CN115633363A - 云受控网状联网 - Google Patents

云受控网状联网 Download PDF

Info

Publication number
CN115633363A
CN115633363A CN202211103438.3A CN202211103438A CN115633363A CN 115633363 A CN115633363 A CN 115633363A CN 202211103438 A CN202211103438 A CN 202211103438A CN 115633363 A CN115633363 A CN 115633363A
Authority
CN
China
Prior art keywords
channel
channels
access point
prediction
channel quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211103438.3A
Other languages
English (en)
Inventor
S.S.埃伊吉特
M.S.戈克图克
B.哈蒂波格卢
M.I.塔斯金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wireless Communication And Technology Co
Original Assignee
Wireless Communication And Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wireless Communication And Technology Co filed Critical Wireless Communication And Technology Co
Publication of CN115633363A publication Critical patent/CN115633363A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/142Network analysis or design using statistical or mathematical methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/147Network analysis or design for predicting network behaviour
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/22Traffic simulation tools or models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • H04W36/008375Determination of triggering parameters for hand-off based on historical data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/20Performing reselection for specific purposes for optimising the interference level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

用于通过云计算优化网状网络的设备、***和方法。云网络控制器可以从网状网络中的多个接入点(AP)接收基于AP所进行的测量的与信道质量相关的信息。基于该信息,云网络控制器可以基于与信道质量相关的信息来预测一个或多个最优信道。然后,云网络控制器可以向多个AP传送消息,该消息包括基于所述预测切换到一个或多个最优信道的推荐。然后,AP可以决定执行推荐的信道切换。

Description

云受控网状联网
本申请是申请日为2018年1月22日、申请号为201880015837.X、发明名称为“云受控网状联网”的发明专利申请的分案申请。
相关申请的交叉引用
本申请要求2017年1月20日提交的美国临时申请62/448,727和2017年1月23日提交的美国临时申请62/449,364的权益,其通过引用结合于此,如同被完全阐述一般。
技术领域
本公开一般涉及无线联网,并且更具体地但非排他地,涉及无线网状网络,其中节点可以经由不同的通信标准进行通信。
背景技术
在无线通信中,设备可以通过一个或多个接入点接入因特网。在一些情况下,设备可以与可以由多个接入点组成的网状网络交互。可能需要解决网状网络中的这些接入点之间的通信协议和程序,以确保网络高效运行并解决可能存在的任何干扰。
发明内容
用于通过云计算优化网状网络的设备、***和方法。云网络控制器可以从网状网络中的多个接入点(access point,AP)接收基于由所述AP所进行的测量的与信道质量相关的信息。基于该信息,云网络控制器可以基于与信道质量相关的信息来预测一个或多个最优信道。然后,云网络控制器可以向多个AP传送消息,该消息包括基于预测切换到一个或多个最优信道的推荐。然后,AP可以决定执行推荐的信道切换。
附图说明
可以从例如结合附图给出的以下描述中获得更详细的理解,其中附图中的相同的附图标号表示相同的元件,并且其中:
图1是根据一个或多个实施例的示例网状网络的示图;
图2是根据一个或多个实施例的示例网络架构的示图;
图3是根据一个或多个实施例的在启动(boot up)期间接入点的示例程序的流程图;
图4是根据一个或多个实施例的列表中的多个信道的示例时间表的示图;
图5是根据一个或多个实施例的接入点处的示例程序的流程图;
图6是根据一个或多个实施例的网络控制器处的示例程序的流程图;
图7是根据一个或多个实施例的接入点处的示例过程的流程图;
图8是根据一个或多个实施例的一个或多个云控制器处的示例过程的流程图;
图9是与一个或多个实施例相关的时间与信道质量的示例测量的图表;
图10是与一个或多个实施例相关的时间与信道质量的示例测量的图表;
图11是与一个或多个实施例相关的时间与信道质量的示例测量的图表;
图12是根据一个或多个实施例的用于主接入点的示例过程的流程图;
图13是根据一个或多个实施例的用于主接入点的示例过程的流程图;和
图14是云受控网状联网的示例过程的流程图。
具体实施方式
本公开一般涉及无线联网,并且更具体地但非排他地,涉及无线网状网络,其中节点可以经由诸如IEEE 802.11a/b/g/n/ac/ad/ax的不同通信标准进行通信。IEEE 802.11无线网络可以使用2.4GHz和/或5GHz非许可频谱带,也称为工业、科学和医学(industry,science and medicine,ISM)频带。由于这些频谱带是未许可的,因此与诸如长期演进(long term evolution,LTE)的蜂窝网络不同,IEEE 802.11网络可以部署在任何地方,而不用理会政府机构的许可要求。另一方面,这些未许可的频谱带可能拥挤并且IEEE 802.11无线网络可能需要与在相同频带中操作的其它IEEE 802.11网络共存和竞争。此外,可能存在其它干扰源,诸如微波炉、蓝牙设备、汽车警报器、视频设备、无线麦克风、以及在这些未许可的频谱带中操作或出现的其它设备或自然现象。
IEEE 802.11无线网络可以利用被称为具有冲突避免的载波侦听多址接入(carrier sense multiple access with collision avoidance,CSMA/CA)的信道接入机制。详细地说,接入用于数据传输的介质的任何IEEE 802.11设备可以在某个载波侦听周期内监听该信道。设备只有在监听后认为介质空闲时才进行传输。另一方面,如果发现介质忙,则设备可以退避一段时间,之后它检查介质并再次执行载波侦听。由于该CSMA/CA协议,IEEE 802.11设备不仅与相同无线网络上的设备竞争,而且与在相同信道上操作的近距离内的其它无线网络上的其它设备竞争,以便接入所提到的信道。因此,接入信道的概率随着在某个地点在相同信道上操作的设备的数量的增加而减少。
给定可能的干扰源和CSMA/CA协议,重要的是评估网络在其上操作的信道的质量。通过测量操作信道的质量,如果信道令人满意,则无线网络可以停留在相同的信道上,或者切换到可以提供更好服务的另一个信道。评估操作信道的质量在IEEE 802.11无线网状网络中尤其重要,因为操作信道可以用于客户端通信量(客户端及其相关联的接入点之间的通信量)和网状通信量(属于相同网状网络的接入点之间的通信量)两者。
图1描绘了包括接入点和客户端站的示例无线网状网络1000。存在三个接入点,AP1101、AP 1102和AP 1103。每个AP包括通信接口(1101a、1102a、1103a)、处理器(1101b、1102b、1103c)和存储器(1101c、1102c、1103c)。例如,AP 1101具有通信接口1101a、处理器1101b和存储器1101c。接入点使用5GHz信道形成网状网络,如链路1301、1302和1303中所示。与2.4GHz信道相比,5GHz信道优选用于形成网状链路,因为在5GHz频带中存在更多信道并且它们可以组合/绑定以获得更高带宽的信道(使用IEEE802.11ac协议,最高达160MHz)。然而,本公开不限于5GHz信道域,并且可以推广到其它频谱带。存在与接入点相关联的六个客户端站。每个客户端站包括通信接口(1201a、1202a、1203a、1204a、1205a、1206a)、处理器(1201b、1202b、1203b、1204b、1205b、1206b)、和存储器(1201c、1202c、1203c、1204c、1205c、1206c)。例如,客户端1201具有通信单元1201a、处理器1201b和存储器1201c。客户端1201、1202和1203与AP 1101相关联。客户端1201和1202利用5GHz链路1401和1402,而客户端1203使用2.4GHz链路1403。类似地,客户端1204使用5GHz链路1404与AP 1102相关联。最后,客户端1205和1206分别利用5GHz链路1405和2.4GHz链路1406与AP1103相关联。客户端可以是移动的或固定的。它们可以与接入点通信,以便经由网关连接到因特网,该网关可以是接入点之一。
图2描绘了用于具有三个接入点的实施例的网络架构2000的示例。尽管仅示出了三个接入点,但是在本文中讨论的这个实施例或者其它实施例中可以存在任何数量的接入点。AP 2101、2102和2103是相同网状网络的一部分,并且可能使用网关(未示出)经由逻辑链路2301、2302和2303连接到因特网2201。每个AP可以具有通信接口(2101a、2102a、2103a)、处理器(2101b、2102b、2103b)和存储器(2101c、2102c、2103c)。AP 2101使用逻辑链路2301,AP 2102使用逻辑链路2302,并且AP 2103使用逻辑链路2303。如图2所示的链路是逻辑的,但实际物理链路可以是不同的,并且涉及一些跳。作为示例,从AP 2101到因特网2201的逻辑链路可以遵循路径AP 2101-AP 2102-网关(未示出)-因特网2201。还存在经由逻辑链路2401连接到因特网2201的位于云处的云网络控制器2501。类似于接入点的逻辑链路,云网络控制器2401的逻辑链路可以涉及实际多跳路径,其中该实际多跳路径涉及附加网络元件,诸如未示出的路由器、交换机等。云网络控制器2501包括通信接口2501a、处理器2501b、存储器2501c和硬盘驱动器2501d。在一个实施方式中,存在连接到相同云网络控制器的多个不同网状网络。在另一实施方式中,存在可以在地理上分散的多于一个云网络控制器,每个云网络控制器服务于无线网状网络的不同集合。在实施例中,云网络控制器可以与无线网状网络在相同的局域网上,使得接入点能够直接与接入点通信而无需通过因特网。在另一实施方式中,云网络控制器可以是服务器群,其能够利用并行处理技术来获得具有增加的处理能力的更短处理时间。在另一实施方式中,云网络控制器可以是连接到一个或多个数据库的一个或多个计算设备,其中计算设备可以是个人计算机、膝上型计算机、服务器、移动计算设备等。在另一实施方式中,云网络控制器可以被称为一个云计算机、多个云计算机、云处理、云计算、云等。
在一些实施例中,来自接入点的信道质量测量可以用于决定在其中进行操作的最佳信道。还可以使用接入点的无干扰信道评估(clear channel assessment,CCA)测量,以及测量候选信道质量的任何度量,诸如重叠基本服务集的数量和强度、干扰、雷达存在、接收功率指示符等等。这些测量可以是主动的或被动的,并且可以按时间平均,并且可以取决于接入点的能力以及网络管理员的偏好。
每个接入点可以周期性地同时地扫描由控制器给出的所有20MHz信道,并对给定信道集合执行信道质量测量。在其它实施例中,接入点可以顺序地扫描信道。在一个示例中,通过切换到信道并在给定时间段(称为驻留时间)内监听该信道以观测该信道被观测为空闲的时间部分,来执行无干扰信道评估。在一种情况下,无干扰信道评估的结果可以是显示信道被发现为空闲的时间部分的百分比。在另一种情况下,可以通过将空闲时间除以驻留时间来获得这个百分比。
图3是示出在启动期间接入点的示例程序3000的流程图。在执行可以包括但不限于加载文件***和内核的标准启动程序之后,启动所要求的服务3001,接入点可以检查它是否具有已经在操作的任何网状对等体3002。在一个实施方式中,可以使用单播包以分开检查每个网状对等体,来执行检查步骤3002。在另一实施方式中,检查步骤3002可以发送广播消息,并且可用的网状对等体可以在接收到广播消息时进行响应。如果存在任何可用的网状对等体,则接入点可以选择3003可用的网状对等体中的一个。在一个实施方式中,可以随机地进行这个选择3003。在另一实施方式中,这个选择3003可以基于可用接入点的媒体访问控制(medium access control,MAC)地址,并且选择具有最高MAC地址的接入点。在另一实施方式中,可以选择3003最接近网关的接入点。在选择网状对等体之后,接入点从所选择的对等体3004获得可用信道列表和时间表。如果没有可用的网状对等体,则可以从云网络控制器获得可用信道列表和时间表3005。无论是否存在任何可用的网状对等体,该程序可以继续以便接入点在3006处开始其操作。
可用信道列表可以是在云网络控制器处确定的要扫描的信道的简单列表。云网络控制器可以根据诸如网络的地理位置、客户端站和接入点能力、最近对信道上的雷达信号的观测等几个因素来确定可用信道列表。云网络控制器可以在任何时间更新可用信道列表,并将新的可用信道列表传送到接入点。
时间表可以基于可用信道列表中的信道的数量。图4示出了示出在可用信道列表中具有五个信道的示例时间表4000的示图。在一个实施例中,时间表信息可以包含开始时间4001、周期4002、测量时间4101和4102、以及归属信道(home channel)时间4201。
开始时间4001可以示出下一次扫描将开始的最近时间。
扫描过程周期性地以扫描的时间周期4002发生。例如,如果开始时间是S并且周期是T,则下一次扫描将从S+T、S+2T、S+3T开始,依此类推。如图4所示,下一次扫描发生在4003处,恰好比开始时间4001晚了周期长度,并且发生在周期4002的末尾处。在一个实施方式中,周期可以设置为1分钟。
测量时间4101和4102可以是用于测量给定信道的质量所花费的时间。它可以包括两个部分:扫描偏移4101,其用作考虑轻微同步误差的保护时段;以及驻留时间4102,在此期间进行实际测量。在一些实施例中,网络内的所有网状接入点可以在时间上同步;因此,他们几乎可以同时开始和完成信道质量测量。通过利用同步的接入点来工作,可以获得更可靠的测量,尤其是在操作信道上,因为所有接入点可以在测量期间停止任何通信量。稍微的同步误差可以由扫描偏移4101处理。这个同步可以由诸如英国专利申请GB1522654.1(其通过引用合并于此)中公开的已知方法提供。在一个实施方式中,扫描偏移可以设置为5ms,并且驻留时间可以设置为50ms。驻留时间的持续时间可以取决于要进行的信道质量测量的类型和数量。尽管较长的驻留时间提供更准确的结果,但其可能会导致客户端的服务恶化。因此,可能期望驻留时间在可靠的同时尽可能短。根据信道质量测量的硬件最小时间限制,驻留时间可能不能任意地短。如图4所示,对于周期4002的长度而言,扫描偏移的每个实例可以由4101a、4101b、4101c、4101d和4101e指示。另外,对于周期4002的长度而言,驻留时间的每个实例可以由4102a、4102b、4102c,4102d和4102e指示。
归属信道时间4201可以是接入点在两个不同信道测量之间在其操作信道上花费的时间。如前所述,接入点可以在信道质量测量期间停止任何传输。在进行测量之后,接入点可以切换回其操作信道以在归属信道时间的持续时间内服务于客户端。在归属信道时间4201的持续时间内停留在操作信道上之后,接入点可以切换到可用信道列表中的下一信道以进行信道质量测量,除非可用信道列表用尽。另一方面,如果可用信道列表用尽,则接入点可以停留在操作信道上以服务于客户端直到下一扫描周期4003的开始为止。在一个示例中,归属信道时间被设置为1秒。如图4所示,对于时段4002的长度而言,归属信道时间的每个实例可以由4201a、4201b、4021c、4201d和4201e指示。
时间表可由云网络控制器配置,并且可以在运行时根据诸如网状网络的负载、网络管理员的偏好等因素而改变。
图5是示出可以在每个接入点处执行的示例程序5000的流程图。在扫描周期5001开始之后,接入点可以检查可用信道列表是否为空5002。如果可用信道列表为空,则接入点恢复正常操作5008。否则,接入点可以切换到列表中的第一个信道5003,等待对于可能的同步误差的扫描偏移5004,在驻留时间长度内执行信道质量测量5005,然后切换到操作信道以在归属信道时间的持续时间内服务于客户端5006。如果在可用信道列表中仍然存在要扫描的任何信道5007,则这个过程可以继续到下一信道5003。否则,接入点可以继续停留在操作信道上,基于所述周期调度下一次扫描,以及将当前结果集合传送到云网络控制器5008。
因此,云网络控制器从接入点获得周期性信道质量测量并存储它们。与测量结果相关的信息可以存储在***的易失性存储器中,或者其可以记录在诸如硬盘驱动器或SSD驱动器等的数字存储介质中。在一个示例中,商业现货数据库***可以用于存储测量结果。决策点可以被定义为云网络控制器进行信道决策的时间点。决策点可以是周期性的,以便云网络控制器周期性地评估候选信道以找到最佳信道。如果最佳信道与操作信道相同,则网络可以停留在相同信道上。否则,***将决定是否切换到最佳信道。
图6示出了针对每个无线网状网络在云网络控制器处执行的示例过程6000的流程图。当云网络控制器开始操作时,它可以调度下一决策点6001。在这个步骤之后,云网络控制器可以等待来自接入点的测量并存储获得的测量6002直到决策点。当决策点到达时6003,云网络控制器可以做出信道决策6004,并将最佳信道信息传送到无线网状网络中的所有接入点6005。在一个实施方式中,云网络控制器仅传送最佳信道信息到无线网状网络。在另一实施方式中,最佳信道信息是根据信道质量排序的信道的列表。一旦将最佳信道信息传送到无线网状网络,云网络控制器就可以调度下一决策点6006,之后它可以继续收集来自接入点的测量6002。
可以在云网络控制器处周期性地执行信道决策。可能期望这个决策周期不应太小,因为每个信道切换可能引起无线网络的开销。然而,也可能期望它不应该太大从而可以不错过短期机会。在一个示例中,这个决策周期被设置为一小时。
当接入点将其测量传送到云网络控制器时,云网络控制器可以将这些测量存储在数据库中以便稍后用于信道选择。对于做出决策的过程,云网络控制器可以采用三个处理器:预测处理器、评分处理器和决策处理器,它们以那样的次序操作,其中每个处理器使用先前处理器的输出。在一个示例中,这三个处理器可以是分开的处理器,或者它们可以是由单个处理器(诸如ASIC)执行的子例程。本文讨论的处理器也可以是逻辑意义上的功能、算法和/或方法,但是可以在物理意义上不同地具体实现。
图7示出了在从云网络控制器接收到最佳信道信息7001之后在每个接入点上运行的示例过程7000的流程图。接入点可以首先检查操作信道是否与最佳信道相同7002。如果是这种情况,则接入点可以什么都不做并且停留在其当前信道7003。否则,接入点可以检查它是否是主接入点7004。如果不是这种情况,则接入点可以等待来自其它网状对等体的增强型信道切换通告(enhanced channel switch announcement,ECSA)或信道切换通告(channel switch announcement,CSA)7005,直到它接收到ECSA/CSA为止7006。如果接入点是主接入点或接收ECSA/CSA的接入点,则它首先检查是否已经存在正在进行的信道切换7007。如果是这种情况,则接入点可以什么都不做7003。否则,接入点向其网状对等体和相关联的客户端通告ECSA/CSA。在此之后,接入点可以等待期满通知7009,之后接入点可以切换其操作信道7010。如果从云网络控制器接收的最佳信道信息是信道列表,则主接入点尝试切换到最佳信道(列表中的第一个信道)。如果切换成功,则可以忽略列表中的其它信道。否则,尝试列表中的下一信道。这个过程可以以这种方式继续,直到成功切换。
另一方面,接收ECSA或CSA的接入点可以首先检查它是否已经在执行信道切换7007。如果是这种情况,则可以忽略ECSA或CSA 7003。另一方面,如果接收器接入点并非正在执行信道切换,则它可以调整ECSA或CSA,以通告切换到其网状对等体和相关联的客户端7008。在通告周期7009期满之后,接收器接入点也可以改变其操作信道7010。
图8示出了云控制器处的示例预测程序8000的流程图。可以针对每种类型的信道质量测量执行预测处理器(例如,一次用于无干扰信道评估,一次用于重叠基本服务集的强度等)。在开始预测8001之后,云网络控制器可以从数据库获得针对无线网络的相关测量类型的测量结果8002。在这个步骤期间,云网络控制器可以获得与这个无线网络相关的所有测量或最近的测量(即最近七天到当前时间的测量)。可替换地,云网络控制器可以为指定的平均窗口提供测量的时间平均。云网络控制器可以将无线网络中的所有接入点标记为未处理8003,并挑选它们中的一个进行处理8004。对于所选择的接入点,云网络控制器可以将这个网络的可用信道列表中的所有信道标记为未处理8005并选择它们中的一个进行处理8006。
在下一步骤中,云网络控制器可以聚合针对与这个接入点/信道对相关的给定测量类型的测量数据8007。可以频繁地(例如,每分钟)进行测量,而决策做出过程可以运行更少(例如,每小时)。这个步骤的一个目标可以是聚合频繁测量并获得针对每个不同的测量和决策周期的单个代表性数据点,以便降低所要求的处理能力并减小测量中的短期波动的影响。用于聚合的函数可以是适合于这个任务的任何任意函数,诸如简单平均、加权平均、最小、最大等。在一个实施方式中,可以对一小时内的60个无干扰信道评估测量(每分钟一个)进行平均,以获得针对特定小时的单个代表性数据点。此外,还可以在聚合之前应用异常值检测/消除程序以解决网络中的异常/异样行为。在一个实施方式中,在一小时内的与该小时的该类型的测量的平均偏离一个标准偏差的每个测量可以被分类为异常值并被消除。在这个步骤之后,云网络控制器可以具有针对当前接入点/信道对的当前决策周期以及过去决策周期的聚合的数据。
在下一步骤中,云网络控制器可以对用于当前接入点/信道对的该测量类型的聚合数据集尝试预测库中的所有预测方法8008。预测库可以是包括各种预测方法的软件库。在一个实施方式中,软件库可以利用可能有用的任何预测方法,诸如线性回归、移动平均、指数平滑、自回归整合移动平均等。此外,可以利用输入参数的不同值集合来尝试要求输入参数的任何参数方法(例如,移动平均要求窗口大小作为输入)。
在一个示例中,指数平滑可以使用以下公式进行预测:
Yt+1=beta*Xt+(1-beta)*Yt
初始条件Y1=X0,其中Yt+1是时间t+1的预测,Xt是时间t的观测值,以及0<beta<1是示出最后的观测与先前的观测相比较的相对重要性的平滑因子。因为等式的递归性质,所以接近1的beta值可以关注最后的观测,而接近0的beta值可以强调先前的观测。根据beta的值,指数平滑的精度可能因给定数据集而异。因此,可以寻求不同的beta值来找到最适合数据集的理想beta。在一个实施方式中,可以评估从0.1到1.0且增量为0.1的所有beta值。
在另一示例中,双指数平滑可以使用以下公式进行预测:
Yt+1=beta*Xt+(1-beta)*(Yt+Bt)
其中beta与指数平滑相同,并且Bt估计时间t处的数据趋势。Bt可以通过下式给出:
Bt=gamma*(Yt-Yt-1)+(1-gamma)*Bt-1
其中0<gamma<1是趋势平滑因子。根据beta和gamma的值,双指数平滑的精度可能因给定数据集而异。因此,可以寻求不同的beta和gamma值来找到最适合数据集的理想beta。在一个实施方式中,可以评估从0.1到1.0且增量为0.1的所有beta值、以及从0.1到1.0且增量为0.1的所有gamma值。
在另一示例中,简单移动平均可以使用以下公式:
Yt+1=(Xt-w+Xt-w+1+Xt-w+2+…+Xt-1+Xt)/w
其中w被称为窗口大小和方法的输入参数。较大的w值可能意味着预测值取决于先前观测的更大集合。此外,由于预测可能更多受过去值的影响,因此在w值较大时预测可能会更慢地变化。较小的w值可能会导致更多的波动,因为最近的观测可能会对预测产生更大的影响。根据w的值,移动平均值的精度可能因给定数据集而异。因此,可以评估不同的w值以找到最适合数据集的理想w。在一个实施方式中,可以评估从2到60且增量为1的所有w值。
可以识别用于包含在预测处理器中的给定预测方法的参数以及那些参数的合理范围。如本文所讨论的,可以尝试用于任何所包含的方法的宽范围的参数,以找到最适合数据的参数。
一旦尝试了所有预测方法或一些预测方法(可能具有不同的输入参数),就可以选择最适合数据的方法8009。为了测量给定模型(并且可能测量参数集)有多适合数据,可以利用适合于这个任务的任何合理的度量,并且可以最小化相应的误差度量。在一个示例中,可以使用平方误差之和,其是每个观测与相应预测之间的平方差之和。在另一示例中,可以使用均方误差,其是平方误差之和的平均。在另一示例中,可以使用平均绝对误差,其是每个观测与相应预测之间的差的绝对值的平均。在另一示例中,可以使用确定系数,其由1-SSE/SStot给出,其中SSE是如上定义的平方误差之和,并且SStot是每个观测与观测平均之间的平方差之和。
在网络的操作期间,接入点可以进行大量测量并且由云网络控制器将该大量测量存储在数据库中。数据库中的测量的数量随时间增加。因此,数据库中可能存在大量用于预测的测量。对于如此大量的数据,预测处理器的处理可能需要很长时间。为了缓解这个问题,本公开可以使用最近N天的测量。在实施例中,参数N由网络管理员配置。在示例性实施例中,除非网络管理员明确地改变,否则将N的默认值设置为七天。
一旦已经针对给定测量类型选择了方法(并且可能选择了参数集),则可以针对当前接入点/信道对获得针对下一决策周期的所选择的方法的预测8010。然后,当对于当前AP而言,当前信道可以被标记为已处理8011。在下一步骤中,处理器可以检查是否存在针对当前接入点的任何剩余未处理的信道8012。如果是这种情况,则可以选择另一未处理的信道8006,并且可以对这个更新的接入点/信道对执行步骤8007-8010。否则,云网络控制器可以移动到步骤8013,其中当前接入点被标记为已处理。随后,云网络控制器可以检查是否处理了所有接入点8014。如果处理了所有接入点,则预测处理器的执行可以结束8015。否则,处理器可以继续下一未处理的接入点8004。
因此,预测处理器的输出可以是针对每个接入点/信道对的给定信道质量测量类型的下一决策周期的预测。因此,可以考虑接入点之间的地理/拓扑差异以及跨时间的信道的不同用途。由于可以针对每个不同类型的信道质量测量单独地执行预测处理器,因此可以获得针对每个接入点/信道/信道质量测量类型的预测。
在不稳定的测量可能导致次优信道的情况下,信道质量测量可能易于出错。即使信道质量测量是可靠的,由于诸如使用模式、一天中的时间、衰落等许多因素,无线信道条件可能频繁地改变。通过使用频繁的测量并将它们与异常值消除相聚合,可以避免这些误差中的一些。
图9示出了使用最后测量或最后一组测量、可以不考虑数据的趋势和季节性的示例的图表9000。信道质量9002被显示在垂直轴上,并且时间9001被显示在水平轴上。在这个示例中,在历史上信道备选1 9003具有比信道备选2 9004更好的质量。使用最后一组测量而不进行预测的任何方法选择信道备选1 9003。然而,信道备选1 9003的质量存在明显的下降趋势。另一方面,信道备选2 9004在信道质量方面呈上升趋势,并且可能会在决策点9005处或附近超过信道备选1 9003。
图10示出了另一示例的图表,在该示例中存在季节性因素,并且除了在整体数据中具有更好的质量之外,信道备选1 10003(备选1)对于最后一组测量具有更好的质量。信道质量10002在垂直轴上,并且时间10001在水平轴上。使用最后一组测量而不进行预测的任何方法选择信道备选1 10003。然而,查看先前的数据,能够推断出信道备选2 10004(备选2)不久(诸如,在决策点10005处或附近)将具有比信道备选1 10003更好的质量。
图11示出了另一示例的图表11000,在该示例中在商业区场景中企业在白天使用信道备选1。晚上11006和白天11007随着时间的推移以交替的片段自然地显示,其中有晚上的11006a、11006b、和11006c片段以及白天的11007a和11007b片段。信道质量11002在垂直轴上,并且时间11001在水平轴上。信道备选1 11003(备选1)在白天期间可能具有低质量,但在晚上期间可能具有高质量。另一方面,信道备选2 11004(备选2)可以总体上具有稳定的质量。在恰好在晚上之前的决策点11005处,可能通过查看最后一组测量错误地断定信道备选2 11004对于即将到来的晚上是更好的选择。相反,可以示出,考虑到季节性,信道备选1 11003在晚上具有更好的质量。
通过使用信道质量测量的预测来预测最佳一个信道/多个信道,本文讨论的构思可以避免如图8、图9和图10的示例中可见的一些问题。
在一个实施例中,由于处理大量数据所要求的存储器和处理能力,可以在云网络控制器处执行与信道选择相关的所有处理。在一个实施方式中,预测处理器总是在预测库中尝试所有预测处理器(可能利用不同的参数)。在另一实施方式中,预测处理器了解针对每个接入点/信道的最佳执行方法,仅使用针对特定接入点/信道对了解的那些预测方法,并周期性地重新了解这些最佳执行方法以考虑行为改变。
评分处理器可以使用预测处理器的输出来获得每个信道的单个分数。首先,可以为每个接入点/信道对组合不同类型的信道质量测量以获得单个值。为了获得单个值,可以对每个测量类型的预测进行归一化,以便将其映射到0和1之间的值。例如,可以通过将针对特定测量类型的每个预测除以跨所有接入点/信道对的针对该测量类型的最大观测预测来执行这个归一化。接下来,可以采用映射的值的加权和来获得针对给定AP/信道对的单个分数。在这个加权和中,对网络具有正面影响的测量类型(具有针对该测量类型的更高值更好)可以具有正权重。另一方面,对网络具有负面影响的测量类型(具有针对该测量类型的更低值更好)可以具有负权重。权重的选择可以取决于网络管理员的优先级,并且权重的任何组合都是可能的。
在获得针对所有接入点/信道对的单个分数之后,对于每个信道,可以聚合针对信道的所有接入点的分数以获得针对给定信道的单个值。可以使用适合于这个任务的任何函数来执行这个聚合,诸如简单平均、加权平均、最小、最大等。
如本文所讨论的,一些实施例涉及用于覆盖2.4GHz频带中的信道的场景的每个20MHz信道的测量结果,然而,这些实施例也可以应用于可以通过组合连续的20MHz信道来使用5GHz频带中的40MHz、80MHz和160MHz信道的场景。并且,本文讨论的一些实施例还可以覆盖802.11ac的场景,其中80MHz+80MHz包含2个不同集合的4个连续的20MHz信道。此外,可以对用于这些高带宽信道的主20MHz信道的选择做出决定。例如,如果带宽被选择为80MHz并且主20MHz信道被选择作为信道36(5180MHz),则辅20MHz信道可以是信道40(5200MHz),并且辅40MHz信道可以是信道46(信道44和48的组合)。
在一个实施例中,可以通过使用20MHz信道的分数并评估每个带宽备选来执行带宽和主20MHz信道选择。对于20MHz带宽,可能只存在20MHz主信道,并且可能已经使用本文讨论的方法计算了每个20MHz信道的分数。
对于40MHz带宽,对于每个可能的40MHz信道,可以计算两个分数(因为存在可以是主20MHz信道的两个20MHz主信道备选),并且这两个分数中的最大值可以被视为这个40MHz信道的最终分数。对于给定的40MHz信道,让包含的两个20MHz信道的分数为x1和x2。然后40MHz信道的分数被计算为:
max(x1+alpha*(min(x1,x2)-|x1-x2|),x2+alpha*(min(x1,x2)-|x1-x2|))
其中alpha是0和1之间的常数。第一项对应于具有分数x1的信道被设置为主20MHz信道并且具有分数x2的信道被设置为辅20MHz信道的情况。类似地,第二项对应于具有分数x2的信道被设置为主20MHz信道并且具有分数x1的信道被设置为辅20MHz信道的情况。可以选择这两种情况之间的具有最大分数的备选,并且可以通过给出两个项之间的最大分数的备选来确定主20MHz信道。关系可以任意打破。alpha的选择可以表示辅20MHz信道的相对重要性,并且可以由网络管理员在运行时设置。在一个实施方式中,可以使用0.5的alpha值。
作为示例,假设20MHz信道36和40分别具有分数0.8和0.6;并且alpha被设置为0.5。那么40MHZ信道的分数是max(0.8+0.5*(min(0.8,0.6)-|0.8-0.6|),0.6+0.5*(min(0.8,0.6)-|0.8-0.6|))=max(1.0,0.8)=1.0。此外,对于这个备选,主20MHz信道可以被选择为信道36,因为该组合给出了更好的分数。
对于80MHz带宽,对于每个可能的80MHz信道,可以计算四个分数(因为存在可以是主20MHz信道的四个20MHz主信道备选)并且可以采用这四个分数中的最大值作为这个80MHz信道的最终分数。对于给定的80MHz信道,让包含的四个20MHz信道的分数为x1、x2、x3和x4。然后80MHz信道的分数被计算为:
max(x1+alpha*(min(x1,x2)-|x1-x2|)+alpha^2*(min(x1,x2,x3,x4)–|min(x1,x2)–min(x3,x4)|),
x2+alpha*(min(x1,x2)-|x1-x2|)+alpha^2*(min(x1,x2,x3,x4)–|min(x1,x2)–min(x3,x4)|),
x3+alpha*(min(x3,x4)-|x3-x4|)+alpha^2*(min(x1,x2,x3,x4)–|min(x1,x2)–min(x3,x4)|),
x4+alpha*(min(x3,x4)-|x3-x4|)+alpha^2*(min(x1,x2,x3,x4)–|min(x1,x2)–min(x3,x4)|))
其中alpha是0和1之间的常数,如上所述。第一项对应于将具有分数x1的信道设置为主20MHz信道、将具有分数x2的信道设置为辅20MHz信道、并且将具有分数x3和x4的信道的组合设置为辅40MHz信道的情况。其它项对应于不同的主20MHz信道的情况。可以在这四种情况中选择具有最大分数的备选,并且可以通过四个项中给出最大分数的备选来确定主20MHz信道。关系可以任意打破。
作为示例,假设20MHz信道36、40、44和48分别具有分数0.8、0.6、0.9和0.5;并且alpha被设置为0.5。那么80MHZ信道的分数是:
max(0.8+0.5*(min(0.8,0.6)-|0.8-0.6|)+0.25*(min(0.8,0.6,0.9,0.5)–|min(0.8,0.6)–min(0.9,0.5)|),
0.6+0.5*(min(0.8,0.6)-|0.8-0.6|)+0.25*(min(0.8,0.6,0.9,0.5)–|min(0.8,0.6)–min(0.9,0.5)|),
0.9+0.5*(min(0.9,0.5)-|0.9-0.5|)+0.25*(min(0.8,0.6,0.9,0.5)–|min(0.8,0.6)–min(0.9,0.5)|),
0.5+0.5*(min(0.9,0.5)-|0.9-0.5|)+0.25*(min(0.8,0.6,0.9,0.5)–|min(0.8,0.6)–min(0.9,0.5)|))=max(1.1,0.9,1.05,0.65)=1.1
此外,对于这个备选,可以选择主20MHz信道作为信道36,因为该组合给出最佳分数。
对于160MHz带宽,对于每个可能的160MHz信道,可以计算八个分数(因为存在可以是主20MHz信道的八个20MHz主信道备选)并且这八个分数中的最大值被视为这个160MHz信道的最终分数。对于给定的160MHz信道,让包含的八个20MHz信道的分数为x1、x2、x3、x4、x5、x6、x7和x8。然后160MHz信道的分数被计算为:
max(x1+alpha*(min(x1,x2)-|x1-x2|)+alpha^2*(min(x1,x2,x3,x4)–|min(x1,x2)–min(x3,x4)|)+alpha^3*(min(x1,x2,x3,x4,x5,x6,x7,x8)-|min(x1,x2,x3,x4)–min(x5,x6,x7,x8)|),
x2+alpha*(min(x1,x2)-|x1-x2|)+alpha^2*(min(x1,x2,x3,x4)–|min(x1,x2)–min(x3,x4)|)+alpha^3*(min(x1,x2,x3,x4,x5,x6,x7,x8)-|min(x1,x2,x3,x4)–min(x5,x6,x7,x8)|),
x3+alpha*(min(x3,x4)-|x3-x4|)+alpha^2*(min(x1,x2,x3,x4)–|min(x1,x2)–min(x3,x4)|)+alpha^3*(min(x1,x2,x3,x4,x5,x6,x7,x8)-|min(x1,x2,x3,x4)–min(x5,x6,x7,x8)|),
x4+alpha*(min(x3,x4)-|x3-x4|)+alpha^2*(min(x1,x2,x3,x4)–|min(x1,x2)–min(x3,x4)|)+alpha^3*(min(x1,x2,x3,x4,x5,x6,x7,x8)-|min(x1,x2,x3,x4)–min(x5,x6,x7,x8)|),
x5+alpha*(min(x5,x6)-|x5-x6|)+alpha^2*(min(x5,x6,x7,x8)–|min(x5,x6)–min(x7,x8)|)+alpha^3*(min(x1,x2,x3,x4,x5,x6,x7,x8)-|min(x1,x2,x3,x4)–min(x5,x6,x7,x8)|),
x6+alpha*(min(x5,x6)-|x5-x6|)+alpha^2*(min(x5,x6,x7,x8)–|min(x5,x6)–min(x7,x8)|)+alpha^3*(min(x1,x2,x3,x4,x5,x6,x7,x8)-|min(x1,x2,x3,x4)–min(x5,x6,x7,x8)|),
x7+alpha*(min(x7,x8)-|x7-x8|)+alpha^2*(min(x5,x6,x7,x8)–|min(x5,x6)–min(x7,x8)|)+alpha^3*(min(x1,x2,x3,x4,x5,x6,x7,x8)-|min(x1,x2,x3,x4)–min(x5,x6,x7,x8)|),
x8+alpha*(min(x7,x8)-|x7-x8|)+alpha^2*(min(x5,x6,x7,x8)–|min(x5,x6)–min(x7,x8)|)+alpha^3*(min(x1,x2,x3,x4,x5,x6,x7,x8)-|min(x1,x2,x3,x4)–min(x5,x6,x7,x8)|))
其中alpha是0和1之间的常数,如上所述。第一项对应于将具有分数x1的信道设置为主20MHz信道、将具有分数x2的信道设置为辅20MHz信道、将具有分数x3和x4的信道的组合设置为辅40MHz信道、并且将具有分数x5、x6、x7、和x8的信道的组合设置为辅80MHz信道的情况。其它项对应于不同的主20MHz信道的情况。可以选择这八种情况当中具有最大分数的备选,并且可以通过八个项中给出最大分数的备选来确定主20MHz信道。关系可以任意打破。
作为示例,假设20MHz信道36、40、44、48、52、56、60和64分别具有分数0.8、0.6、0.9、0.5、0.7、0.7、0.3、0.2;并且alpha被设置为0.5。那么160MHZ信道的分数是:
max(0.8+0.5*(min(0.8,0.6)-|0.8-0.6|)+0.25*(min(0.8,0.6,0.9,0.5)–|min(0.8,0.6)–min(0.9,0.5)|)+0.125*(min(0.8,0.6,0.9,0.5,0.7,0.7,0.3,0.2)-|min(0.8,0.6,0.9,0.5)–min(0.7,0.7,0.3,0.2)|),
0.6+0.5*(min(0.8,0.6)-|0.8-0.6|)+0.25*(min(0.8,0.6,0.9,0.5)–|min(0.8,0.6)–min(0.9,0.5)|)+0.125*(min(0.8,0.6,0.9,0.5,0.7,0.7,0.3,0.2)-|min(0.8,0.6,0.9,0.5)–min(0.7,0.7,0.3,0.2)|),
0.9+0.5*(min(0.9,0.5)-|0.9-0.5|)+0.25*(min(0.8,0.6,0.9,0.5)–|min(0.8,0.6)–min(0.9,0.5)|)+0.125*(min(0.8,0.6,0.9,0.5,0.7,0.7,0.3,0.2)-|min(0.8,0.6,0.9,0.5)–min(0.7,0.7,0.3,0.2)|),
0.5+0.5*(min(0.9,0.5)-|0.9-0.5|)+0.25*(min(0.8,0.6,0.9,0.5)–|min(0.8,0.6)–min(0.9,0.5)|)+0.125*(min(0.8,0.6,0.9,0.5,0.7,0.7,0.3,0.2)-|min(0.8,0.6,0.9,0.5)–min(0.7,0.7,0.3,0.2)|),
0.7+0.5*(min(0.7,0.7)-|0.7-0.7|)+0.25*(min(0.7,0.7,0.3,0.2)–|min(0.7,0.7)–min(0.3,0.2)|)+0.125*(min(0.8,0.6,0.9,0.5,0.7,0.7,0.3,0.2)-|min(0.8,0.6,0.9,0.5)–min(0.7,0.7,0.3,0.2)|),
0.7+0.5*(min(0.7,0.7)-|0.7-0.7|)+0.25*(min(0.7,0.7,0.3,0.2)–|min(0.7,0.7)–min(0.3,0.2)|)+0.125*(min(0.8,0.6,0.9,0.5,0.7,0.7,0.3,0.2)-|min(0.8,0.6,0.9,0.5)–min(0.7,0.7,0.3,0.2)|),
0.3+0.5*(min(0.3,0.2)-|0.3-0.2|)+0.25*(min(0.7,0.7,0.3,0.2)–|min(0.7,0.7)–min(0.3,0.2)|)+0.125*(min(0.8,0.6,0.9,0.5,0.7,0.7,0.3,0.2)-|min(0.8,0.6,0.9,0.5)–min(0.7,0.7,0.3,0.2)|),
0.2+0.5*(min(0.3,0.2)-|0.3-0.2|)+0.25*(min(0.7,0.7,0.3,0.2)–|min(0.7,0.7)–min(0.3,0.2)|)+0.125*(min(0.8,0.6,0.9,0.5,0.7,0.7,0.3,0.2)-|min(0.8,0.6,0.9,0.5)–min(0.7,0.7,0.3,0.2)|))
=max(1.09,0.89,1.04,0.64,0.96,0.96,0.26,0.16)=1.09。
此外,对于这个备选,可以选择主20MHz信道作为信道36,因为该组合给出最佳分数。
由接入点对动态频率选择(dynamic frequency selection,DFS)信道的被动扫描可以完全符合IEEE 802.11标准。但是,由于1分钟的信道可用性检查(channelavailability check,CAC)时间要求,切换到DFS信道可能会导致连接丢失。如果接入点采用信道外(off-channel)CAC,则可以避免这个连接丢失,其中,在信道外CAC中接入点在另一信道上操作的同时以非连续方式在信道上扫描雷达存在。如果在一定时间段内没有在DFS信道上检测到雷达存在,则信道外CAC允许将DFS信道标记为可用。此外,如果DFS信道被信道外CAC程序标记为可用,则网络可以切换到DFS信道而不执行CAC。在未实现信道外CAC的一个实施方式中,可以选择在CAC期间切换到具有服务中断的DFS信道的***,或者可以选择禁用DFS信道的使用。在能够执行信道外扫描并且能够利用信道外CAC检测雷达的另一实施方式中,由于信道外雷达检测能力,可以在不发生服务中断的情况下使用和切换DFS信道。在另一实施方式中,在给定DFS信道上的过去雷达存在也可以是信道质量度量之一,从而在计算信道分数时还考虑雷达存在。
一旦评估了所有可能的备选,则可以按降序根据备选的分数对它们进行排序。在一个实施方式中,云网络控制器可以将具有最高分数的信道的主20MHz信道号和带宽信息传送到无线网状网络。在另一实施方式中,云网络控制器可以将列表中的前n个备选(随着主20MHz信道号和带宽信息)传送到无线网状网络(其中n由网络管理员确定)。在实施方式中,可以应用滞后(hysteresis),并且可以将当前操作信道的分数与最高分数备选进行比较。如果与无线网状网络的当前操作信道相比最高分数备选的提高小于给定百分比,则可以将操作信道推到列表的顶部。这背后的原因是在某些情况下,网状网络不应该改变信道以获得边际增益,因为信道切换可能是昂贵的并且涉及开销。
还可以支持不同类型的信道(即非DFS低功率、非DFS高功率和DFS信道)之间的不同权重/优先方案。在一个实施方式中,每个信道备选的分数可以乘以取决于信道类型的系数。系数可以特定于信道类型,并且对于属于相同类别的信道而言可以是相同的。这些系数可以在网状网络的基础上可配置,并且可以由网络管理员改变。在一个示例中,非DFS高功率信道可以具有最高系数,接着是DFS信道,接着是非DFS低功率信道,以根据可实现的吞吐量值进一步区分信道。当信道备选跨越多个信道类型(诸如信道50(宽160MHz,跨越信道36到64))时,可以使用不同信道类型中的最低系数。
通过利用IEEE 802.11标准的无干扰信道评估(CCA)和能量检测(ED)机制,接入点能够观测操作信道状态。接入点可以连续地利用CCA和ED来测量信道被其自身和其它方占用的时间。此外,接入点能够报告给定时间段内的操作信道的占用情况;这个时段可以被称为如本文所讨论的测量时段。在一个示例中,测量时段可以是一秒。
在包含单个接入点的无线网络中,可以采用这些测量来检查当前信道条件。如果属于其它网络的接入点和其它非WiFi设备在大多数时间占用信道,则信道可能过度拥挤并且切换到另一信道可以提供更好的性能。另一方面,如果属于其它网络的接入点和其它非WiFi设备在非常短的时间内占用信道,则当前信道可能是令人满意的,并且可能不需要执行信道切换。并且,切换到另一信道可能涉及由扫描所有其它备选信道以找到它们中的最佳信道、并将整个网络切换到所找到的最佳信道所引起的处理和时间开销。
此外,信道切换还可以导致无线网络中的短暂服务中断。例如,如果无线网络决定切换到动态频率选择(DFS)信道,则接入点应该执行1分钟的信道可用性检查(CAC)以检测任何雷达存在。在CAC时间期间,AP不能够为客户端提供服务。一旦CAC时间完成并且在CAC期间未检测到雷达存在,则接入点只能切换到DFS信道。考虑到所涉及的开销,最好尽可能地减少信道切换,并且仅在当前信道不令人满意时才切换。
在网状网络中的一个场景(诸如图1中所示的场景)中,可以存在经由以下路径从客户端1201到客户端1204的通信量流:客户端1201到AP 1101到AP 1102到客户端1204。在这个实施例中。AP 1103可以将这整个通信量流分类为干扰,并且可以推断出当前信道不令人满意。这可能会触发新信道选择和后续信道切换,尽管大多数干扰源于无线网状网络自身的通信量。因此,属于无线网状网络的接入点可能有必要将其它网络的干扰与相同无线网状网络内的其它接入点的通信量区分开,以便评估当前信道的干扰水平和质量。
在一个实施例中,可以使用一个或多个程序来测量操作信道上的当前干扰水平。每个接入点可以测量其传入和传出通信量在信道上占用的通话时间(airtime)。这个通话时间可以由所讨论的接入点使用。因此,从接入点i的视角来看,在时段t期间操作信道上的当前活动可以被分类为:AP i自己的传输,表示为Xit;通过APi对于意图用于APi的通信量的接收,表示为Yit;空闲(无发送/接收活动),表示为Zit;和/或所有其它接收活动,表示为Uit,包括网状对等接入点的WiFi活动、其它网络的接入点的WiFi活动、以及非WiFi活动。
如本文所讨论的,Xit、Yit、Zit和Uit值是百分比(即在时段t期间由接入点i在信道上观测到相应活动的时间的百分比)。如果情况并非如此,并且对于每个类设置实际持续时间,则可以通过将实际值除以测量周期的长度来轻松地将它们转换为百分比。
每个接入点可以连续地监视操作信道并将这些Xit、Yit、Zit和Uit值存储在存储器中。此外,每个接入点可以将这些值随着指示何时生成该值的时间戳一起周期性地传送到主接入点,其可以被称为报告周期。在一个实施方式中,报告周期被设置为一分钟,使得每个接入点将最后60个测量传送到主接入点(即每秒一个测量)。主接入点可以是相同无线网状网络内的接入点。还可以使用诸如最低或最高媒体访问控制(MAC)地址、与网关的接近度等的任何方法来选择主接入点。可以以多种方式选择主接入点,并且可以使用任何合适的方法。
无线网状网络的接入点可以在时间上同步,并且生成针对相同时间段的报告(Xit、Yit、Zit和Uit)。因此,在主接入点处累积的来自所有接入点的报告可以表示相同的时间段。表1中给出了在具有三个接入点的无线网状网络的主接入点处累积的示例报告,其中t值是对应于测量周期的结束的以毫秒为单位的时间戳。为节省空间,这个示例中仅提供最后十个值,但报告的长度可以根据报告周期而变化。主接入点可以是接入点中的任何一个。请注意,表中的值是百分比,并且对于给定的AP i和时间t,它们总和大约为100。
Figure BDA0003840290740000201
表1:在主接入点收集的报告示例
一旦主接入点收集报告,它可以通过执行图12中所示的算法来消除一些行。最初,主接入点通过收集属于每个接入点的各个报告来形成测量报告12001。然后,主接入点可以检查是否报告中的所有t值都被处理12002。如果是,则算法可以输出过滤后的报告12008。否则,算法可以继续下一t值(即,下一未处理的行)12003。随后,算法可以检查是否针对当前t值处理了所有接入点12004。如果是,则算法可以返回到12002。否则,算法可以继续针对当前t值的下一未处理的接入点12005。对应于当前时间t和接入点i的(Xit+Yit)值可以用接入点和时间依赖阈值Dit来检查12006。如果(Xit+Yit)大于Dit,则可以滤除对应于这个行的测量12007,并且算法继续到12002。否则,算法可以继续到12004。
在12006处,算法可以消除存在其自身通信量(Xit+Yit)超过对应阈值的至少一个网状接入点的行。通过这样做,该算法可以最小化接入点的通信量可能被观测为其它网状接入点的干扰的情况。阈值Dit的选择对于这个任务是至关重要的,并且可取决于许多因素,诸如在时间t连接到AP i的客户端的数量、一天中的时间等。对于所有AP和测量周期,本发明的示例性实施例使用恒定值Dit=D=10。继续表1中的样本数据,如果使用Dit=D=10值,则算法可以输出表2中所示的数据。
Figure BDA0003840290740000211
表2:过滤的数据的示例
一旦数据被过滤,就可以评估信道的干扰和质量。为了实现这一点,可以使用Uit值来测量在时段t期间由接入点i观测到的干扰(越低的干扰可能意味着越好的信道)。在另一种情况下,(Xit+Yit+Zit)值可以用于测量在时段t期间由接入点i观测到的信道上的可用传输时间(越高的可用传输时间意味着越好的信道)。(Xit+Yit+Zit)包括空闲时间和来自/去往接入点i的传输。因此,它从接入点i的视角给出了可用传输时间。在一些实施例中,可以使用这些值来评估信道上的干扰水平。在讨论Uit值的情况下,Uit可以被替换成大约等于100-(Xit+Yit+Zit)的值。
在过滤之后,可以在接入点的基础上消除数据中的异常值。也就是说,对于每个接入点,可以消除可能为异常值的Uit值。这个步骤是可选的,并且该过程可以在不采用任何异常值检测的情况下操作。实施例消除了与接入点i的Uit的均值偏离大于k个标准偏差的所有Uit值。从数学上讲,让Mui和Sui成为在过滤后属于接入点i的Uit值的均值和标准偏差。任何不满足(Mui-k*Sui)<Uit<(Mui+k*Sui)的Uit值被认为是异常值并被消除。示例性实施例使用k值2。
在一个实施例中,可以存在用于消除异常值的分位数。属于接入点i的Uit值可以被分成q个分位数。在第一个或最后一个分位数中的任何Uit值可以被认为是异常值并被消除。在一个示例中,可以使用q值4。
在异常值消除步骤之后,可以针对每个接入点i对属于接入点i的Uit值进行平均。对于平均,可以使用任何合适的平均方法,诸如样本均值、指数移动平均值、加权平均值等。在一种情况下,可以使用样本均值。作为示例,表2中给出的数据的样本均值在表3中示出。
AP1 AP2 AP3
样本均值 8.14 7.29 7.57
表3:每个接入点的平均Uit值的示例
一旦获得了针对每个接入点的样本均值,就可以聚合不同接入点的数据以获得无线网状网络的单个干扰分数。可以采用适合于这个任务的任何函数,诸如最小值、最大值、平均值等。在一个实施方式中,可以使用接入点的平均值的最大值,目的是集中于具有最差干扰的接入点。一旦获得无线网状网络的干扰分数,就可以将其与干扰阈值进行比较,以便决定是继续在当前信道上操作还是开始信道切换程序。在一个示例中,可以使用干扰阈值10。
在一种情况下,接入点的测量可能未在时间上完全同步,并且在接入点之间可能存在轻微偏差。另外,操作***的调度器还可能导致接入点之间的轻微偏差。在这种情况下,每个接入点可以具有针对每个测量的不同时间戳。表4中显示了针对这个场景的具有三个接入点的示例数据集,其中t值是与测量周期的结束相对应的以毫秒为单位的时间戳。为节省空间,对于这个示例仅给出了最后十个值,但报告的长度可以根据报告周期而变化。主接入点可以是接入点中的任何一个。请注意,表中的值是百分比,并且对于给定的AP i和时间t,它们总和大约为100。
Figure BDA0003840290740000221
Figure BDA0003840290740000231
表4:当接入点未完全同步时的示例报告
图13示出了其中一旦主接入点收集报告,它就可以过滤一些行的示例过程的流程图13000。最初,主接入点通过收集属于每个接入点的各个报告来形成测量报告13001。然后,主接入点可以过滤报告的第一行和最后一行13002。在这个步骤之后,主接入点可以检查是否报告中的所有行都被处理13003。如果是这种情况,则主接入点可以输出过滤后的报告13010。否则,主接入点可以继续下一行(即下一未处理的行)13004。随后,主接入点可以检查是否针对当前t值处理了所有接入点13005。如果是这种情况,则主接入点可以返回到13003。否则,主接入点可以针对当前行继续下一未处理的接入点13006。在下一步骤中,可以获得其测量时间与当前接入点的测量时间一致的其它接入点的(Xit+Yit)值13007。这些(Xit+Yit)值可以与Dit进行比较13008。如果有任何(Xit+Yit)大于Dit,则可以过滤当前行13009,并且主接入点可以继续下一行13004。否则,主接入点可以继续确定是否针对当前行处理了所有接入点13005。对于给定的接入点和测量时间,可以找到来自其测量时间与给定接入点的当前测量一致的其它接入点的测量。如果这些发现的测量中的任何一个具有大于Dit的(Xit+Yit),则可以丢弃整组测量。
参考表4中给出的样本数据,AP1的第二行的测量时间可以与AP2的第一行和第二行以及AP3的第一行和第二行一致。具体来说,AP1的第二测量覆盖表示为(1484558283503,1484558284502)的在1484558283503和1484558284502之间的时间。这个时间窗口与AP2的第一和第二测量的时间窗口一致,因为AP2的第一测量覆盖时间(1484558281525,1484558282524),并且AP2的第二测量覆盖时间(1484558282525,1484558283524)。因此,AP1的第二测量与(1484558282503,1484558282524)期间的AP2的第一测量以及(1484558282525,1484558283502)之间的AP2的第二测量一致。类似地,AP1的第二测量也与AP3的第一和第二行一致。出于示例的目的,可以假设Dit=D=10。对于AP2和AP3,这些一致的测量都可能不具有(Xit+Yit)>10,因此这个过程可以继续到第二行的下一AP,即AP2。AP2的第二行的测量时间与AP1的第二和第三测量以及AP3的第一和第二测量一致。此时,AP1第二行的(Xit+Yit)为(6+5=11)>10,因此报告的第二行被过滤。以这种方式继续,可以获得表5中给出的过滤的数据。
Figure BDA0003840290740000241
表5:当接入点未完全同步时的过滤的数据
在过滤之后,可以在接入点的基础上消除数据中的异常值。也就是说,对于每个接入点,消除可能是异常值的Uit值。这个步骤可以是可选的,并且该过程可以在不采用任何异常值检测的情况下操作。在一个实施方式中,可以消除与针对接入点i的Uit的均值偏离大于k个标准偏差的所有Uit值。从数学上讲,Mui和Sui是在过滤后属于接入点i的Uit值的均值和标准偏差。任何不满足(Mui-k*Sui)<Uit<(Mui+k*Sui)的Uit值都可以被认为是异常值并被消除。在一种情况下,可以使用k值2。
在一个实施方式中,可以使用用于消除异常值的分位数。属于接入点i的Uit值可以被划分成q个分位数。在第一个或最后一个分位数中的任何Uit值可以被认为是异常值并被消除。在一种情况下,可以使用q值4。
在异常值消除步骤之后,可以针对每个接入点i对属于接入点i的Uit值进行平均。对于平均,可以使用任何合适的平均方法,诸如简单平均值(样本均值)、指数移动平均值、加权平均值等。在一个实施方式中,可以使用样本均值。作为示例,表5中给出的数据的样本均值在表6中示出。
AP1 AP2 AP3
样本均值 7.5 7.75 7.25
表6:针对每个接入点的平均Uit值的示例
一旦针对每个接入点获得了样本均值,就可以聚合不同接入点的数据以获得针对无线网状网络的单个干扰分数。可以采用任何聚合技术,诸如最小值、最大值、平均值等。在一个实施方式中,可以使用接入点的平均值的最大值,目的是集中于具有最差干扰的接入点。一旦获得针对无线网状网络的干扰分数,就可以将其与阈值进行比较,以便决定是继续对当前信道上进行操作还是开始信道切换程序。在一种情况下,可以使用阈值10。
在另一实施方式中,接入点可以使用其网状对等接入点的MAC地址来区分无线信道上的活动。接入点具有其网状对等接入点的MAC地址,并且可以在添加新的网状无线接入点或移除现有的网状无线接入点时更新这个列表。使用这个列表,接入点可以将在时段t期间的信道上的活动分类为多个类别。
在用于来自属于网状网络的接入点的传输的一个实例中,类别1可以是其中MAC报头可以被解码的任何无线活动,并且在时段t期间将无线网状接入点之一作为发送器。这个类别可以进一步针对每个网状接入点分类为单独类别,并且表示为Xijt,意味着在时段t期间由网状接入点i接收的网状接入点j的传输。应该提到的是,接入点i可以不是通信量的预期接收者,而只是无意收听到它。Xiit表示在时段t期间接入点i自己的传输。
在用于去往属于网状网络的接入点的传输的另一实例中,类别2可以是其中MAC报头可以被解码的任何无线活动,并且在时段t期间将无线网状接入点之一作为接收器。这个类别可以进一步针对每个网状接入点分类为单独类别,并且表示为Yijt,意味着在时间段t期间由网状接入点i接收/无意收听到的去往网状接入点j的传输。Yiit表示在接入点i也是预期的接收器的情况下由接入点i的接收。
在用于其它WiFi通信量的另一实例中,类别3可以是在时段t期间的、能够被识别为无线通信量但不是来自/去往无线网状网络的接入点i任何通信量,表示为Wit。
在用于非WiFi通信量和干扰的另一实例中,类别4可以是在时段t期间的、包括不可解码的无线通信量的任何其它通信量和干扰的源,表示为Iit。
在时段t期间没有发送或接收活动的另一实例中,可以是类别5,表示为Zit。
类别1和类别2可以不是相互排斥的。作为示例,参考图1,AP 1101可以向AP 1102传送帧。如果AP 1103能够解码这个传输的MAC报头,则可以观测到AP 1101是发送器而AP1102是接收器。因此,这个通信量可以分类为类别1和类别2。通过这个分类,接入点可以更详细地形成测量报告。此外,可以显着降低将其它网状接入点的通信量评估为干扰的概率。
如本文所讨论的,Xijt、Yijt、Wit、Iit、和Zit值可以是百分比(即在时段t期间由接入点i在信道上观测到相应活动的时间的百分比)。如果不是这种情况,并且每个类的实际持续时间是已知的,则可以通过将实际值除以测量周期的长度将它们转换为百分比。
每个接入点连续地监视操作信道并将这些Xijt、Yijt、Wit、Iit、和Zit值存储在存储器中。此外,它们将这些值随指示何时生成该值的时间戳一起周期性地传送到主接入点。
在一个示例中,当通信量被分类并在表7中呈现时,可以在主接入点处收集报告,其中t值是对应于测量周期的结束的以毫秒为单位的时间戳。为了节省空间,针对这个示例仅仅给出最后十个值,但报告的长度可以根据报告周期而变化。主接入点可以是接入点中的任何一个。请注意,表中的值是百分比,并且对于给定的AP i和时间t,它们总和大约为100。
Figure BDA0003840290740000261
Figure BDA0003840290740000271
表7:当通信量被分类时在接入点处收集的示例报告
对于表7,X11t可以表示在时段t期间AP1的传输;X12t可以表示在时段t期间AP1接收到的由AP2的传输;Y13t可以表示AP1接收到去往AP3的传输;W1t可以表示在时段t期间与无线网状网络无关的无线通信量;I1t可以表示在时段t期间AP1接收的非WiFi通信量和干扰;并且Z1t可以表示在时段t期间AP1观测到的空闲时间。
一旦在主接入点处收集到数据,就可以评估信道的干扰和质量。(Wit+Iit)值可以用于测量在时段t期间由接入点i观测到的总干扰(越低的干扰可能意味着越好的信道)。替代地/另外地,(Xijt+Yijt+Zit)值可以用于测量信道上的可用传输时间(越高的可用传输时间可以意味着越好的信道)。(Xijt+Yijt+Zit)可以包括空闲时间和来自/去往无线网状网络的接入点的传输。因此,它可以从接入点i的视角给出无线网状网络的可用传输时间。
在使用(Wit+Iit)值的一个实施方式中,这些值可以用于评估信道上的干扰水平。但是,由于(Wit+Iit)大约等于100-(Xijt+Yijt+Zit),因此可以修改方法以使用(Xijt+Yijt+Zit)值。
在主接入点处收集各个报告之后,可以在接入点的基础上消除数据中的异常值。也就是说,对于每个接入点,消除可能是异常值的(Iit+Wit)值。这个步骤可以是可选的,并且该过程可以在不采用任何异常值检测的情况下操作。在一个实施方式中,可以消除与接入点i的(Iit+Wit)的均值偏离大于k个标准偏差的所有(Iit+Wit)值。从数学上讲,让MI+Wi和SI+Wi成为属于接入点i的(Iit+Wit)值的均值和标准偏差。不满足(MI+Wi-k*SI+Wi)<(Iit+Wit)<(MI+Wi+k*SI+Wi)的任何(Iit+Wit)值可以被认为是异常值并且被消除。在一个示例中,可以使用k值2。
分位数可以用于消除异常值。属于接入点i的(Iit+Wit)值可以被划分成q个分位数。在第一个或最后一个分位数中的任何(Iit+Wit)值可以被认为是异常值并被消除。在一个示例中,可以使用q值4。
在异常值消除步骤之后,可以针对每个接入点i对属于接入点i的(Iit+Wit)值进行平均。对于平均,可以使用任何合适的平均方法,诸如样本均值、指数移动平均值、加权平均值等。在一个实施方式中,可以使用样本均值。作为示例,表7中给出的数据的样本均值在表8中示出。
AP1 AP2 AP3
样本均值 11.7 11.6 12
表8:针对每个接入点的示例平均值(Iit+Wit)
一旦针对每个接入点获得了样本均值,就可以聚合不同接入点的数据以获得针对无线网状网络的单个干扰分数。可以采用任何技术,诸如最小值、最大值、平均值等。在一个实施方式中,使用接入点的平均值的最大值,目的是集中于具有最差干扰的接入点。一旦获得针对无线网状网络的干扰分数,就可以将其与阈值进行比较,以便决定是继续在当前信道上进行操作还是开始信道切换程序。在一个示例中,可以使用阈值10。
图14示出了基于云的网状网络管理的示例过程的流程图。如本文所讨论的,AP可以收集与信道质量相关的测量的数据14001。云网络控制器可以从AP接收这个数据14002并将其存储在数据库,如本文所讨论的。然后,云网络控制器可以使用这个数据来预测接入点在其网状网络中操作的最佳的一个或多个信道14003,如本文所讨论的。然后,云网络可以将此推荐传送到接入点14004,如本文所讨论的。然后,接入点可以决定切换到这个推荐的一个或多个信道以用于网状网络的操作14005,如本文所讨论的。
尽管以上以特定组合描述了特征和元素,但是本领域普通技术人员将理解,每个特征或元素可以单独使用或与其它特征和元素按任何组合来使用。另外,本文描述的方法可以实现在计算机程序、软件或固件中,该计算机程序、软件或固件被并入在计算机可读介质中以由计算机或处理器执行。计算机可读介质的示例包括(通过有线或无线连接发送的)电子信号和计算机可读存储介质。计算机可读存储介质的示例包括但不限于只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、寄存器、高速缓存、半导体存储器设备,诸如内部硬盘和可移除盘的磁性介质、磁光介质、以及诸如CD-ROM盘和数字通用盘(digital versatile disk,DVD)的光学介质。与软件相关联的处理器可以用于实现用于接入点、基站或任何其它类型的计算设备中的射频收发器。

Claims (12)

1.一种用于优化多个接入点(AP)的无线网状网络的方法,所述方法包括:
从所述无线网状网络中的多个AP接收与关于多个信道的信道质量相关的信息;
基于所述与信道质量相关的信息和多个预测方法中的最佳预测方法预测一个或多个最优信道,其中从所述多个信道中选择所述一个或多个最优信道;和
通过向所述多个AP传送包括基于所述预测在未来的特定时间切换到所述一个或多个最优信道的推荐的消息来优化所述无线网状网络。
2.如权利要求1所述的方法,其中,与信道质量相关的信息是根据时间表针对所述多个信道中的每一个信道执行的通话时间可用性的测量。
3.如权利要求2所述的方法,还包括:当接收到与信道质量相关的信息时,将与信道质量相关的信息存储在数据库中,并将所述多个信道中的每个信道标记为未处理。
4.如权利要求3所述的方法,其中,所述预测还包括:选择被标记为未处理的所述多个信道中的第一信道,并通过聚合在一段时间内来自所述多个AP中的至少一个AP的与第一信道的信道质量相关的信息来处理第一信道。
5.如权利要求4所述的方法,其中,所述处理还包括:
使用所述多个预测方法;
针对所述至少一个AP从所述多个预测方法中选择最佳预测方法;和
一旦选择了最佳预测方法并将结果存储在数据库中,则将第一信道标记为已处理。
6.如权利要求5所述的方法,还包括:对所有被标记为未处理的所述多个信道重复所述处理,直到所述多个信道中没有信道被标记为未处理,其中所述一个或多个最优信道仅从被标记为已处理的多个信道的所有信道中选择。
7.一种用于优化多个接入点(AP)的无线网状网络的云网络控制器,所述网络控制器包括:
数据库;
通信接口,
处理器,可操作地连接到所述通信接口和所述数据库,所述处理器和通信接口被配置为从无线网状网络中的多个AP接收与关于多个信道的信道质量相关的信息,并将与信道质量相关的信息存储在所述数据库中;
所述处理器还被配置为基于与信道质量相关的信息和多个预测方法中的最佳预测方法来预测一个或多个最优信道,其中从所述多个信道中选择所述一个或多个最优信道;并且
所述处理器和通信接口还被配置为通过向所述多个AP传送包括基于所述预测在未来的特定时间切换到一个或多个最优信道的推荐的消息来优化所述无线网状网络。
8.如权利要求7所述的云网络控制器,其中,与信道质量相关的信息是根据时间表针对所述多个信道中的每一个信道执行的通话时间可用性的测量。
9.如权利要求8所述的云网络控制器,其中,所述处理器和数据库还被配置为当接收到与信道质量相关的信息时,将所述多个信道中的每个信道标记为未处理。
10.如权利要求9所述的云网络控制器,其中,由所述处理器执行的所述预测还要求所述处理器选择被标记为未处理的所述多个信道中的第一信道,并通过聚合在一段时间内来自所述多个AP中的至少一个AP的与第一信道的信道质量相关的信息来处理第一信道。
11.如权利要求10所述的云网络控制器,其中,由处理器执行的处理还要求所述处理器:
使用所述多个预测方法;
针对至少一个AP从所述多个预测方法中选择最佳预测类型;并且
一旦选择了最佳预测方法并将结果存储在所述数据库中,则将第一信道标记为已处理。
12.如权利要求11所述的云网络控制器,其中,由所述处理器执行的预测还要求所述处理器对所有被标记为未处理的所述多个信道重复所述处理,直到所述多个信道中没有信道被标记为未处理,其中所述一个或多个最优信道仅从被标记为已处理的多个信道的所有信道中选择。
CN202211103438.3A 2017-01-20 2018-01-22 云受控网状联网 Pending CN115633363A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762448727P 2017-01-20 2017-01-20
US62/448,727 2017-01-20
US201762449364P 2017-01-23 2017-01-23
US62/449,364 2017-01-23
PCT/IB2018/000082 WO2018134679A1 (en) 2017-01-20 2018-01-22 Cloud controlled mesh networking
CN201880015837.XA CN110999219B (zh) 2017-01-20 2018-01-22 云受控网状联网

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201880015837.XA Division CN110999219B (zh) 2017-01-20 2018-01-22 云受控网状联网

Publications (1)

Publication Number Publication Date
CN115633363A true CN115633363A (zh) 2023-01-20

Family

ID=61911636

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202211103438.3A Pending CN115633363A (zh) 2017-01-20 2018-01-22 云受控网状联网
CN201880015837.XA Active CN110999219B (zh) 2017-01-20 2018-01-22 云受控网状联网

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201880015837.XA Active CN110999219B (zh) 2017-01-20 2018-01-22 云受控网状联网

Country Status (4)

Country Link
US (3) US11038754B2 (zh)
EP (1) EP3571811A1 (zh)
CN (2) CN115633363A (zh)
WO (1) WO2018134679A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10771171B2 (en) 2017-09-28 2020-09-08 Hewlett Packard Enterprise Development Lp High frequency radio signal classifications
US11076307B2 (en) 2018-04-25 2021-07-27 Hewlett Packard Enterprise Development Lp LTE interference detection and mitigation for Wi-Fi links
CA3098620A1 (en) * 2018-05-04 2019-11-07 Plume Design, Inc. Dynamic frequency selection in distributed wi-fi networks
JP7193268B2 (ja) * 2018-08-17 2022-12-20 矢崎総業株式会社 無線端末および無線通信システム
US11202297B2 (en) * 2018-09-28 2021-12-14 Hewlett Packard Enterprise Development Lp Centralized spectrum management for interference mitigation
US11343702B2 (en) * 2018-10-09 2022-05-24 Qualcomm Incorporated Techniques for controlling a network
WO2020078731A1 (en) * 2018-10-16 2020-04-23 British Telecommunications Public Limited Company Measuring channel performance in wireless local area networks
CN112333046B (zh) * 2020-11-09 2022-02-11 北京邮电大学 物联网节点流量预测***及方法
TWI768566B (zh) * 2020-11-26 2022-06-21 智易科技股份有限公司 無線通訊系統、群組化管理方法及其頻道選擇方法
CN114302466B (zh) * 2021-12-30 2023-10-27 深圳市友华通信技术有限公司 无线路由器的信道选择方法
WO2024038381A1 (en) * 2022-08-15 2024-02-22 Airties S.A.S. Dynamic channel capability
WO2024079659A1 (en) * 2022-10-11 2024-04-18 Airties S.A.S. Dynamic coordinated channel allocation system for clusters of wireless networks
CN115442870A (zh) * 2022-11-07 2022-12-06 杭州锐思客技术有限公司 Mesh组网方法和***

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2290352A1 (fr) 1974-11-08 1976-06-04 Mach Transformat Plastiques Procede de conditionnement aseptique de produits et machine en comportant application
US20030181211A1 (en) * 2002-03-19 2003-09-25 Javad Razavilar Method and apparatus for dynamic channel selection in wireless modems
US7395064B2 (en) * 2004-07-14 2008-07-01 Intel Corporation Systems and methods of distributed self-configuration for wireless networks
US7480826B2 (en) 2004-12-21 2009-01-20 National Instruments Corporation Test executive with external process isolation for user code modules
US7636550B2 (en) * 2005-06-23 2009-12-22 Autocell Laboratories, Inc. System and method for determining channel quality in a wireless network
US20070070937A1 (en) * 2005-09-28 2007-03-29 Mustafa Demirhan Multi-radio mesh network channel selection and load balancing
JP2009513060A (ja) * 2005-10-21 2009-03-26 テレフオンアクチーボラゲット エル エム エリクソン(パブル) セルラー通信システムにおける測定報告のための装置および方法
US8515473B2 (en) 2007-03-08 2013-08-20 Bae Systems Information And Electronic Systems Integration Inc. Cognitive radio methodology, physical layer policies and machine learning
EP2140705B1 (en) * 2007-04-02 2016-06-22 BRITISH TELECOMMUNICATIONS public limited company Handover technique for wireless communications enabled devices
US8327292B2 (en) * 2007-11-15 2012-12-04 International Business Machines Corporation Distinct groupings of related objects for display in a user interface
CN101741438B (zh) * 2008-11-21 2012-12-05 ***通信集团公司 无线网状网络中接入点控制发射功率的方法及接入点
TR200906140A2 (tr) * 2009-08-07 2011-02-21 A�Rt�Es Kablosuz �Let���M San Ve Di� Kablosuz örgülü ağ ve frekans eniyileme yöntemi.
US8432826B2 (en) * 2009-10-27 2013-04-30 Quantenna Communications, Inc. Channel scanning and channel selection in a wireless communication network
US8427942B2 (en) * 2010-06-03 2013-04-23 Deutsche Telekom Ag Method, apparatus, and system for connecting a mobile client to wireless networks
CA2773302A1 (en) * 2011-04-05 2012-10-05 Her Majesty The Queen In Right Of Canada, As Represented By The Ministerof Industry, Through The Communications Research Centre Canada Cognitive wi-fi radio network
US9277467B2 (en) 2011-12-08 2016-03-01 Samsung Electronics Co., Ltd. Communication system with adaptive handover controller and method of operation thereof
US9736703B2 (en) * 2012-04-06 2017-08-15 Plume Design, Inc. Interference management and network performance optimization in dense WiFi networks
US9167511B2 (en) * 2012-07-31 2015-10-20 Hewlett-Packard Development Company, L.P. Utilizing client mobile devices for wireless network monitoring
US10231138B2 (en) * 2013-03-25 2019-03-12 Adaptive Spectrum And Signal Alignment, Inc. Method and apparatus for implementing wireless system discovery and control using a state-space
KR102166093B1 (ko) * 2014-02-17 2020-10-15 삼성전자주식회사 무선통신시스템에서 액세스 포인트 연결장치 및 방법
US10602527B2 (en) * 2014-04-18 2020-03-24 Qualcomm Incorporated Channel selection scanning in shared spectrum
US20170006479A1 (en) * 2015-07-01 2017-01-05 Comcast Cable Communications, Llc Intelligent Selection of Operating Parameters for a Wireless Access Point
US9439197B1 (en) 2015-08-10 2016-09-06 Planetary Network Technologies, Inc. Method and apparatus for directed adaptive control of dynamic channel selection in wireless networks
GB2545697B (en) * 2015-12-22 2020-01-08 Airties Kablosuz Iletism Sanayi Ve Disticaret As Dynamic channel selection and DFS re-entry
US20170215094A1 (en) * 2016-01-22 2017-07-27 Hitachi, Ltd. Method for analyzing and inferring wireless network performance
US10454989B2 (en) * 2016-02-19 2019-10-22 Verizon Patent And Licensing Inc. Application quality of experience evaluator for enhancing subjective quality of experience
EP3226603A1 (en) * 2016-03-28 2017-10-04 Network Performance Research Group LLC Method and apparatus for directed adaptive control of access point-to-client interaction in wireless networks

Also Published As

Publication number Publication date
US20210377115A1 (en) 2021-12-02
US11818005B2 (en) 2023-11-14
US11038754B2 (en) 2021-06-15
WO2018134679A1 (en) 2018-07-26
CN110999219A (zh) 2020-04-10
US20180212827A1 (en) 2018-07-26
CN110999219B (zh) 2022-09-27
US20240163168A1 (en) 2024-05-16
EP3571811A1 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
CN110999219B (zh) 云受控网状联网
US20230379952A1 (en) Channel assignment for wireless access networks
US11671999B2 (en) Method and apparatus for context aware concurrent data transmission scheduling for pan radio technology
KR101650931B1 (ko) 채널들을 식별 및 선택하기 위한 방법들 및 장치
US9635676B2 (en) Apparatus for an enhanced node B for inter-cell interference coordination in wireless networks
US20170366987A1 (en) Multi-band wireless station having multiple radios in one band
EP2327242B1 (en) Method and system for distributed sensing management and control within a cognitive radio network
US9549410B2 (en) Interference mitigating cellular network
CN107580345B (zh) 一种无线信道切换方法、装置及无线信道确定方法、装置
US20110292846A1 (en) Method and apparatus for determining the configuration mode of special subframe and the usage mode of time-domain resource
Bayhan et al. Distributed channel selection in CRAHNs: A non-selfish scheme for mitigating spectrum fragmentation
JP5674890B2 (ja) 多重無線技術による干渉及び輻輳検出のための方法
JP2007235683A (ja) 無線通信システム、基地局装置、移動局装置及び無線通信制御方法
Nasreddine et al. Location-based adaptive detection threshold for dynamic spectrum access
JP4786376B2 (ja) 無線通信システム、制御局装置、及び無線通信制御方法
US11576055B2 (en) Method, apparatus and computer readable media for network optimization
Caso et al. Sensic: Mobility-aware cluster-based cooperative spectrum sensing for cognitive radio networks
EP3318079B1 (en) Dynamic allocation of radio resources in a wireless networks
US11153761B2 (en) Spectrum management for coexistence of heterogeneous wireless technologies
TW201705729A (zh) 基於對隱藏節點的偵測的小型細胞存取點處的通道選擇
JP2022133694A (ja) 基地局、及び、制御方法
CN117412338A (zh) 终端设备的切换方法、基站、电子设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination