CN116143249B - 基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法及其应用 - Google Patents

基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法及其应用 Download PDF

Info

Publication number
CN116143249B
CN116143249B CN202310366051.5A CN202310366051A CN116143249B CN 116143249 B CN116143249 B CN 116143249B CN 202310366051 A CN202310366051 A CN 202310366051A CN 116143249 B CN116143249 B CN 116143249B
Authority
CN
China
Prior art keywords
photoelectrocatalysis
particle electrode
dimensional particle
modified biochar
biochar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310366051.5A
Other languages
English (en)
Other versions
CN116143249A (zh
Inventor
武睿
丁杰
刘路明
杨珊珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Yuehai Water Investment Co ltd
Yuehai Water Resources Engineering Research Center Guangdong Co ltd
Harbin Institute of Technology
National Engineering Research Center for Water Resources of Harbin Institute of Technology Co Ltd
Original Assignee
Guangdong Yuehai Water Investment Co ltd
Yuehai Water Resources Engineering Research Center Guangdong Co ltd
Harbin Institute of Technology
National Engineering Research Center for Water Resources of Harbin Institute of Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Yuehai Water Investment Co ltd, Yuehai Water Resources Engineering Research Center Guangdong Co ltd, Harbin Institute of Technology, National Engineering Research Center for Water Resources of Harbin Institute of Technology Co Ltd filed Critical Guangdong Yuehai Water Investment Co ltd
Priority to CN202310366051.5A priority Critical patent/CN116143249B/zh
Publication of CN116143249A publication Critical patent/CN116143249A/zh
Application granted granted Critical
Publication of CN116143249B publication Critical patent/CN116143249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法及其应用,本发明为了解决含高浓度Cl废水中的难降解污染物处理效果不佳的问题。制备方法:一、以植物秸秆为原料,在真空管式炉中对植物秸秆进行热解,热解后转移到盐酸溶液中浸泡,得到生物炭;二、利用水滑石改性生物炭;三、将改性生物炭加入到AQDS溶液中,搅拌形成悬浊液,悬浊液转移到反应釜中进行水热反应,抽滤收集固相反应物,得到光电催化三维粒子电极。本发明制备得到的粒子电极的主体生物炭能在通电情况下极化,在高盐废水中,AQDS从基态跃迁到单线激发态,氯离子与三线激发态发生反应,生成三元复合物和超氯自由基,对有机污染物光电催化效果优异。

Description

基于改性生物炭的高电子传递效率的光电催化三维粒子电极 的制备方法及其应用
技术领域
本发明属于环保和水处理技术领域,具体涉及一种基于改性生物炭的三维粒子电极的制备方法,并应用于光电催化处理高盐废水中的难降解污染物。
背景技术
随着工业、农业和人类活动的发展,水污染已成为世界各国人民面临的共同问题和挑战,部分处理或大部分未经处理的生活和工业废水是水污染的主要来源,这些污染物中的绝大多数对环境来说具有持久性,传统的废水处理技术对这些污染物的处理效果有限,这些污染物威胁着人类和动物的健康,其中,药物、化学品、染料等常见的有机污染物可以通过生物方法去除,但生物技术处理周期长,对某些污染物的去除效率低,相比之下,化学技术在高效率降解污染物方面更具优势,而在化学技术中高级氧化技术是最有效的污染物去除方法。光催化处理技术一直是研究最广泛的高级氧化技术,但受光生载流子易复合这一缺点的限制,光电催化则可以通过对***施加电流,使得光生载流子有效分离,提高污染物去除效率。
抗生素等污染物广泛存在于含盐废水中,如海水养殖废水、生产废水及海水,污水处理厂的常规处理并不能有效消除抗生素这类难降解污染物,并且,当水体中含有盐分时会导致微生物脱水和质壁分离,抑制酶活性,因此,当处理含有大量含盐废水时,会显著抑制生物处理效果。光催化处理技术能有效去除污水中的难降解物质,而氯离子被认为是空穴或羟基自由基的猝灭剂,但当氯化物浓度较高时,它会通过生成Cl2 -促进水中污染物的降解,因此,研究在含盐废水中降解难降解污染物的先进处理方法至关重要。
在三维电催化***中,每个电极粒子均独立充当了电解池,因此,电化学氧化和还原反应不仅发生在主电极上,而且发生在颗粒电极表面,但相对光电催化,其耗能更高,而目前光电催化多处于二维***电极材料的研究上,将三维电催化和光催化结合的研究很少报道。
发明内容
本发明的目的是为了解决含高浓度Cl-废水中的难降解污染物处理效果不佳的问题,而提供一种基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法及其应用。
本发明基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法按照以下步骤实现:
一、以植物秸秆为原料,在真空管式炉中对植物秸秆进行热解,热解过程通入氮气,以350~500℃的温度处理2~4h,热解后转移到盐酸溶液中浸泡,再经洗涤、干燥后得到生物炭;
二、配置MgCl2-AlCl3混合溶液,其中MgCl2的浓度为0.2~0.4mol/L,AlCl3的浓度为0.1~0.2mol/L,将生物炭浸渍于MgCl2-AlCl3混合溶液中,通过NaOH-Na2CO3混合溶液调节体系的pH至7~9,在80~90℃温度下反应20~26h,在100~120℃条件下烘干,研磨过筛得到水滑石改性生物炭;
三、将蒽醌-2,6-磺酸钠(AQDS)超声溶于水中,得到浓度为0.8~1.2g/L的AQDS溶液,将水滑石改性生物炭加入到AQDS溶液中,搅拌形成悬浊液,悬浊液转移到反应釜中在160℃~200℃温度下水热反应15~20h,抽滤收集固相反应物,经洗涤、干燥处理后得到光电催化三维粒子电极。
本发明基于改性生物炭的高电子传递效率的光电催化三维粒子电极的应用是将该光电催化三维粒子电极置于光电催化***中处理含高浓度Cl-废水中的难降解污染物。
本发明制备得到的粒子电极的主体改性生物炭能在***通电情况下极化,可完成电催化对污染物的降解过程,另外在高盐废水中,***受到光照后,AQDS从基态跃迁到单线激发态,然后跃迁到三线激发态,氯离子与三线激发态发生反应,形成一个电荷转移二元激态络合物,其与Cl-继续反应生成三元复合物和超氯自由基,然后氧气得到半醌基离子的电子,生成超氧阴离子。上述过程生成的自由基能将污水中的污染物氧化降解,在本发明中Cl-对水中污染物的降解起到了促进作用,使用水滑石改性生物炭,水滑石改性生物炭能对氯离子特异性吸附,保证活性氯离子稳定,增加了生物炭对水中氯离子的吸附效果,另外将光敏剂AQDS负载到粒子电极上,增大了受光面积,并且AQDS对可见光有响应。
附图说明
图1为本发明基于改性生物炭的高电子传递效率的光电催化三维粒子电极在光电催化***降解污染物机理图;
图2为实施例制备的BC/AQDS粒子电极在光电催化***中对磺胺甲恶唑(10mg/L)的降解曲线和对比曲线图,其中1代表有粒子电极,2代表无粒子电极;
图3为实施例制备的BC/AQDS粒子电极在光电催化***中对磺胺甲恶唑(10mg/L)的矿化曲线和对比曲线图,其中1代表有粒子电极,2代表无粒子电极。
图4为实施例制备的BC/AQDS粒子电极电镜图;
图5为实施例制备的BC/AQDS粒子电极在含氯离子或不含氯离子光电催化***中对磺胺甲恶唑(10mg/L)的降解曲线图,其中1代表含氯离子,2代表不含氯离子。
具体实施方式
具体实施方式一:本实施方式基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法按照以下步骤实施:
一、以植物秸秆为原料,在真空管式炉中对植物秸秆进行热解,热解过程通入氮气,以350~500℃的温度处理2~4h,热解后转移到盐酸溶液中浸泡,再经洗涤、干燥后得到生物炭;
二、配置MgCl2-AlCl3混合溶液,其中MgCl2的浓度为0.2~0.4mol/L,AlCl3的浓度为0.1~0.2mol/L,将生物炭浸渍于MgCl2-AlCl3混合溶液中,通过NaOH-Na2CO3混合溶液调节体系的pH至7~9,在80~90℃温度下反应20~26h,在100~120℃条件下烘干,研磨过筛得到水滑石改性生物炭;
三、将蒽醌-2,6-磺酸钠(AQDS)超声溶于水中,得到浓度为0.8~1.2g/L的AQDS溶液,将水滑石改性生物炭加入到AQDS溶液中,搅拌形成悬浊液,悬浊液转移到反应釜中在160℃~200℃温度下水热反应15~20h,抽滤收集固相反应物,经洗涤、干燥处理后得到光电催化三维粒子电极。
本实施方式改性生物炭具有好的吸附性,对污染物和水中氯离子的吸附效果良好,且其本身良好的电子传递效果使得整个***的电子传递更加活跃,增强了粒子电极的电催化效果,AQDS又能够对可见光响应,利用Cl-对污染物进行降解,因此整个***的光电催化效果极佳。
具体实施方式二:本实施方式与具体实施方式一不同的是步骤一中所述的植物秸秆为水稻秸秆、小麦秸秆或者玉米秸秆。
具体实施方式三:本实施方式与具体实施方式一或二不同的是步骤一中热解过程控制氮气的流量为0.15~0.2L/min,加热速率为13~16℃/min。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是步骤一中以500℃的温度处理2.5h。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是步骤一中热解后转移到1mol/L的盐酸溶液中浸泡15h~20h。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是步骤二中MgCl2-AlCl3混合溶液中MgCl2的浓度为0.3mol/L,AlCl3的浓度为0.15mol/L。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是步骤二中调节体系的pH至8。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是步骤三中水热反应的温度为180℃,反应时间为16h。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是步骤三得到的光电催化三维粒子电极的直径为2~4mm。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是每100mg三维粒子电极中蒽醌-2,6-磺酸钠的负载量为5~8mg。
具体实施方式十一:本实施方式基于改性生物炭的高电子传递效率的光电催化三维粒子电极的应用是将该光电催化三维粒子电极置于光电催化***(体系)中处理含高浓度Cl-废水中的难降解污染物。
本实施方式光电催化***(体系)中施加机械搅拌。
具体实施方式十二:本实施方式与具体实施方式十一不同的是光电催化***中施加电压为6V。
实施例:本实施例基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法按照以下步骤实施:
一、以水稻秸秆为原料,在真空管式炉中对植物秸秆进行热解,热解过程通入0.18L/min的氮气,加热速率为14℃/min,以500℃的温度处理2.5h,热解后将热解样品转移到浓度为1mol/L的盐酸溶液中浸泡18h,依次经乙醇和去离子水洗涤,在60℃下干燥24h后得到生物炭;
二、配置MgCl2-AlCl3混合溶液,其中MgCl2的浓度为0.3mol/L,AlCl3的浓度为0.15mol/L,将生物炭浸渍于MgCl2-AlCl3混合溶液中,通过NaOH-Na2CO3混合溶液调节体系的pH至8,在85℃温度下反应24h,在110℃条件下烘干,研磨过筛得到水滑石改性生物炭;
三、将蒽醌-2,6-磺酸钠(AQDS)超声溶于水中,得到浓度为1g/L的AQDS溶液,将水滑石改性生物炭加入到AQDS溶液中,搅拌形成悬浊液,使AQDS吸附到使AQDS吸附到改性生物炭上,悬浊液转移到反应釜中进行水热反应,水热反应的温度为180℃,水热反应时间为16h,抽滤收集固相反应物,依次经乙醇和去离子水洗涤多次去除游离的AQDS,在真空干燥箱中以60℃干燥后得到光电催化三维粒子电极(改性生物炭/AQDS粒子电极)。
对本实施例得到的光电催化三维粒子电极进行水处理实验:
将磺胺甲恶唑作为目标污染物,配置浓度为10mg/L的磺胺甲恶唑溶液,溶液中Cl-浓度为0.5mg/L,取该溶液300mL,以石墨棒为主电极,施加的电压为6V,反应器体积为500mL,BC/AQDS粒子电极占反应器体积的1/3,光源为模拟可见光光源,每隔15min取一次水样,水样过0.45μm的滤膜。在该***中,120分钟内,磺胺甲恶唑的降解率可达到98.8%,矿化率(TOC去除率)达40%以上,光电体系下以光催化作用为主,电流作用为辅。在不加粒子电极的情况下,作为对比实验,发现磺胺甲恶唑的降解率和矿化率明显降低,无粒子电极的情况下120min降解率为69%,无氯离子的情况下降解率为68%,缺少氯离子和无粒子电极均对整个体系的污染物降解影响严重。因此可以证明,该粒子电极效果显著,在光电催化***中起到的作用巨大,性能优良。

Claims (10)

1.基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法,其特征在于该制备方法按下列步骤实现:
一、以植物秸秆为原料,在真空管式炉中对植物秸秆进行热解,热解过程通入氮气,以350~500℃的温度处理2~4h,热解后转移到盐酸溶液中浸泡,再经洗涤、干燥后得到生物炭;
二、配置MgCl2-AlCl3混合溶液,其中MgCl2的浓度为0.2~0.4mol/L,AlCl3的浓度为0.1~0.2mol/L,将生物炭浸渍于MgCl2-AlCl3混合溶液中,通过NaOH-Na2CO3混合溶液调节体系的pH至7~9,在80~90℃温度下反应20~26h,再在100~120℃条件下烘干,研磨过筛得到水滑石改性生物炭;
三、将蒽醌-2,6-磺酸钠超声溶于水中,得到浓度为0.8~1.2g/L的AQDS溶液,将水滑石改性生物炭加入到AQDS溶液中,搅拌形成悬浊液,悬浊液转移到反应釜中在160℃~200℃温度下水热反应15~20h,抽滤收集固相反应物,经洗涤、干燥处理后得到光电催化三维粒子电极。
2.根据权利要求1所述的基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法,其特征在于步骤一中所述的植物秸秆为水稻秸秆、小麦秸秆或者玉米秸秆。
3.根据权利要求1所述的基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法,其特征在于步骤一中热解过程控制氮气的流量为0.15~0.2L/min,加热速率为13~16℃/min。
4.根据权利要求1所述的基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法,其特征在于步骤一中以500℃的温度处理2.5h。
5.根据权利要求1所述的基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法,其特征在于步骤一中热解后转移到1mol/L的盐酸溶液中浸泡15h~20h。
6.根据权利要求1所述的基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法,其特征在于步骤二中MgCl2-AlCl3混合溶液中MgCl2的浓度为0.3mol/L,AlCl3的浓度为0.15mol/L。
7.根据权利要求1所述的基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法,其特征在于步骤三得到的光电催化三维粒子电极的直径为2~4mm。
8.根据权利要求1所述的基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法,其特征在于每100mg三维粒子电极中蒽醌-2,6-磺酸钠的负载量为5~8mg。
9.如权利要求1制备得到的基于改性生物炭的高电子传递效率的光电催化三维粒子电极的应用,其特征在于将该基于改性生物炭的高电子传递效率的光电催化三维粒子电极置于光电催化***中处理含高浓度Cl-废水中的难降解污染物。
10.根据权利要求9所述的基于改性生物炭的高电子传递效率的光电催化三维粒子电极的应用,其特征在于光电催化***中施加电压为6V。
CN202310366051.5A 2023-04-07 2023-04-07 基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法及其应用 Active CN116143249B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310366051.5A CN116143249B (zh) 2023-04-07 2023-04-07 基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310366051.5A CN116143249B (zh) 2023-04-07 2023-04-07 基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN116143249A CN116143249A (zh) 2023-05-23
CN116143249B true CN116143249B (zh) 2024-04-02

Family

ID=86358435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310366051.5A Active CN116143249B (zh) 2023-04-07 2023-04-07 基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN116143249B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739043A (zh) * 2013-09-06 2014-04-23 广西大学 一种光催化三维电极/电芬顿体系的粒子电极及制备方法
CN105597678A (zh) * 2016-01-11 2016-05-25 湖南大学 一种Mg/Al水滑石修饰的生物炭复合材料及其制备方法与用途
CN109499542A (zh) * 2019-01-20 2019-03-22 郗丹 一种磁性水滑石修饰的改性生物炭复合材料的制备方法与应用
CN113877558A (zh) * 2021-09-29 2022-01-04 湖南大学 一种Ni-Fe水滑石生物炭复合催化剂及其制备方法和应用
CN114082403A (zh) * 2021-11-25 2022-02-25 华中科技大学 一种硫基插层水滑石修饰的生物炭基吸附材料、其制备和应用
CN114984939A (zh) * 2022-06-17 2022-09-02 北京工商大学 一种铁碳复合三维电极制备方法及其净化含硫恶臭工艺
CN115092994A (zh) * 2022-07-18 2022-09-23 济南大学 一种含有电子穿梭体的电容去离子复合电极制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014190235A1 (en) * 2013-05-24 2014-11-27 Cool Planet Energy Systems, Inc. Enhancing biochar performance using pyrolysis acid stream
CN108212080B (zh) * 2017-12-12 2019-05-31 江苏省农业科学院 一种复合改性秸秆活性颗粒炭吸附材料的制备方法及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739043A (zh) * 2013-09-06 2014-04-23 广西大学 一种光催化三维电极/电芬顿体系的粒子电极及制备方法
CN105597678A (zh) * 2016-01-11 2016-05-25 湖南大学 一种Mg/Al水滑石修饰的生物炭复合材料及其制备方法与用途
CN109499542A (zh) * 2019-01-20 2019-03-22 郗丹 一种磁性水滑石修饰的改性生物炭复合材料的制备方法与应用
CN113877558A (zh) * 2021-09-29 2022-01-04 湖南大学 一种Ni-Fe水滑石生物炭复合催化剂及其制备方法和应用
CN114082403A (zh) * 2021-11-25 2022-02-25 华中科技大学 一种硫基插层水滑石修饰的生物炭基吸附材料、其制备和应用
CN114984939A (zh) * 2022-06-17 2022-09-02 北京工商大学 一种铁碳复合三维电极制备方法及其净化含硫恶臭工艺
CN115092994A (zh) * 2022-07-18 2022-09-23 济南大学 一种含有电子穿梭体的电容去离子复合电极制备方法

Also Published As

Publication number Publication date
CN116143249A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
CN110801811B (zh) Mg/Fe氧化物修饰的生物炭纳米复合材料及其制备方法
Zhu et al. A new concept of promoting nitrate reduction in surface waters: simultaneous supplement of denitrifiers, electron donor pool, and electron mediators
Zhou et al. Synthetic organic antibiotics residues as emerging contaminants waste-to-resources processing for a circular economy in China: Challenges and perspective
CN110813237B (zh) Mg/Fe氧化物修饰的生物炭纳米复合材料在去除抗生素中的应用
Liu et al. Emerging high-ammonia‑nitrogen wastewater remediation by biological treatment and photocatalysis techniques
CN109999752B (zh) 一种高效吸附和降解有机污染物的多功能材料的制备方法及应用
CN112194236A (zh) 一种利用生物炭-氧化铜复合材料活化过一硫酸盐处理含盐难降解废水的方法
CN105084554A (zh) 水中微囊藻毒素的去除方法和装置
Zhang et al. Propelling the practical application of the intimate coupling of photocatalysis and biodegradation system: system amelioration, environmental influences and analytical strategies
CN110127819A (zh) 一种采用三维电解装置同步去除水中硝酸盐和磷酸盐的方法
CN113908835A (zh) 一种基于非自由基高效矿化磺胺类抗生素的活性复合材料的制备及其应用
Zhou et al. Removal of antibiotics and antibiotic resistance genes from urban rivers using a photocatalytic-and-bionic artificial ecosystem
CN114105290B (zh) 一种改性蓝藻生物炭负载纳米零价铁材料的制备方法及其应用
CN110482682A (zh) 一种电化学耦合厌氧微生物处理有机污水的方法
Yang et al. Enhanced degradation of sulfamethazine in boron-doped diamond anode system via utilization of by-product oxygen and pyrite: Mechanism and pharmaceutical activity removal assessment
CN116143249B (zh) 基于改性生物炭的高电子传递效率的光电催化三维粒子电极的制备方法及其应用
Civan et al. Experimental assessment of a hybrid process including adsorption/photo Fenton oxidation and Microbial Fuel Cell for the removal of dicarboxylic acids from aqueous solution
Ma et al. Electrocatalytic dechlorination of aqueous trichloroacetic acid by Vitamin B12 modified iron electrode
CN114804302A (zh) 一种铁碳氮基催化剂/炭黑复合阴极及其制备和应用
CN109095545B (zh) 一种电化学与光催化协同处理高浓度有机废水的装置和方法
CN108529720B (zh) 一种颗粒电极及其制备方法和应用
KR102492246B1 (ko) 적조제거 및 과염소산염 제어를 위한 복합 수처리 시스템 및 이를 이용한 수처리방법
CN108503048A (zh) 一种利用产电微生物挂膜阳极生物电解净化河涌黑臭水体的方法
CN114044554A (zh) 光电协同强化铁基催化剂活化过硫酸盐降解抗生素的方法
CN113413913A (zh) 一种石墨烯光催化剂的制备方法、产品及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant