CN114804302A - 一种铁碳氮基催化剂/炭黑复合阴极及其制备和应用 - Google Patents

一种铁碳氮基催化剂/炭黑复合阴极及其制备和应用 Download PDF

Info

Publication number
CN114804302A
CN114804302A CN202210410839.7A CN202210410839A CN114804302A CN 114804302 A CN114804302 A CN 114804302A CN 202210410839 A CN202210410839 A CN 202210410839A CN 114804302 A CN114804302 A CN 114804302A
Authority
CN
China
Prior art keywords
carbon
iron
nitrogen
based catalyst
carbon black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210410839.7A
Other languages
English (en)
Inventor
雍晓雨
杨倩文
张雪英
周俊
程小龙
胥强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202210410839.7A priority Critical patent/CN114804302A/zh
Publication of CN114804302A publication Critical patent/CN114804302A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种铁碳氮基催化剂/炭黑复合阴极及其制备方法,将可溶性铁盐、碳氮前驱体用去离子水溶解,形成均匀混合液,焙烧得到固体产物,研磨后得到铁碳氮基催化剂;将所述铁碳氮基催化剂与炭黑粉末混合,溶解于聚四氟乙烯分散液中,将石墨毡浸渍在所述分散液中,超声处理;石墨毡取出烘干后,焙烧,得到铁碳氮基催化剂与炭黑共修饰的石墨毡复合阴极,记为Fe‑g‑C3N4/CB@GF。所述的复合阴极可用于非均相电芬顿体系的阴极,在从酸性到碱性的较广的pH范围内,在其表面原位催化合成H2O2,并与暴露的铁活性位点反应生成具有强氧化性和非选择性的羟基自由基,从而高效降解废水中的有机染料或抗生素等。

Description

一种铁碳氮基催化剂/炭黑复合阴极及其制备和应用
技术领域
本发明属于环境中有机污染物降解技术领域,具体涉及一种可应用于广泛pH体系的铁碳氮基催化剂/炭黑复合阴极及其制备方法,以及所述的复合阴极在非均相电芬顿体系中的应用。
背景技术
氯霉素类抗生素可作用于细菌核糖体的50S亚基并抑制蛋白质的合成,对革兰阳性、阴性细菌均具有显著的杀菌和抑菌作用,属抑菌性广谱抗生素。尽管氯霉素于2019年被列入食品、动物饲养中禁止使用的药品目录,但目前在畜牧业及渔业中,氯霉素仍被违规、违法使用。大量的抗生素从人体及牲畜的***物进入到土壤、水体、农作物中,使得环境中的抗生素含量大大超标,在全球范围内造成抗生素抗性细菌的大量存在以及抗生素抗性基因等问题,对人类社会和生态***构成了巨大威胁,例如破坏人体血液***、扰乱神经中枢、造成灰婴综合征、***反应等。因此,研发简便、高效的抗生素降解方法,对于保护环境和人类安全具有重要意义。
氯霉素微溶于水,拥有极强的热稳定性,在自然环境中能稳定存在。目前对含氯霉素废水的治理方法主要有物理法、化学法和生物法,如物理吸附、电催化、光催化、微生物降解等。然而吸附法脱附困难,再吸附性差;化学法能耗较大;光催化大部分不能在可见光下进行;生物法过程缓慢,微生物活性状态不稳定。相比之下,非均相电芬顿法因其可以原位产生H2O2,并利用固态阴极表面Fe3+与Fe2+的自循环(无需不断外加Fe2+)催化产生羟基自由基(·OH,一种非选择性的强氧化剂),因而可以高效地降解污染物。此外,由于非均相电芬顿法运行成本低、不产生铁泥、固相催化剂回收利用率高等优点,近年来在水处理领域受到颇多关注。
然而,传统芬顿反应的最佳氧化性能区间往往在pH 3-5之间,pH适应性小,通过催化剂的设计和改性可在一定程度上解决此限制。
发明内容
本发明的目的在于提供一种铁碳氮基催化剂/炭黑复合阴极(Fe-g-C3N4/CB@GF)及其制备方法,解决铁基催化剂只能应用于酸性条件下芬顿反应的缺陷,适用于广泛pH条件下的非均相电芬顿反应。
本发明的目的还在于提供所述的复合阴极在非均相电芬顿体系中的应用,在广泛pH条件下高效降解有机染料或抗生素。
为实现上述发明目的,本发明采用如下技术方案:
一种铁碳氮基催化剂/炭黑复合阴极(Fe-g-C3N4/CB@GF)的制备方法,包括以下步骤:
(1)将可溶性铁盐、碳氮前驱体用去离子水溶解,形成均匀混合液;将所述混合液焙烧,得到固体产物,研磨后得到铁碳氮基催化剂(Fe-g-C3N4)粉末。
(2)将所述铁碳氮基催化剂与炭黑(carbon black,CB)粉末混合,溶解于聚四氟乙烯(PTFE)分散液中,将石墨毡(graphite felt,GF)浸渍在所述分散液中,超声处理。
(3)将石墨毡取出烘干后,焙烧,得到铁碳氮基催化剂与炭黑共修饰的石墨毡复合阴极,记为Fe-g-C3N4/CB@GF。
步骤(1)中,所述的可溶性铁盐选自氯化铁、硝酸铁或硫酸铁等,优选为氯化铁;所述的碳氮前驱体选自尿素、三聚氰胺或双氰胺等,优选为尿素。
步骤(1)中,所述的可溶性铁盐和碳氮前驱体的质量比优选为1:1~5。
步骤(1)中,优选地,所述混合液焙烧前经超声作用;焙烧温度为550~600℃,保持时间为80-150min,升温速率为5~10℃/min。
本发明中的铁碳氮基催化剂Fe-g-C3N4/CB@GF采用一步法制备,铁和碳氮元素可以更好地形成Fe-N、Fe-C键,铁元素分布更加均匀。铁离子有较多的位点暴露,作为芬顿反应催化剂,可以对刚果红、亚甲基蓝等有机染料进行高效降解(脱色),或对氯霉素等抗生素进行高效降解。
步骤(2)中,所述的铁碳氮基催化剂与炭黑的质量比为1:0.5~1,聚四氟乙烯(PTFE)分散液的浓度为1~5%。
步骤(3)中,焙烧温度为300~350℃,保持时间为20-60min,升温速率为5~10℃/min。
本发明所述方法将铁碳氮基催化剂与炭黑粉末混合后制得铁碳氮基催化剂/炭黑共修饰的石墨毡复合电极,可用于非均相电芬顿体系的阴极,该复合阴极能够在较广的pH范围内在其表面高效原位催化合成H2O2,并与暴露的铁活性位点反应生成具有强氧化性和非选择性的羟基自由基(·OH),从而激活芬顿反应。
因此,本发明还提供所述的方法制备的铁碳氮基催化剂/炭黑复合阴极Fe-g-C3N4/CB@GF。
本发明还涉及所述的铁碳氮基催化剂/炭黑复合阴极(Fe-g-C3N4/CB@GF)在非均相电芬顿反应降解废水中有机染料或抗生素的应用。
特别地,所述的铁碳氮基催化剂/炭黑复合阴极Fe-g-C3N4/CB@GF可用于非均相电芬顿反应高效降解含氯霉素的废水,氯霉素的降解率达到80%左右。
所述的铁碳氮基催化剂(Fe-g-C3N4)在电芬顿体系中可以对废水中的有机染料和抗生素进行高效降解;同时所述的铁碳氮基催化剂/炭黑复合阴极,在广泛pH条件下,能够原位激活电芬顿反应,大大提高合成H2O2的量,从而促进体系中羟基自由基的生成并用于高效降解有机染料废水和抗生素废水,如氯霉素等。
有益效果:本发明的铁碳氮基催化剂/炭黑复合阴极Fe-g-C3N4/CB@GF作为一种pH广适型铁基催化剂电极,用于非均相电芬顿体系的阴极,该复合阴极能够在从酸性到碱性的较广的pH范围内,在其表面高效原位催化合成H2O2,并与暴露的铁活性位点反应生成具有强氧化性和非选择性的羟基自由基(·OH),从而激活芬顿反应,高效降解有机染料或抗生素。其制备方法简单、高效、成本低,制得的复合阴极的电化学性能优异。
(1)本发明采用氯化铁等价格低廉的铁源,尿素等做碳氮前驱体,一步焙烧法制得催化剂粉末,铁元素分布更加均匀,简化了制备流程,节约了能耗。
(2)本发明采用PTFE做为分散液,将铁碳氮基催化剂粉末和炭黑粉末负载于石墨碳毡碳丝上,粉末粘合牢固,石墨毡表面形成疏水层,保护铁离子的过度析出,使得固相催化剂修饰的阴极适用于更广泛pH范围,解决传统均芬顿体系只能处理酸性废水的弊端。
(3)固相催化剂修饰的复合阴极物理结构稳定,抗冲击性强,可回收重复利用,经济价值高。
附图说明
图1为Fe-g-C3N4催化剂的扫描电镜图;
图2为Fe-g-C3N4催化剂的元素分布图;
图3为以氯化铁为原料烧制的粉末的扫描电镜图;
图4为以尿素为原料烧制的粉末的扫描电镜图;
图5为Fe-g-C3N4催化剂在均相芬顿体系中对刚果红的脱色曲线;
图6为Fe-g-C3N4催化剂在均相芬顿体系中对亚甲基蓝的脱色曲线;
图7为Fe-g-C3N4催化剂在均相芬顿体系中在不同pH条件下对氯霉素的降解率;
图8为Fe-g-C3N4/CB@GF复合阴极的扫描电镜图;
图9为Fe-g-C3N4/CB@GF复合阴极的高倍扫描电镜图;
图10为Fe-g-C3N4/CB@GF复合阴极在不同pH体系中的循环伏安曲线;
图11为pH=3、6、9下Fe-g-C3N4/CB@GF以及CB@GF的H2O2产量;
图12为pH=3、6、9下Fe-g-C3N4/CB@GF在非均相电芬顿体系中的氯霉素降解曲线;
图13为氯霉素浓度的标准曲线。
具体实施方式
下面结合具体实施例对本发明进行详细描述。以下实施例仅用于说明本发明,本发明的保护范围并不以具体实施方式为限,而是由权利要求加以限定。
实施例1
铁碳氮基催化剂(Fe-g-C3N4)的制备及性能
铁碳氮基催化剂Fe-g-C3N4的制备方法,步骤为:分别称取2.00g无水氯化铁粉末和2.00g尿素粉末置于烧杯中,加入20.00mL去离子水,将烧杯置于频率40kHz、超声功率480W的超声仪中,超声30min,得到均匀的棕黄色浆液;将此棕黄色浆液转移至小口坩埚中,放入马弗炉,从30℃开始升温至600℃,升温速率为10℃/min,持续120min,然后自然温度下自动冷却至室温,得到褐色固体,将棕褐色固体研磨后得到铁碳氮基催化剂粉末,记为Fe-g-C3N4
Fe-g-C3N4的扫描电镜图如图1所示,元素EDS图如图2。由图可见,铁碳氮基催化剂拥有疏松片层多孔结构,整体成棉花状,EDS面扫结果显示铁、碳、氮、氧各元素分布均匀,铁离子有较多的位点暴露。
氯化铁粉末或尿素粉直接经焙烧,分别得到以氯化铁和尿素为原料烧制的材料,扫描电镜图如图3、图4。
铁碳氮基催化剂(Fe-g-C3N4)对染料的吸附和脱色
(1)铁碳氮基催化剂(Fe-g-C3N4)对刚果红:将50.00mg催化剂Fe-g-C3N4粉末放入50mL烧杯中,加入1.00mL浓度为2.00g/L的刚果红溶液于烧杯中,再加入29.00mL去离子水。将烧杯置于磁力搅拌机上,室温黑暗条件下搅拌30min,此阶段为避光吸附阶段,测试催化剂的吸附性能(在图5坐标轴上显示为-30~0min阶段)。每10min从烧杯中吸取300μL溶液于96孔板中,在498nm的波长下,测试吸光度。吸附性能测试结束后,加入100μL的双氧水,室温条件下搅拌30min,此阶段为催化降解阶段,在1、5、10、20、30min时吸取300μL溶液于96孔板中,在498nm的波长下,测试吸光度。
对氯化铁和尿素烧制所得材料(图中分别标记为Fe和Urea)按同样方法测试对刚果红的脱色曲线。
结果如图5,铁碳氮基催化剂对刚果红基本无吸附效果,主要为降解脱色效果,加入双氧水后30min内对刚果红的脱色效果达到62.17%;而铁或尿素焙烧的催化剂,几乎不能降解刚果红。
(2)铁碳氮基催化剂(Fe-g-C3N4)对亚甲基蓝:将50.00mg催化剂Fe-g-C3N4粉末放入50mL烧杯中,加入1.00mL浓度为2.00g/L的亚甲基蓝溶液于烧杯中,再加入29.00mL去离子水,将烧杯置于磁力搅拌机上,室温黑暗条件下搅拌30min,此阶段为避光吸附阶段,测试催化剂的吸附性能(在图6坐标轴上显示为-30~0min阶段)。每10min从烧杯中吸取300μL溶液于96孔板中,在664nm的波长下,测试吸光度。吸附性能测试结束后,加入100μL的双氧水,室温条件下搅拌30min,此阶段为催化降解阶段,在1、5、10、20、30min时吸取300μL溶液于96孔板中,在664nm的波长下,测试吸光度。
同样测试氯化铁和尿素烧制所得材料对亚甲基蓝的脱色曲线。图6显示铁碳氮基催化剂对亚甲基蓝基本无吸附效果,主要为降解脱色效果,加入双氧水后30min内对亚甲基蓝的脱色效果达到58.37%,而铁或尿素焙烧的催化剂,几乎不能降解亚甲基蓝。
铁碳氮基催化剂(Fe-g-C3 N 4)对氯霉素的降解性能
(1)在200mL容器中加入电解液(0.50mol/L的硫酸钠溶液,用NaOH调节电解液的pH分别为3、6、9)、50mg铁碳氮基催化剂Fe-g-C3N4、30%浓度的H2O2溶液和氯霉素(体系中H2O2浓度为50mM、氯霉素浓度为100mg/L),均匀通入空气,空气流量为0.2L/min。
(2)用高效液相色谱检验体系中氯霉素的含量,每30min取一次样,测试60min内氯霉素的降解率。每次取样为500μL,过0.22μm的有机相滤膜,再加入500μL的0.5mol/L的叔丁醇猝灭剂保证反应不再进行。
(3)氯霉素的降解率如图7。氯霉素在30min内快速降解,在不同pH值条件下,氯霉素的降解率在60min内平均可以达到70%左右,分别是74.74%(pH=3)、70.84%(pH=6)和66.39%(pH=9),其中酸性条件下降解率最高。该铁碳氮基催化剂在均相条件下的降解效率较高,降解速度快,且在酸性、中性、碱性条件下均能高效降解氯霉素。
实施例2
铁碳氮基催化剂/炭黑复合阴极(Fe-g-C3N4/CB@GF)的制备和循环伏安曲线
(1)将200.00mg铁碳氮基催化剂(Fe-g-C3N4)和200.00mg炭黑分别加入到25.00mL去离子水中,再加入2.00mL的60%浓度的聚四氟乙烯(PTFE)分散液,得到灰色浑浊液。将该浑浊液放入频率40kHz、超声功率480W的超声仪中,连续超声30min,再将20.00×20.00×3.00mm的石墨碳毡浸渍于上述浑浊液中30min。取出碳毡,在60℃条件下干燥,再在马弗炉中350℃焙烧30min,制备成铁碳氮基催化剂/炭黑复合石墨毡阴极,记为Fe-g-C3N4/CB@GF。
图8、9为Fe-g-C3N4/CB@GF复合阴极的扫描电镜图。由图可见,碳毡的碳丝上明显的附着了铁碳氮基催化剂,铁以铁纳米颗粒的形态附着在3D立体的碳丝结构表面。
(2)将上述制备的复合石墨毡阴极Fe-g-C3N4/CB@GF用作工作电极,50×50mm的铂片电极用作对电极,饱和甘汞电极用作参比电极,建立三电极体系电化学***,电解液为0.50mol/L的硫酸钠溶液。将此三电极体系连接到AUTOLAB电化学工作站(PGSTAT302N,Metrohm)。以NaOH调节电解液pH值,分别设置电解液pH为3、6、9的三个体系,在扫速为0.01V/min的条件下,从-0.60V扫至0.90V,测试铁碳氮基催化剂/炭黑复合阴极的循环伏安曲线(CV图)。
从循环伏安曲线图(图10)上可以看出,在pH=3、6、9的电芬顿体系中,该复合石墨毡阴极都表现出一对明显的氧化还原峰,其中在pH=3的电解液体系中氧化峰为0.63V,还原峰为0.23V;在pH=6的电解液体系中氧化峰为0.54V,还原峰为0.27V;在pH=9的电解液体系中氧化峰为0.54V,还原峰为0.28V。其中pH=3的电解液体系中,氧化峰明显高于其他两个体系,说明在广泛的pH体系中,Fe-g-C3N4催化剂都表现出良好的催化活性。
实施例3
铁碳氮基催化剂/炭黑复合阴极(Fe-g-C3N4/CB@GF)原位合成过氧化氢(H2O2)
(1)将上述制备的Fe-g-C3N4/CB@GF复合阴极应用于三电极体系电化学***中,阴极为Fe-g-C3N4/CB@GF复合阴极,阳极为50×50mm的铂片电极(无需参比电极),电解液为0.50mol/L的硫酸钠溶液。将此三电极体系连接到可编程电源上,设置输出电压为1.5~2.5V,以NaOH调节电解液pH值,分别设置电解液pH为3、6、9的三个体系,运行体系120min。
按照实施例2中(1)相同的方法,不同之处在于不加入铁碳氮基催化剂(Fe-g-C3N4),制得炭黑修饰的石墨毡阴极,记为CB@GF。以CB@GF作为工作电极进行同样测试。
(2)对上述体系的电解液每20min取样一次,每次取样为150.00μL,加入草酸钛钾显色剂150.00μL,在387nm处检测吸光度。过氧化氢(H2O2)采用比色法测定,由试样的吸光度根据H2O2浓度标准曲线得到试样中H2O2浓度。
(3)不同pH条件(3、6、9)下,体系中Fe-g-C3N4/CB@GF以及CB@GF的H2O2产量如图11。由图可知,CB@GF在不同pH条件下的过氧化氢产量持续累积,说明炭黑的加入可以促进过氧化氢的原位电合成,但由于铁基催化剂的缺失,过氧化氢难以被消耗而持续电合成累积中;在以Fe-g-C3N4/CB@GF为阴极的电芬顿体系中,过氧化氢被持续消耗生成羟基自由基,同时还能检测到过氧化氢的持续稳定存在,说明在体系中原位电合成的过氧化氢足够芬顿反应的需求,甚至还有剩余,说明整个体系可以高效且稳定的发生芬顿反应。
实施例4
铁碳氮基催化剂/炭黑复合阴极(Fe-g-C3N4/CB@GF)电芬顿降解氯霉素
(1)在实施例3的三电极体系(阴极为Fe-g-C3N4/CB@GF复合阴极,阳极为50×50mm的铂片电极,降解实验中无需对电极)的电解液中加入浓度为100.00mg/L氯霉素,外加电压2.50V,进行60min的持续降解实验。降解在pH 3、6、9的三个体系中分别进行。
(2)用高效液相色谱检测反应液中氯霉素的剩余含量,每10min取一次样,每次取样为500μL,过0.22μm的有机相滤膜。再加入500μL的0.5mol/L的叔丁醇猝灭剂保证反应不再进行。
不同pH条件(3、6、9)下,氯霉素的降解曲线如图12。从降解曲线可以看出(图12),60分钟内,在pH=6的体系中氯霉素降解率最高,达到86.35%,但在pH=3、9的体系中,氯霉素降解率也分别达到了74.95%、76.78%。表明在广泛的pH范围内,铁碳氮基催化剂/炭黑复合阴极都能够高效地激活电芬顿反应,氯霉素的降解率达到80%左右。
上述实施例中,氯霉素采用高效液相色谱法测定,具体是将含氯霉素的样品取样配制后,在设定的检测条件下进行高效液相色谱分析,根据氯霉素浓度标准曲线得到试样中氯霉素浓度。
(1)高效液相色谱检测条件:进样量10μL,流动相为乙腈和超纯水(乙腈:超纯水=65:35),流速为1mL/min,紫外检测器,检测波长为275nm。
(2)氯霉素标准曲线:将1mg干燥的氯霉素粉末溶入10mL正丙醇中,超声混匀制备成浓度为100mg/L的氯霉素母液。用移液枪移取50、100、200、500、700、800、900、1000μL氯霉素母液到进样瓶中,分别用纯水定容到1000μL,形成浓度为5、10、20、50、70、80、90、100mg/L的氯霉素标准浓度样品。检测波长为275nm下测定不同浓度(C)标准样品的氯霉素峰响应值A(峰高或面积),根据A-C得到氯霉素标准曲线(图13),方程为A=13.3937C+196.6345。
本发明解决了现有技术中铁基催化剂只能应用于酸性条件下芬顿反应体系的弊端。以上所举的实施例表明,本发明合成的铁碳氮基催化剂(Fe-g-C3N4)在均相芬顿体系中可以对有机染料以及抗生素进行高效降解;同时本发明合成的铁碳氮基催化剂/炭黑共修饰的石墨毡阴极(Fe-g-C3N4/CB@GF)在酸性、中性、碱性的广泛pH条件下,能够原位激活电芬顿反应,大大提高体系合成H2O2的量,从而促进体系中羟基自由基的生成并用于高效降解氯霉素等抗生素。
本发明的铁碳氮基/炭黑复合阴极适用于广泛pH体系的电芬顿体系,可应用于有机染料以及抗生素废水的高效降解。

Claims (10)

1.一种铁碳氮基催化剂/炭黑复合阴极的制备方法,包括以下步骤:
(1)将可溶性铁盐、碳氮前驱体用去离子水溶解,形成均匀混合液;将所述混合液焙烧,得到固体产物,研磨后得到铁碳氮基催化剂;
(2)将所述铁碳氮基催化剂与炭黑粉末混合,溶解于聚四氟乙烯分散液中,将石墨毡浸渍在所述分散液中,超声处理;
(3)将石墨毡取出烘干后,焙烧,得到铁碳氮基催化剂与炭黑共修饰的石墨毡复合阴极,记为Fe-g-C3N4/CB@GF。
2.根据权利要求1所述的铁碳氮基催化剂/炭黑复合阴极的制备方法,其特征在于,所述的可溶性铁盐选自氯化铁、硝酸铁或硫酸铁;所述的碳氮前驱体选自尿素、三聚氰胺或双氰胺。
3.根据权利要求1所述的铁碳氮基催化剂/炭黑复合阴极的制备方法,其特征在于,所述的可溶性铁盐和碳氮前驱体的质量比为1:1~5。
4.根据权利要求1所述的铁碳氮基催化剂/炭黑复合阴极的制备方法,其特征在于,步骤(1)中,焙烧温度为550~600℃,保持时间为80-150min,升温速率为5~10℃/min。
5.根据权利要求1所述的铁碳氮基催化剂/炭黑复合阴极的制备方法,其特征在于,所述的铁碳氮基催化剂与炭黑的质量比为1:0.5~1。
6.根据权利要求1所述的铁碳氮基催化剂/炭黑复合阴极的制备方法,其特征在于,所述的聚四氟乙烯分散液的浓度为1~5%。
7.根据权利要求1所述的铁碳氮基催化剂/炭黑复合阴极的制备方法,其特征在于,步骤(3)中,焙烧温度为300~350℃,保持时间为20-60min,升温速率为5~10℃/min。
8.根据权利要求1-7所述的任一制备方法制得的铁碳氮基催化剂炭黑复合阴极Fe-g-C3N4/CB@GF。
9.权利要求8所述的铁碳氮基催化剂/炭黑复合阴极Fe-g-C3N4/CB@GF在电芬顿反应降解废水中有机染料或抗生素中的应用。
10.根据权利要求9所述的应用,其特征在于,所述的铁碳氮基催化剂/炭黑复合阴极Fe-g-C3N4/CB@GF用于电芬顿反应降解含氯霉素废水。
CN202210410839.7A 2022-04-19 2022-04-19 一种铁碳氮基催化剂/炭黑复合阴极及其制备和应用 Pending CN114804302A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210410839.7A CN114804302A (zh) 2022-04-19 2022-04-19 一种铁碳氮基催化剂/炭黑复合阴极及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210410839.7A CN114804302A (zh) 2022-04-19 2022-04-19 一种铁碳氮基催化剂/炭黑复合阴极及其制备和应用

Publications (1)

Publication Number Publication Date
CN114804302A true CN114804302A (zh) 2022-07-29

Family

ID=82504665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210410839.7A Pending CN114804302A (zh) 2022-04-19 2022-04-19 一种铁碳氮基催化剂/炭黑复合阴极及其制备和应用

Country Status (1)

Country Link
CN (1) CN114804302A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115646527A (zh) * 2022-10-21 2023-01-31 四川农业大学 铁原位掺杂氮化碳非均相芬顿催化剂的制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109607696A (zh) * 2018-12-28 2019-04-12 北京工业大学 一种应用于电芬顿体系的天然磁铁矿/炭黑/石墨毡复合阴极的制备方法
US20210309681A1 (en) * 2020-04-01 2021-10-07 Tongji University Preparation method and use of graphite felt (gf)-supported metal-organic framework (mof) cathode material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109607696A (zh) * 2018-12-28 2019-04-12 北京工业大学 一种应用于电芬顿体系的天然磁铁矿/炭黑/石墨毡复合阴极的制备方法
US20210309681A1 (en) * 2020-04-01 2021-10-07 Tongji University Preparation method and use of graphite felt (gf)-supported metal-organic framework (mof) cathode material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MA ET AL.: "Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range" *
冀思扬等: "铁掺杂类石墨相氮化碳类芬顿/光催化氧化作用机制" *
马建青等: "Fe-g-C3N4@GMC在宽pH范围内的类芬顿催化性能研究" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115646527A (zh) * 2022-10-21 2023-01-31 四川农业大学 铁原位掺杂氮化碳非均相芬顿催化剂的制备方法与应用
CN115646527B (zh) * 2022-10-21 2024-04-16 四川农业大学 铁原位掺杂氮化碳非均相芬顿催化剂的制备方法与应用

Similar Documents

Publication Publication Date Title
Wang et al. Three-dimensional high performance free-standing anode by one-step carbonization of pinecone in microbial fuel cells
Wang et al. A bio-electro-Fenton system with a facile anti-biofouling air cathode for efficient degradation of landfill leachate
Long et al. Staged and efficient removal of tetracycline and Cu2+ combined pollution: A designed double-chamber electrochemistry system using 3D rGO
CN106064962B (zh) 利用污泥和粉煤灰制备催化粒子电极的方法及应用
de Nicolás et al. Evaluating bioelectrochemically-assisted constructed wetland (METland®) for treating wastewater: Analysis of materials, performance and electroactive communities
Zhang et al. Propelling the practical application of the intimate coupling of photocatalysis and biodegradation system: system amelioration, environmental influences and analytical strategies
Yang et al. Anode modification of sediment microbial fuel cells (SMFC) towards bioremediating mariculture wastewater
CN114669299B (zh) 一种介孔碳负载铜铁双金属催化剂及其制备方法与应用
Huang et al. Effective and continuous degradation of levofloxacin via the graphite felt electrode loaded with Fe3O4
Ni et al. A novel electrocatalytic system with high reactive chlorine species utilization capacity to degrade tetracycline in marine aquaculture wastewater
Zhou et al. Removal of antibiotics and antibiotic resistance genes from urban rivers using a photocatalytic-and-bionic artificial ecosystem
CN114804302A (zh) 一种铁碳氮基催化剂/炭黑复合阴极及其制备和应用
Geng et al. Enhanced electro-Fenton oxidation by introducing three-phase interface with simultaneous optimization of O2 and pollutant transfer for effective tetracycline hydrochloride removal
Cui et al. Decolorization of azo dyes in dual-chamber biocatalyzed electrolysis systems seeding with enriched inoculum
Kumar et al. Evaluation of the algal-derived biochar as an anode modifier in microbial fuel cells
Chen et al. Cu2O nanoparticles modified BiO2-x nanosheets for efficient electrochemical reduction of nitrate-N and nitrobenzene from wastewater
Yang et al. Perchlorate removal in microbial electrochemical systems with iron/carbon electrodes
CN114314771A (zh) 一种活化蓝藻生物炭阴极材料及其在降解抗生素中的应用
Yang et al. Enhanced degradation of sulfamethazine in boron-doped diamond anode system via utilization of by-product oxygen and pyrite: Mechanism and pharmaceutical activity removal assessment
CN113249132A (zh) 畜禽粪便厌氧发酵沼渣生物质炭、及其制备方法和应用
Luo et al. Defective nitrogen doped carbon material derived from nano-ZIF-8 for enhanced in-situ H2O2 generation and tetracycline hydrochloride degradation in electro-Fenton system
CN108529720B (zh) 一种颗粒电极及其制备方法和应用
Xu et al. Confined PbO2 nanoparticles in carbon nanotubes on boron-doped diamond substrate for highly efficient chlortetracycline degradation
Pan et al. Highly-sensitive and anti-interferential electrochemical determination of hazardous metronidazole using w-NiSO4· NiS2 coated ZIF-67-derived cobalt/nitrogen-doped carbon
CN112916027A (zh) 一种酵母生物质制备磷化铁/碳复合材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220729