尽管结构上主要是结晶的,但Cu纳米颗粒表现出具有壳核形态、晶核和无定形壳涂层的各种结晶取向。
图4显示了通过标准Pt丝技术测量的Cu纳米悬浮液在标准发动机油中和纯发动机油中的热导率。当发动机油的热导率随温度降低时,Cu-发动机油纳米流体的热导率增加。在45摄氏度下的热导率接近200%。
图5显示了通过标准Pt丝技术测量的Cu&Al纳米悬浮液在标准传动油中和纯传动油中的热导率。当传输油的热导率随着温度降低时,Cu-传动油和Al-传动油纳米流体的热导率升高。在45℃下,Cu-传动油的热导率接近22%,而Al-传动油纳米流体的热导率约为17%。
图6显示了通过标准Pt丝技术测量的Cu&Al纳米悬浮液在标准Motui油中和纯Motui油中的热导率。当Motui油的热导率随温度降低时,Cu-Motui油和Al-Motui油纳米流体的热导率增加。
图7显示通过标准Pt丝技术测量的Cu&Al纳米悬浮液在标准蓖麻油和纯蓖麻油中的热导率。尽管蓖麻油的热导率随温度降低,但Cu-蓖麻油和Al发动机油纳米流体的热导率增加。在45℃下,Cu-蓖麻油的热导率接近200%,而Al-蓖麻油纳米流体的热导率约为193%。
如图1所示,激光烧蚀***具有以下优点:
(i)它是形成纳米流体的一步法;
(ii)导致大量生产并因此导致工业生产;
(iii)由各种靶材料如金属、氧化物、氮化物、碳化物制造纳米流体的潜力;
(iv)不需要真空来产生纳米流体;
(v)纳米颗粒不团聚并长时间悬浮在纳米流体中,使重力沉降现象最小化;(vi)该***可以不费力地集成到工作在各种时间状态和各种光谱范围的各种激光源,以通过调节激光物质的光吸收来优化烧蚀速率。

Claims (23)

1.一种生产纳米流体的方法,其包括激光烧蚀在其表面上流动液体的靶。
2.根据权利要求1所述的方法,其中,所述方法包括使所述靶和激光束彼此相对移动的所述步骤。
3.根据权利要求2所述的方法,其中,所述方法包括相对于所述激光束移动所述靶的所述步骤,使得当所述激光束沿所述Y方向取向并且所述靶面对所述激光束时,所述激光束沿所述X或Z方向扫描所述靶的所述表面。
4.根据前述权利要求中任一项或多项所述的方法,其中,所述液体在被激光烧蚀的所述靶的所述表面上连续流动,并且所述液体布置成以预定速度在所述靶上流动,以便保持在所述靶上流动的所述液体的预定厚度。
5.根据前述权利要求中任一项或多项所述的方法,其中,所述液体被加热到预定温度。
6.根据前述权利要求中任一项或多项所述的方法,其中,所述液体为包括水、蓖麻油、发动机油或鲁比亚油的所述组中的任一种或多种的所述形式。
7.根据前述权利要求中任一项或多项所述的方法,其中,所述靶为包括金属靶、氧化物靶、氮化物靶或碳化物靶的所述组中的任一种或多种的所述形式。
8.根据权利要求7所述的方法,其中,所述金属靶为基于铂族金属(PGMs)的非氧化但原始金属的所述形式。
9.根据权利要求7或8所述的方法,其中,所述金属靶为Cu或Al的所述形式。
10.根据权利要求7至9中任一项或多项所述的方法,其中,所述氧化物靶为氧化金属的所述形式。
11.根据权利要求10所述的方法,其中,所述氧化金属选自包括CuO Al2O3、TiO2或MgO的所述组。
12.根据权利要求7至11中任一项或多项所述的方法,其中,所述氮化物靶为TiN的所述形式。
13.根据权利要求7至12中任一项或多项所述的方法,其中,所述碳化物靶为TiC或WC的所述形式。
14.根据前述权利要求中任一项或多项所述的方法,其中,所述方法包括收集携带激光烧蚀颗粒的所述液体的所述步骤,其中,所述激光烧蚀颗粒悬浮在所述收集的液体中,其中,所述液体和悬浮的激光烧蚀颗粒限定所述纳米流体。
15.根据前述权利要求中任一项或多项所述的方法,其中,所述方法包括在开放气氛中激光烧蚀所述靶的所述步骤。
16.根据上文所述的方法制造的纳米流体。
17.一种用于制造纳米流体的激光烧蚀***,所述激光烧蚀***包括:
用于产生激光束的激光束源;
被布置成处于所述激光束的所述路径中的靶;以及
液体源,用于排放布置成被激光烧蚀的所述靶的表面上的液体。
18.根据权利要求17所述的激光烧蚀***,其包括与所述靶流体连通的一系列出口,用于将所述液体从所述液体源排放到所述靶的布置成被激光烧蚀的所述表面上。
19.根据权利要求17或18所述的激光烧蚀***,其包括用于调节所述液体在所述靶的所述表面上排放的速率的装置。
20.根据权利要求17至19中任一项或多项所述的激光烧蚀***,其包括加热装置,所述加热装置用于加热布置成在所述靶的所述表面上排放的所述液体。
21.根据权利要求17至20中任一项或多项所述的激光烧蚀***,其包括收集器,所述收集器布置成收集流过所述靶的所述液体,所述液体布置成携带来自所述靶的激光烧蚀颗粒。
22.根据权利要求17至21中任一项或多项所述的激光烧蚀***,其包括耦合到移位装置的计算机***,所述计算机***和移位装置布置成使所述靶和激光器相对于彼此移位。
23.根据权利要求22所述的激光烧蚀***,其中,所述计算机***和移位装置布置成相对于所述激光束的所述路径移位所述靶,以便使所述激光束能够扫描所述靶的所述表面,并因此在所述激光束烧蚀所述靶时***地扫描所述靶的所述表面。
CN202180067940.0A 2020-10-01 2021-09-30 使用激光烧蚀生产纳米流体的方法,相应的纳米流体和用于制造纳米流体的激光烧蚀*** Pending CN116348237A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ZA202006082 2020-10-01
ZA2020/06082 2020-10-01
PCT/ZA2021/050056 WO2022073044A1 (en) 2020-10-01 2021-09-30 Method of producing a nanofluid using laser ablation, corresponding nanofluid and laser ablation system for manufacturing nanofluids

Publications (1)

Publication Number Publication Date
CN116348237A true CN116348237A (zh) 2023-06-27

Family

ID=78725778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180067940.0A Pending CN116348237A (zh) 2020-10-01 2021-09-30 使用激光烧蚀生产纳米流体的方法,相应的纳米流体和用于制造纳米流体的激光烧蚀***

Country Status (5)

Country Link
US (1) US20230415270A1 (zh)
EP (1) EP4221929A1 (zh)
CN (1) CN116348237A (zh)
WO (1) WO2022073044A1 (zh)
ZA (1) ZA202304770B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITME20110025A1 (it) * 2011-12-13 2013-06-14 A N M Res S R L Metodo di produzione di nano-particelle inorganiche tramite ablazione laser in flusso liquido
WO2014178935A1 (en) * 2013-04-29 2014-11-06 Imra America, Inc. Size controlled suspension of precious metal nanoparticles
EP3515648B1 (en) * 2016-09-23 2023-03-22 Tata Steel Nederland Technology B.V. Method of and arrangement for the liquid-assisted laser texturing of moving steel strip

Also Published As

Publication number Publication date
US20230415270A1 (en) 2023-12-28
ZA202304770B (en) 2023-12-20
EP4221929A1 (en) 2023-08-09
WO2022073044A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
Hirt et al. Additive manufacturing of metal structures at the micrometer scale
CN100467118C (zh) 纳米粒子制备装置
Darwish et al. Synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment
Taylor et al. Small particles, big impacts: A review of the diverse applications of nanofluids
Nichols et al. Laser ablation of a platinum target in water. II. Ablation rate and nanoparticle size distributions
JP5062721B2 (ja) ナノサイズワイヤーの製造方法
CN103627883B (zh) 一种用皮秒脉冲激光调控金属表面吸光性能的方法
CA2548501C (en) Method for obtaining nanoparticles
EP3556491B1 (en) Uniformly controlled nanoscale oxide dispersion strengthened alloys
CN110049836A (zh) 通过增材制造制造金属部件和用于其的钨重金属合金粉末
Rioux et al. A systematic study of pool boiling heat transfer on structured porous surfaces: From nanoscale through microscale to macroscale
Al-Dahash et al. Preparation and characterization of ZnO nanoparticles by laser ablation in NaOH aqueous solution
Chaturvedi et al. Design process for nanomaterials
KR20190043568A (ko) 금속 적층 조형용 금속분 및 그 금속분을 사용하여 제조한 조형물
Sergievskaya et al. Sputtering onto liquids: a critical review
WO2007141244A1 (en) Method for the production of nanoparticles
JP6571308B2 (ja) 溶射材料およびその製造方法、並びに、溶射方法
CN116348237A (zh) 使用激光烧蚀生产纳米流体的方法,相应的纳米流体和用于制造纳米流体的激光烧蚀***
Nominé et al. Synthesis of nanomaterials by electrode erosion using discharges in liquids
Watt et al. Formation of Metal Nanoparticles Directly from Bulk Sources Using Ultrasound and Application to E‐Waste Upcycling
Bonvicini et al. Formation and removal of alloyed bimetallic Au–Ag nanoparticles from silicon substrates for tunable surface plasmon resonance
CN109119332A (zh) 一种采用退火方法制备图案化有序双金属纳米粒子阵列的方法
JP2004190089A (ja) 無機ナノ粒子融合又は融着構造体の製造方法及びその融合又は融着構造体
RU2265076C1 (ru) Способ получения наночастиц
EP3263734B1 (en) Thermal spray material, method for manufacturing same and thermal spraying method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination