CN115684971A - 基于片段多充电特征融合的锂离子电池健康状态估计方法 - Google Patents

基于片段多充电特征融合的锂离子电池健康状态估计方法 Download PDF

Info

Publication number
CN115684971A
CN115684971A CN202211276570.4A CN202211276570A CN115684971A CN 115684971 A CN115684971 A CN 115684971A CN 202211276570 A CN202211276570 A CN 202211276570A CN 115684971 A CN115684971 A CN 115684971A
Authority
CN
China
Prior art keywords
data
voltage
health state
lithium ion
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211276570.4A
Other languages
English (en)
Inventor
范元亮
黄兴华
吴涵
方略斌
朱俊伟
何锋
陈伟铭
李泽文
林建利
袁敏根
陈思哲
郑宇�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
State Grid Fujian Electric Power Co Ltd
Putian Power Supply Co of State Grid Fujian Electric Power Co Ltd
Original Assignee
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
State Grid Fujian Electric Power Co Ltd
Putian Power Supply Co of State Grid Fujian Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd, State Grid Fujian Electric Power Co Ltd, Putian Power Supply Co of State Grid Fujian Electric Power Co Ltd filed Critical Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
Priority to CN202211276570.4A priority Critical patent/CN115684971A/zh
Publication of CN115684971A publication Critical patent/CN115684971A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Secondary Cells (AREA)

Abstract

本发明涉及一种基于片段多充电特征融合的锂离子电池健康状态估计方法。包括:获取锂离子电池充放电循环中的充电电压数据及对应的时间数据和最大放电容量数据;针对每次循环的电压和时间数据,分别提取等电压差时间数据、等时间差电压数据和电池健康状态数据;将提取的等电压差时间数据和等时间差电压数据,采用典型相关性分析方法处理,提取出融合特征数据,并与电池健康状态数据构成锂离子电池健康状态数据集,再分为训练集和测试集;建立长短期记忆循环神经网络模型;利用训练集对模型进行训练,并调整模型参数,利用测试集测试模型估计精度。本发明提高了锂离子电池健康状态估计精度,降低了数据采集误差的影响及模型复杂度,加快了估计速度。

Description

基于片段多充电特征融合的锂离子电池健康状态估计方法
技术领域
本发明涉及锂离子电池技术领域,尤其涉及一种基于片段多充电特征融合的锂离子电池健康状态估计方法。
背景技术
锂离子电池被广泛应用于各领域,如电动汽车、电化学储能和航空航天等。然而,在锂离子电池实际应用中,电池的性能会不断退化,实际可用容量不断减小。因此,需要在电池运行过程中对电池的健康状态进行持续估计。
目前锂离子电池健康状态的估计方法主要包括基于模型的方法和数据驱动方法。基于模型的方法需要先构建电池等效电路模型或者电化学模型,然后通过最小二乘法等实现模型参数辨识,再利用卡尔曼滤波法、粒子滤波法等估计电池健康状态。这类方法的估计精度依赖于模型及其参数辨识的准确度。数据驱动方法不需要建立电池等效电路模型。现有基于片段充电数据的数据驱动锂离子电池健康状态估计方法,一般通过提取等电压差时间特征或者等时间差电压特征,作为深度学习模型的输入,进而估计锂离子电池健康状态。然而,单独提取时间特征或者电压特征,获取的特征较单一,且特征之间存在较大相似性,导致模型过拟合,影响健康状态估计精度。
发明内容
本发明的目的在于克服现有技术不足,提供一种基于片段多充电特征融合的锂离子电池健康状态估计方法。
为实现上述目的,本发明的技术方案是:一种基于片段多充电特征融合的锂离子电池健康状态估计方法,包括如下步骤:
步骤1、对锂离子电池进行多次充放电循环,收集每次充放电循环中的充电电压数据及对应的时间数据,以及当次循环的最大放电容量数据;
步骤2、针对每次充放电循环的充电电压数据和时间数据,分别提取等电压差时间数据、等时间差电压数据和电池健康状态数据,其中:为提取等电压差时间数据,先确定提取的起始电压、终止电压、采样电压间隔,从起始电压开始,每隔一个采样电压提取一次时间数据,直到终止电压,从而获得等电压差时间数据;为提取等时间差电压数据,先确定提取的起始电压、终止电压、采样时间间隔,从起始电压开始,每隔一个采样时间提取一次电压数据,直到终止电压,从而获得等时间差电压数据;为提取电池健康状态数据,利用每次循环的最大放电容量除以额定容量,得到当前循环的电池健康状态数据;
步骤3、将步骤2提取的等电压差时间数据和等时间差电压数据,采用典型相关性分析方法进行处理,提取出融合特征数据,并与对应循环的电池健康状态数据结合,构成锂离子电池健康状态数据集,将所述数据集分为训练集和测试集;
步骤4、建立长短期记忆循环神经网络模型,此模型的输入设置为融合特征数据,输出设置为锂离子电池健康状态,并设置长短期记忆循环神经网络模型初始参数;
步骤5、使用训练集对长短期记忆循环神经网络模型进行训练,并根据估计误差对模型参数进行调整,使模型估计误差降低;利用测试集测试模型的估计精度,评估模型估计效果。
在本发明一实施例中,所述步骤1包括以下分步骤:
步骤101、使用电池充放电测试仪对新出厂的锂离子电池进行充放电循环,充电方式为恒流恒压充电,放电方式为恒流放电,直到锂离子电池的最大放电容量降至额定容量的70%时,结束充放电循环实验,定义总循环次数为D;
步骤102、记录每次循环的恒流充电过程中的充电电压数据和对应时间数据,并记录本次循环的最大放电容量数据。
在本发明一实施例中,所述步骤2包括以下分步骤:
步骤201、提取等电压差时间数据时,针对每次循环,确定片段充电电压的起始电压V0、终止电压Vn,提取起始电压V0、终止电压Vn对应的时间T0
Figure BDA0003895023130000021
并确定采样电压间隔Δv为
Figure BDA0003895023130000022
其中,n为等电压差时间数据的特征数量;
从起始电压V0开始,每增加一个采样电压间隔Δv,记录电压值与对应时间,即对于
Figure BDA0003895023130000023
获得电压数据序列
Figure BDA0003895023130000024
和对应的时间序列
Figure BDA0003895023130000025
根据所述时间序列计算充电过程中等电压间隔对应的时间差,即
Figure BDA0003895023130000026
从而提取出单次充电循环的等电压差时间数据特征
Figure BDA0003895023130000027
步骤202、提取等时间差电压数据时,针对每次循环,确定片段充电电压的起始电压V0及其对应时间T0,并确定采样时间间隔Δt,根据步骤201中的特征数量n,确定终止时间
Figure BDA0003895023130000028
从起始电压V0开始,每增加一个采样时间间隔Δt,记录时间与对应电压值,即对于
Figure BDA0003895023130000031
获得对应的时间序列
Figure BDA0003895023130000032
和电压数据序列
Figure BDA0003895023130000033
根据所述电压数据序列计算充电过程中等时间间隔对应的电压差,即
Figure BDA0003895023130000034
从而提取出单次充电循环的等时间差电压数据特征
Figure BDA0003895023130000035
步骤203、提取电池健康状态数据时,针对每次循环,根据每次循环的最大放电容量Cmax和电池额定容量C0,计算每次循环的锂离子电池健康状态为:
Figure BDA0003895023130000036
在本发明一实施例中,所述步骤3包括以下分步骤:
步骤301、针对步骤2提取的2n个特征,即等电压差时间数据特征
Figure BDA0003895023130000037
和等时间差电压数据特征
Figure BDA0003895023130000038
采用典型相关性分析方法对特征数据进行降维处理,构建多元随机变量Z=(X,Y),其中X为特征矩阵,其维度为(2n,D),其中2n为特征数量,D为循环次数,Y为锂离子电池健康状态数据,其维度为(1,D);
步骤302、构建线性变换P=aTX和Q=bTY对原始数据进行标准化处理,得到多元随机变量Z=(X,Y)的标准化矩阵Z*,并计算标准化矩阵Z*的协方差矩阵,得到:
Figure BDA0003895023130000039
其中,SXX、SXY、SYX、SYY为协方差计算结果;
为使P和Q之间的相关性最大化,需要选择向量a和b,使目标函数最大化,即:
Figure BDA00038950231300000310
定义Rayleigh熵矩阵为:
Figure BDA00038950231300000311
定义uj和λj为R的第j个特征向量和特征值平方根,从而求解最大化问题,将向量a和b表示为:
Figure BDA0003895023130000041
根据向量a和b,计算出P=aTX和Q=bTY,得到最终的融合特征矢量FF,其维度为D,即:
FF=XP+YQ
步骤303、根据所述融合特征与锂离子电池健康状态数据,构建锂离子电池健康状态数据集:
Figure BDA0003895023130000042
将数据集Data中的N个数据样本作为训练集Data1,将剩余数据样本作为测试集Data2。
在本发明一实施例中,所述步骤4中长短期记忆循环神经网络模型,其输入节点数量为1,输出节点数量为1,优化算法为Adam。
在本发明一实施例中,所述步骤5包括以下分步骤:
步骤501、对训练集Data1中融合特征数据和健康状态数据进行归一化处理,将归一化后的融合特征数据作为长短期记忆循环神经网络模型的输入,归一化后的健康状态数据作为长短期记忆循环神经网络模型的输出,对模型进行训练;
步骤502、对测试集Data2中融合特征数据进行归一化处理后,输入到训练完成的长短期记忆循环神经网络模型,将模型输出的健康状态估计值进行反归一化处理,与测试集Data2中的健康状态数据对比,计算均方根误差RMSE和平均绝对误差MAE,以此评价长短期记忆循环神经网络模型的精度;
步骤503、当步骤502计算得到的RMSE和MAE不符合预期目标,则返回步骤4重新调整模型参数,并进行训练,直到模型的测试误差符合预期目标。
相较于现有技术,本发明具有以下有益效果:
本发明从锂离子电池的片段充电数据中,提取等电压差时间特征数据和等时间差电压特征数据,相较于单一的时间特征或者电压特征,能够提取更多的电池老化信息,且不易受电池充电数据采集误差的影响;采用典型相关性分析对特征数据进行降维处理,得到融合特征,能够降低特征数据冗余,提高锂离子电池健康状态估计精度;由于融合特征为一维数据,长短期记忆循环神经网络模型的输入节点只需要设置为1,能够有效降低模型复杂度,加快模型估计速度。
附图说明
图1为本发明提出的一种基于片段多充电特征融合的锂离子电池健康状态估计方法流程图。
具体实施方式
为了更加详细的描述本发明的优点和特征,下面将结合附图和具体实施方式来说明。所述实施例是本发明的一个实施例,本发明还可以采用其他方式来实施,同属于本发明保护范围。
在一个具体实施例中,如图1所示,一种基于片段多充电特征融合的锂离子电池健康状态估计方法,包括以下步骤:
1、使用电池充放电测试仪对新出厂的锂离子电池进行充放电循环,充电方式为恒流恒压充电,放电方式为恒流放电,直到锂离子电池的最大放电容量降至额定容量的70%时,结束充放电循环实验,定义总循环次数为D;记录每次循环的恒流充电过程中的充电电压数据和对应时间数据,并记录本次循环的最大放电容量数据。
2、针对每次循环的电压和时间数据,分别提取等电压差时间数据、等时间差电压数据和电池健康状态数据。
提取等电压差时间数据时,针对每次循环,确定片段充电电压的起始电压V0、终止电压Vn,提取起始电压V0、终止电压Vn对应的时间T0
Figure BDA0003895023130000051
并确定采样电压间隔Δv为
Figure BDA0003895023130000052
其中,n为等电压差时间数据的特征数量;
从起始电压V0开始,每增加一个采样电压间隔Δv,记录电压值与对应时间,即对于
Figure BDA0003895023130000053
可获得电压数据序列
Figure BDA0003895023130000054
和对应的时间序列
Figure BDA0003895023130000055
根据所述时间序列计算充电过程中等电压间隔对应的时间差,即
Figure BDA0003895023130000056
从而提取出单次充电循环的等电压差时间数据特征
Figure BDA0003895023130000057
提取等时间差电压数据时,针对每次循环,确定片段充电电压的起始电压V0及其对应时间T0,并确定采样时间间隔Δt,根据步骤201中的特征数量n,确定终止时间
Figure BDA0003895023130000058
从起始电压V0开始,每增加一个采样时间间隔Δt,记录时间与对应电压值,即对于
Figure BDA0003895023130000061
可获得对应的时间序列
Figure BDA0003895023130000062
和电压数据序列
Figure BDA0003895023130000063
根据所述电压数据序列计算充电过程中等时间间隔对应的电压差,即
Figure BDA0003895023130000064
从而提取出单次充电循环的等时间差电压数据特征
Figure BDA0003895023130000065
提取电池健康状态数据时,针对每次循环,根据每次循环的最大放电容量Cmax和电池额定容量C0,计算每次循环的锂离子电池健康状态为:
Figure BDA0003895023130000066
3、针对2中提取的2n个特征,即等电压差时间数据特征
Figure BDA0003895023130000067
和等时间差电压数据特征
Figure BDA0003895023130000068
采用典型相关性分析方法对特征数据进行降维处理,构建多元随机变量Z=(X,Y),其中X为特征矩阵,其维度为(2n,D),其中2n为特征数量,D为循环次数,Y为锂离子电池健康状态数据。
构建线性变换P=aTX和Q=bTY对原始数据进行标准化处理,得到多元随机变量Z=(X,Y)的标准化矩阵Z*,并计算标准化矩阵Z*的协方差矩阵,得到:
Figure BDA0003895023130000069
其中,SXX、SXY、SYX、SYY为协方差计算结果。
为了使P和Q之间的相关性最大化,需要选择合适的向量a和b,使目标函数最大化,即:
Figure BDA00038950231300000610
定义Rayleigh熵矩阵为:
Figure BDA00038950231300000611
定义uj和λj为R的第j个特征向量和特征值平方根,从而求解最大化问题,将向量a和b表示为:
Figure BDA0003895023130000071
根据向量a和b,可以计算出P=aTX和Q=bTY,从而得到最终的融合特征矢量FF,其维度为D,即:
FF=XP+YQ
根据所述融合特征与锂离子电池健康状态数据,构建锂离子电池健康状态数据集:
Figure BDA0003895023130000072
将数据集Data中的N个数据样本作为训练集Data1,将剩余数据样本作为测试集Data2。
4、建立长短期记忆循环神经网络模型,此模型的输入设置为融合特征数据,输入节点为1,输出设置为锂离子电池健康状态,输出节点为1,并设置长短期记忆循环神经网络模型初始参数,单隐含层,初始节点为250个,优化算法为Adam,初始迭代次数设置为120次,初始学习率设置为0.005,在迭代90次后,学习率变为0.2。
5、使用训练集对长短期记忆循环神经网络模型进行训练,并根据估计误差对模型参数进行调整,使模型估计误差降低。对训练集Data1中融合特征数据和健康状态数据进行归一化处理,将归一化后的融合特征数据作为长短期记忆循环神经网络模型的输入,归一化后的健康状态数据作为长短期记忆循环神经网络模型的输出,对模型进行训练。
上述数据归一化方法为:
Figure BDA0003895023130000073
其中xk为x序列的第k个值,即文中的特征数据和健康状态数据,0<k≤D,xmin和xmax分别为x序列中最小值和最大值。
利用测试集测试模型的估计精度,评估模型估计效果。对测试集Data2中融合特征数据进行归一化处理后,输入到训练完成的长短期记忆循环神经网络模型,将模型输出的健康状态估计值进行反归一化处理,与测试集Data2中的健康状态数据对比,按以下公式计算均方根误差(RMSE)和平均绝对误差(MAE),以此评价长短期记忆循环神经网络模型的精度。
Figure BDA0003895023130000074
Figure BDA0003895023130000081
其中
Figure BDA0003895023130000082
为健康状态估计值,S为健康状态实际值。
当计算得到的RMSE和MAE不符合预期目标,则返回4重新调整模型参数,并进行训练,直到模型的测试误差符合预期目标。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (6)

1.一种基于片段多充电特征融合的锂离子电池健康状态估计方法,其特征在于,包括如下步骤:
步骤1、对锂离子电池进行多次充放电循环,收集每次充放电循环中的充电电压数据及对应的时间数据,以及当次循环的最大放电容量数据;
步骤2、针对每次充放电循环的充电电压数据和时间数据,分别提取等电压差时间数据、等时间差电压数据和电池健康状态数据,其中:为提取等电压差时间数据,先确定提取的起始电压、终止电压、采样电压间隔,从起始电压开始,每隔一个采样电压提取一次时间数据,直到终止电压,从而获得等电压差时间数据;为提取等时间差电压数据,先确定提取的起始电压、终止电压、采样时间间隔,从起始电压开始,每隔一个采样时间提取一次电压数据,直到终止电压,从而获得等时间差电压数据;为提取电池健康状态数据,利用每次循环的最大放电容量除以额定容量,得到当前循环的电池健康状态数据;
步骤3、将步骤2提取的等电压差时间数据和等时间差电压数据,采用典型相关性分析方法进行处理,提取出融合特征数据,并与对应循环的电池健康状态数据结合,构成锂离子电池健康状态数据集,将所述数据集分为训练集和测试集;
步骤4、建立长短期记忆循环神经网络模型,此模型的输入设置为融合特征数据,输出设置为锂离子电池健康状态,并设置长短期记忆循环神经网络模型初始参数;
步骤5、使用训练集对长短期记忆循环神经网络模型进行训练,并根据估计误差对模型参数进行调整,使模型估计误差降低;利用测试集测试模型的估计精度,评估模型估计效果。
2.根据权利要求1所述的基于片段多充电特征融合的锂离子电池健康状态估计方法,其特征在于,所述步骤1包括以下分步骤:
步骤101、使用电池充放电测试仪对新出厂的锂离子电池进行充放电循环,充电方式为恒流恒压充电,放电方式为恒流放电,直到锂离子电池的最大放电容量降至额定容量的70%时,结束充放电循环实验,定义总循环次数为D;
步骤102、记录每次循环的恒流充电过程中的充电电压数据和对应时间数据,并记录本次循环的最大放电容量数据。
3.根据权利要求1所述的基于片段多充电特征融合的锂离子电池健康状态估计方法,其特征在于,所述步骤2包括以下分步骤:
步骤201、提取等电压差时间数据时,针对每次循环,确定片段充电电压的起始电压V0、终止电压Vn,提取起始电压V0、终止电压Vn对应的时间T0和Tn (1),并确定采样电压间隔Δv为
Figure FDA0003895023120000021
其中,n为等电压差时间数据的特征数量;
从起始电压V0开始,每增加一个采样电压间隔Δv,记录电压值与对应时间,即对于
Figure FDA0003895023120000022
获得电压数据序列
Figure FDA0003895023120000023
和对应的时间序列
Figure FDA0003895023120000024
根据所述时间序列计算充电过程中等电压间隔对应的时间差,即
Figure FDA0003895023120000025
从而提取出单次充电循环的等电压差时间数据特征
Figure FDA0003895023120000026
步骤202、提取等时间差电压数据时,针对每次循环,确定片段充电电压的起始电压V0及其对应时间T0,并确定采样时间间隔Δt,根据步骤201中的特征数量n,确定终止时间
Figure FDA0003895023120000027
从起始电压V0开始,每增加一个采样时间间隔Δt,记录时间与对应电压值,即对于
Figure FDA0003895023120000028
获得对应的时间序列
Figure FDA0003895023120000029
和电压数据序列
Figure FDA00038950231200000210
根据所述电压数据序列计算充电过程中等时间间隔对应的电压差,即
Figure FDA00038950231200000211
从而提取出单次充电循环的等时间差电压数据特征
Figure FDA00038950231200000212
步骤203、提取电池健康状态数据时,针对每次循环,根据每次循环的最大放电容量Cmax和电池额定容量C0,计算每次循环的锂离子电池健康状态为:
Figure FDA00038950231200000213
4.根据权利要求3所述的基于片段多充电特征融合的锂离子电池健康状态估计方法,其特征在于,所述步骤3包括以下分步骤:
步骤301、针对步骤2提取的2n个特征,即等电压差时间数据特征
Figure FDA00038950231200000214
和等时间差电压数据特征
Figure FDA00038950231200000215
采用典型相关性分析方法对特征数据进行降维处理,构建多元随机变量Z=(X,Y),其中X为特征矩阵,其维度为(2n,D),其中2n为特征数量,D为循环次数,Y为锂离子电池健康状态数据,其维度为(1,D);
步骤302、构建线性变换P=aTX和Q=bTY对原始数据进行标准化处理,得到多元随机变量Z=(X,Y)的标准化矩阵Z*,并计算标准化矩阵Z*的协方差矩阵,得到:
Figure FDA0003895023120000031
其中,SXX、SXY、SYX、SYY为协方差计算结果;
为使P和Q之间的相关性最大化,需要选择向量a和b,使目标函数最大化,即:
Figure FDA0003895023120000032
定义Rayleigh熵矩阵为:
Figure FDA0003895023120000033
定义uj和λj为R的第j个特征向量和特征值平方根,从而求解最大化问题,将向量a和b表示为:
Figure FDA0003895023120000034
根据向量a和b,计算出P=aTX和Q=bTY,得到最终的融合特征矢量FF,其维度为D,即:
FF=XP+YQ
步骤303、根据所述融合特征与锂离子电池健康状态数据,构建锂离子电池健康状态数据集:
Figure FDA0003895023120000035
将数据集Data中的N个数据样本作为训练集Data1,将剩余数据样本作为测试集Data2。
5.根据权利要求1所述的基于片段多充电特征融合的锂离子电池健康状态估计方法,其特征在于,所述步骤4中长短期记忆循环神经网络模型,其输入节点数量为1,输出节点数量为1,优化算法为Adam。
6.根据权利要求4所述的基于片段多充电特征融合的锂离子电池健康状态估计方法,其特征在于,所述步骤5包括以下分步骤:
步骤501、对训练集Data1中融合特征数据和健康状态数据进行归一化处理,将归一化后的融合特征数据作为长短期记忆循环神经网络模型的输入,归一化后的健康状态数据作为长短期记忆循环神经网络模型的输出,对模型进行训练;
步骤502、对测试集Data2中融合特征数据进行归一化处理后,输入到训练完成的长短期记忆循环神经网络模型,将模型输出的健康状态估计值进行反归一化处理,与测试集Data2中的健康状态数据对比,计算均方根误差RMSE和平均绝对误差MAE,以此评价长短期记忆循环神经网络模型的精度;
步骤503、当步骤502计算得到的RMSE和MAE不符合预期目标,则返回步骤4重新调整模型参数,并进行训练,直到模型的测试误差符合预期目标。
CN202211276570.4A 2022-10-18 2022-10-18 基于片段多充电特征融合的锂离子电池健康状态估计方法 Pending CN115684971A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211276570.4A CN115684971A (zh) 2022-10-18 2022-10-18 基于片段多充电特征融合的锂离子电池健康状态估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211276570.4A CN115684971A (zh) 2022-10-18 2022-10-18 基于片段多充电特征融合的锂离子电池健康状态估计方法

Publications (1)

Publication Number Publication Date
CN115684971A true CN115684971A (zh) 2023-02-03

Family

ID=85066904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211276570.4A Pending CN115684971A (zh) 2022-10-18 2022-10-18 基于片段多充电特征融合的锂离子电池健康状态估计方法

Country Status (1)

Country Link
CN (1) CN115684971A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116774075A (zh) * 2023-08-28 2023-09-19 清华四川能源互联网研究院 一种锂离子电池健康状态评估方法及***
CN117706406A (zh) * 2024-02-05 2024-03-15 安徽布拉特智能科技有限公司 一种锂电池健康状态监测模型、方法、***和存储介质
CN117930028A (zh) * 2024-03-21 2024-04-26 成都赛力斯科技有限公司 新能源车辆电池热失效的预测方法、***、设备及介质

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116774075A (zh) * 2023-08-28 2023-09-19 清华四川能源互联网研究院 一种锂离子电池健康状态评估方法及***
CN117706406A (zh) * 2024-02-05 2024-03-15 安徽布拉特智能科技有限公司 一种锂电池健康状态监测模型、方法、***和存储介质
CN117706406B (zh) * 2024-02-05 2024-04-16 安徽布拉特智能科技有限公司 一种锂电池健康状态监测模型、方法、***和存储介质
CN117930028A (zh) * 2024-03-21 2024-04-26 成都赛力斯科技有限公司 新能源车辆电池热失效的预测方法、***、设备及介质
CN117930028B (zh) * 2024-03-21 2024-05-17 成都赛力斯科技有限公司 新能源车辆电池热失效的预测方法、***、设备及介质

Similar Documents

Publication Publication Date Title
CN108896914B (zh) 一种锂电池健康状况的梯度提升树建模与预测方法
CN115684971A (zh) 基于片段多充电特征融合的锂离子电池健康状态估计方法
CN110398697B (zh) 一种基于充电过程的锂离子健康状态估计方法
CN113917337A (zh) 基于充电数据和lstm神经网络的电池健康状态估计方法
CN109543317B (zh) 一种pemfc剩余使用寿命预测的方法及装置
CN112067998A (zh) 一种基于深度神经网络的锂离子电池荷电状态估计方法
CN108490365B (zh) 一种估计电动汽车的动力电池的剩余寿命的方法
CN103954913A (zh) 电动汽车动力电池寿命预测方法
CN111999649A (zh) 一种基于XGBoost算法的锂电池剩余寿命预测方法
CN114861527A (zh) 一种基于时间序列特征的锂电池寿命预测方法
CN114545274A (zh) 一种锂电池剩余寿命预测方法
CN113901707A (zh) 一种车用锂离子动力电池soh时间序列预测方法
CN115308606B (zh) 一种基于邻近特征的锂离子电池健康状态估计方法
CN114970332A (zh) 基于混沌量子麻雀搜索算法的锂电池模型参数辨识方法
CN110646708A (zh) 基于双层长短时记忆网络的10kV单芯电缆早期状态识别方法
CN115586452A (zh) 基于新型健康特征的锂离子电池健康状态估计方法
CN115389946A (zh) 一种基于等压升能量和改进gru的锂电池健康状态估计方法
CN115146723A (zh) 基于深度学习和启发式算法的电化学模型参数辨识方法
CN116298935A (zh) 一种基于对抗编码器网络的锂离子电池健康状态估计方法
Vilsen et al. Log-linear model for predicting the lithium-ion battery age based on resistance extraction from dynamic aging profiles
Wei et al. State of health and remaining useful life prediction of lithium-ion batteries with conditional graph convolutional network
CN117554846B (zh) 计及约束条件的锂电池寿命预测方法及***
CN112580211A (zh) 基于sa和ann算法的铅酸蓄电池soh估计方法
CN116626499A (zh) 基于能压峰特征和改进lstm的锂电池健康状态估计方法
CN116736171A (zh) 一种基于数据驱动的锂离子电池健康状态估算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination