CN115594223A - 改性锂离子筛、二氧化锰吸附剂及其制备方法与应用、盐湖提锂方法 - Google Patents

改性锂离子筛、二氧化锰吸附剂及其制备方法与应用、盐湖提锂方法 Download PDF

Info

Publication number
CN115594223A
CN115594223A CN202211310012.5A CN202211310012A CN115594223A CN 115594223 A CN115594223 A CN 115594223A CN 202211310012 A CN202211310012 A CN 202211310012A CN 115594223 A CN115594223 A CN 115594223A
Authority
CN
China
Prior art keywords
mno
manganese dioxide
lithium ion
dioxide adsorbent
ion sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211310012.5A
Other languages
English (en)
Inventor
胡鑫
李波
乔延超
陈若葵
阮丁山
李长东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Brunp Recycling Technology Co Ltd
Guangdong Brunp Recycling Technology Co Ltd
Original Assignee
Hunan Brunp Recycling Technology Co Ltd
Guangdong Brunp Recycling Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Brunp Recycling Technology Co Ltd, Guangdong Brunp Recycling Technology Co Ltd filed Critical Hunan Brunp Recycling Technology Co Ltd
Priority to CN202211310012.5A priority Critical patent/CN115594223A/zh
Publication of CN115594223A publication Critical patent/CN115594223A/zh
Priority to PCT/CN2023/083151 priority patent/WO2024087477A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明公开了一种改性锂离子筛、二氧化锰吸附剂及其制备方法与应用、盐湖提锂方法,属于冶金技术领域。该改性锂离子筛为三维层状骨架结构的MnO2纳米片材料,其具有较大比表面积以及稳定的层状结构,可以提供较多的吸附位点以及较短的离子扩散距离,对Li+吸附量大,吸附效率较高,有利于提高吸附剂的循环寿命。由上述改性锂离子筛进一步得到的二氧化锰吸附剂或色谱柱,具有较高的锂吸附量以及使用寿命,适用于盐湖提锂。

Description

改性锂离子筛、二氧化锰吸附剂及其制备方法与应用、盐湖提 锂方法
技术领域
本发明涉及冶金技术领域,具体而言,涉及一种改性锂离子筛、二氧化锰吸附剂及其制备方法与应用、盐湖提锂方法。
背景技术
锂资源在锂离子电池等相关领域有着广泛的应用,随着锂离子电池行业的快速发展,工业生产对锂资源的需求量增速愈来愈快,甚至近年来已出现锂原料供不应求的局面。
我国锂资源储量相对较大,而这些锂资源主要集中在西藏及青海地区盐湖中,因此如何从盐湖中高效快捷提取锂元素一直是一个待解决的科学问题。
盐湖中锂含量低,镁等其它金属含量高,由于镁锂性质相近,从盐湖中选择性提取锂资源难度较大。过去,盐湖提锂方法主要有沉淀法、煅烧浸取法、碳化法、纳滤膜法、溶剂萃取法及吸附法等,其中吸附法应用锂离子筛对锂离子进行吸附,由于吸附量大、选择性高而被认为是一种有前景的盐湖提锂方法。
按化学组成可以将锂离子筛分为金属氧化物型(TiO2或MnO2,简称MO)和金属磷酸盐型(MPO4,M为Fe、Mn或Ti,简称MPO)。相较于后者,MO型离子筛对锂的吸附效果较好,具有一定工业化效益,因此逐渐被应用于盐湖提锂领域。
然而,传统MO基离子筛对锂的吸附量较低,循环寿命较短。
鉴于此,特提出本发明。
发明内容
本发明的目的之一在于提供一种改性锂离子筛,其对Li+吸附量大,吸附效率较高,有利于提高吸附剂的循环寿命。
本发明的目的之二在于提供一种上述改性锂离子筛的制备方法。
本发明的目的之三在于提供一种含有上述改性锂离子筛的二氧化锰吸附剂。
本发明的目的之四在于提供一种含有上述二氧化锰吸附剂的制备方法。
本发明的目的之五在于提供一种含有上述二氧化锰吸附剂的色谱柱。
本发明的目的之六在于提供一种上述改性锂离子筛或二氧化锰吸附剂在提取锂元素中的应用。
本发明的目的之七在于提供一种盐湖提锂方法。
本申请可这样实现:
第一方面,本申请提供一种改性锂离子筛,其为三维层状骨架结构的MnO2纳米片材料。
在可选的实施方式中,改性锂离子筛包括多层MnO2纳米片依次间隔设置的主体结构,相邻两层MnO2纳米片之间具有支撑骨架。
在可选的实施方式中,MnO2纳米片材料的比表面积不低于75m2/g。
在可选的实施方式中,相邻两层MnO2纳米片之间的间隙大于0nm且≤100nm。
第二方面,本申请提供如前述实施方式的改性锂离子筛的制备方法,包括以下步骤:
将AxMnO2材料进行酸处理,固液分离,干燥,得到HMnO2材料;其中,A为碱金属元素,0<x<1;
将HMnO2材料与支撑剂的水溶液混合,超声处理,收集纳米片材料,获得MnO2纳米片。
在可选的实施方式中,AxMnO2材料经以下方法制备得到:将碱金属化合物与锰的氧化物混合,煅烧。
在可选的实施方式中,锰的氧化物包括MnO2、Mn2O3和Mn3O4中的至少一种。
在可选的实施方式中,碱金属化合物中的碱金属包括锂、钠及钾中的至少一种。
在可选的实施方式中,碱金属化合物中碱金属的摩尔量不超过锰的氧化物中锰的摩尔量。
在可选的实施方式中,碱金属化合物中的碱金属与锰的氧化物中的锰的摩尔比为0.5-0.8:1。
在可选的实施方式中,煅烧温度为700-1200℃,优选为800-1000℃。
在可选的实施方式中,煅烧时间为6-24h,优选为12-18h。
在可选的实施方式中,对AxMnO2材料进行酸处理所用的酸的浓度为0.1-6mol/L,优选为0.3-1.5mol/L。
在可选的实施方式中,AxMnO2材料与酸的固液比为1g:1-10mL;优选为1g:2-5mL。
在可选的实施方式中,酸处理的时间为0.1-24h,优选为1-6h;
在可选的实施方式中,干燥温度为40-80℃,优选为50-70℃;
在可选的实施方式中,干燥时间为3-18h,优选为6-15h。
在可选的实施方式中,支撑剂的水溶液中,支撑剂的浓度为0.01-5g/L,优选为0.1-3g/L。
在可选的实施方式中,HMnO2材料与支撑剂的水溶液的固液比为10-100g:1L,优选为20-50g:1L。
在可选的实施方式中,支撑剂包括有机铵类物质,优选包括四正丁基氢氧化氨、四甲基氢氧化铵、四乙基氢氧化铵和四丙基氢氧化铵中的至少一种。
在可选的实施方式中,超声处理时间为0.5-24h,优选为1-6h。
在可选的实施方式中,收集纳米片材料包括:将超声处理后得到的物料进行低速离心,收集上层悬浮液,获得去质子化的MnO2纳米片材料。
在可选的实施方式中,收集纳米片材料还包括:将去质子化的MnO2纳米片材料进行高速离心,收集固相物,得到MnO2纳米片。
在可选的实施方式中,收集固相物后,还包括对固相物进行干燥。
在可选的实施方式中,低速离心的转速为3000-10000r/min,优选为5000-8000r/min。
在可选的实施方式中,高速离心的转速为10000-20000r/min,优选为14000-18000r/min。
在可选的实施方式中,对固相物进行干燥的温度为40-80℃,优选为50-70℃。
在可选的实施方式中,对固相物进行干燥的时间为3-18h,优选为6-12h。
第三方面,本申请提供一种二氧化锰吸附剂,其为前述实施方式的改性锂离子筛与粘结剂的团聚物。
在可选的实施方式中,团聚物为粒径为毫米级的颗粒物。
第四方面,本申请提供如前述实施方式的二氧化锰吸附剂的制备方法,包括以下步骤:将如前述实施方式的改性锂离子筛与粘结剂以及有机溶剂混合,随后转入水相,获得团聚物。
在可选的实施方式中,还包括对团聚物进行干燥。
在可选的实施方式中,改性锂离子筛与粘结剂的质量比为5-100:1,优选为10-30:1。
在可选的实施方式中,粘结剂包括羧甲基纤维素钠(CMC)、丁苯橡胶(SBR)、聚乙烯醇(PVA)及聚氯乙烯(PVC)中的至少一种,优选包括聚乙烯醇(PVA)及聚氯乙烯(PVC)中的至少一种。
在可选的实施方式中,改性锂离子筛与有机溶剂的料液比为1g:0.1-12mL,优选为1g:1-6mL。
在可选的实施方式中,对团聚物进行干燥是于40-80℃的条件下进行,优选为50-70℃。
在可选的实施方式中,对团聚物进行干燥的时间为3-18h,优选为6-12h。
第五方面,本申请提供一种色谱柱,其吸附剂包括前述实施方式的二氧化锰吸附剂。
在可选的实施方式中,二氧化锰吸附剂在色谱柱中的填充量为色谱柱体积的30-80%。
第六方面,本申请提供如前述实施方式任一项的改性锂离子筛或前述实施方式的二氧化锰吸附剂在提取锂元素中的应用。
在可选的实施方式中,改性锂离子筛或二氧化锰吸附剂用于盐湖提锂。
第七方面,本申请提供一种盐湖提锂方法,包括以下步骤:于填充有上述二氧化锰吸附剂的色谱柱中通入待提取的盐湖卤水,待二氧化锰吸附剂吸附饱和后,洗出二氧化锰吸附剂,随后进行解吸处理,得到富锂的解吸排出液。
在可选的实施方式中,盐湖卤水的通入色谱柱的流速为1-100mL/min,优选为10-30mL/min。
在可选的实施方式中,吸附时间为0.1-6h,优选为0.5-3h。
在可选的实施方式中,解吸处理所用的解吸试剂为酸,优选为盐酸。
在可选的实施方式中,解吸试剂的流速为0.1-50mL/min,优选为1-6mL/min。
在可选的实施方式中,解吸试剂的浓度为0.1-10mol/L,优选为0.3-1.5mol/L。
在可选的实施方式中,解吸时间为0.3-9h,优选为1-3h。
本申请的有益效果包括:
本申请提供的改性锂离子筛为三维层状骨架结构的MnO2纳米片材料,其具有较大比表面积,可以提供更多吸附位点以及较短的离子扩散距离,对Li+吸附量大;并且,该改性锂离子筛在片层间还具有骨架,从而使其具有稳定的层状结构,在使用过程中,即使体积膨胀,也不容易导致坍塌,进而具有较长的循环寿命。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为实施例1合成改性锂离子筛的SEM图谱;
图2为对比例1未改性锂离子筛的SEM图谱。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本申请提供的改性锂离子筛、二氧化锰吸附剂及其制备方法与应用、盐湖提锂方法进行具体说明。
发明人经研究提出,导致传统MO基离子筛对锂的吸附量较低的主要原因在于传统MO基离子筛锂扩散位点少;导致传统MO基离子筛循环寿命较短的主要原因在于其使用过程体积膨胀率大,结构坍塌快。
基于此,本申请创造性地提出了一种改性锂离子筛,其为三维层状骨架结构的MnO2纳米片材料。
可参考地,该MnO2纳米片材料包括多层MnO2纳米片依次间隔设置的主体结构,相邻两层MnO2纳米片之间具有支撑骨架。
在一些优选的实施方式中,本申请所提供的MnO2纳米片材料的比表面积不低于75m2/g,例如可以为75m2/g、78m2/g、80m2/g、82m2/g、84m2/g、86m2/g、88m2/g、91m2/g、92m2/g、95m2/g或98m2/g等。
在可选的实施方式中,相邻两层MnO2纳米片之间的间隙大于0nm且≤100nm,如可以为0.1nm、0.5nm、1nm、5nm、10nm、20nm、50nm、80nm或100nm等,也可以为大于0nm且≤100nm范围内的其它任意值。
需说明的是,若相邻两层MnO2纳米片之间的间隙超过100nm,容易导致纳米片结构坍塌。
承上,本申请提供的改性锂离子筛具有较大比表面积,可以提供更多吸附位点以及较短的离子扩散距离,对Li+吸附量大;并且,该改性锂离子筛在片层间还具有骨架,从而使其具有稳定的层状结构,在使用过程中,即使体积膨胀,也不容易导致坍塌,进而具有较长的循环寿命。
相应地,本申请还提供了上述改性锂离子筛的制备方法,例如可包括以下步骤:
S1:将AxMnO2材料进行酸处理,固液分离,干燥,得到HMnO2材料;其中,A为碱金属元素,0<x<1;
S2:将HMnO2材料与支撑剂的水溶液混合,超声处理,收集纳米片材料,获得MnO2纳米片。
作为参考地,S1中的上述AxMnO2材料为含有碱金属的纳米片结构,其可经以下方法制备得到:将碱金属化合物与锰的氧化物混合,煅烧。
其中,锰的氧化物例如可包括MnO2、Mn2O3和Mn3O4中的至少一种。
碱金属化合物中的碱金属例如可包括锂、钠及钾中的至少一种。
在一些可选的实施方式中,上述碱金属化合物中碱金属的摩尔量不超过锰的氧化物中锰的摩尔量,可理解为:碱金属化合物中的碱金属与锰的氧化物中的锰的摩尔比为0(不含)-1:1,如0.1:1、0.2:1、0.3:1、0.4:1、0.5:1、0.6:1、0.7:1、0.8:1、0.9:1或1:1等,也可以为0(不含)-1:1范围内的其它任意值;优选为0.5-0.8:1。
需说明的是,若碱金属化合物用量过多,容易导致后续酸的H+对碱金属元素提取以及支撑剂置换H+不彻底。若碱金属化合物用量过少,会导致不易合成AxMnO2。将碱金属的用量控制在本申请范围,一方面较易合成AxMnO2,另一方面有利于提高对Li+的吸附量。
作为参考地,碱金属化合物与锰的氧化物混合后的煅烧可在700-1200℃的条件下进行。例如,煅烧温度可以为700℃、750℃、800℃、850℃、900℃、950℃、1000℃、1050℃、1100℃、1150℃或1200℃等,也可以为700-1200℃范围内的其它任意值;优选为800-1000℃。
需说明的是,若该煅烧温度超过1200℃,可能会生成其它相或使产品具有其它形貌,导致后续不能获得纳米片的HMnO2材料;若煅烧温度低于800℃,会对大大延长煅烧时间。
相应地,碱金属化合物与锰的氧化物混合后的煅烧时间可以为6-24h,如6h、8h、10h、12h、14h、16h、18h、20h、22h或24h等,也可以为6-24h范围内的其它任意值;优选为12-18h。
作为参考地,在S1中,对AxMnO2材料进行酸处理的酸为稀酸,例如可以为稀盐酸、稀硫酸、稀硝酸或稀磷酸等。
通过对AxMnO2材料进行酸处理,可用H+置换出AxMnO2材料中碱金属离子(也即H+占据原来碱金属的位置),获得HMnO2材料(该材料依然呈纳米片结构)。
需说明的是,若不采用置换方式,而是直接除去AxMnO2中的碱金属,会导致材料后续发生坍塌。采用酸中的H+进行置换,可平衡电荷,不但使得材料不会坍塌,而且,还有利于后续支撑剂的置换。
上述稀酸的浓度可以为0.1-6mol/L,如0.1mol/L、0.2mol/L、0.5mol/L、1mol/L、1.5mol/L、2mol/L、2.5mol/L、3mol/L、3.5mol/L、4mol/L、4.5mol/L、5mol/L、5.5mol/L或6mol/L等,也可以为0.1-6mol/L范围内的其它任意值;优选为0.3-1.5mol/L。
若稀酸的浓度过高,会破坏材料的形貌和结构。
AxMnO2材料与酸的固液比可以为1g:1-10mL,如1g:1mL、1g:2mL、1g:3mL、1g:4mL、1g:5mL、1g:6mL、1g:7mL、1g:8mL、1g:9mL或101g:1mL等,也可以为1g:1-10mL范围内的其它任意值;优选为1g:2-5mL。
若液体用量过低,会导致酸无法与固体AxMnO2材料充分接触,无法完全置换出AxMnO2材料中的碱金属离子。
本申请中,对AxMnO2材料进行酸处理的时间为0.1-24h,如0.1h、0.5h、1h、2h、5h、8h、10h、15h、20h或24h等,也可以为0.1-24h范围内的其它任意值;优选为1-6h。
作为参考地,对AxMnO2材料进行酸处理后,可采用过滤的方式进行固液分离。
固液分离后进行的干燥过程,所涉及的干燥温度可以为40-80℃,如40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃或80℃等,也可以为40-80℃范围内的其它任意值;优选为50-70℃。
相应的干燥时间可以为3-18h,如3h、5h、8h、10h、12h、15h或18h等,也可以为3-18h范围内的其它任意值;优选为6-15h。
干燥温度越高,对应的干燥时间越短。但干燥温度过高,会导致破坏材料结构。
在S2中,支撑剂的水溶液中,支撑剂的浓度可以为0.01-5g/L,如0.01g/L、0.05g/L、1g/L、1.5g/L、2g/L、2.5g/L、3g/L、3.5g/L、4g/L、4.5g/L或5g/L等,也可以为0.01-5g/L范围内的其它任意值;优选为0.1-3g/L。
HMnO2材料与支撑剂的水溶液的固液比可以为10-100g:1L,如10g:1L、20g:1L、30g:1L、40g:1L、50g:1L、60g:1L、70g:1L、80g:1L、90g:1L或100g:1L等,也可以为10-100g:1L范围内的其它任意值;优选为20-50g:1L。
需说明的是,支撑剂主要起到支撑作用,可作为支撑骨架***相邻两层MnO2纳米片之间,避免层状MnO2纳米片发生坍塌并重叠在一起。
支撑剂的浓度和含量需确保其能够将HMnO2材料中的H+完全置换。若支撑剂的浓度或含量过高,不但效益低,而且还会使材料具有碱性,不利于后续处理;若支撑剂的浓度或含量过低,会导致其无法将HMnO2材料中的H+完全置换出来。
示例性地,上述支撑剂包括有机铵类物质,如四正丁基氢氧化氨(TBAOH)、四甲基氢氧化铵(TMAOH)、四乙基氢氧化铵(Et4NOH)及四丙基氢氧化铵(TPAOH)中的至少一种,优选包括四正丁基氢氧化氨。
在S2中,超声处理时间可以为0.5-24h,如0.5h、1h、2h、5h、8h、10h、12h、15h、18h、20h、22h或24h等,也可以为0.5-24h范围内的其它任意值;优选为1-6h。
通过S2的处理,可将HMnO2材料充分剥离并去质子化得到MnO2纳米片结构。
在S3中,收集纳米片材料可包括:将超声处理后得到的物料进行低速离心,收集上层悬浮液,获得去质子化的MnO2纳米片材料。
进一步地,将去质子化的MnO2纳米片材料进行高速离心,收集固相物,得到MnO2纳米片。
收集固相物后,还可对固相物进行干燥。
在收集纳米片材料过程中,低速离心的转速可以为3000-8000r/min,如3000r/min、4000r/min、5000r/min、6000r/min、7000r/min或8000r/min等,也可以为3000-8000r/min范围内的其它任意值;优选为5000-8000r/min。
将悬浮液进行高速离心的过程中,高速离心的转速可以为10000-20000r/min,如10000r/min、12000r/min、15000r/min、18000r/min或20000r/min等,也可以为10000-20000r/min范围内的其它任意值;优选为14000-18000r/min。
作为参考地,对固相物进行干燥的温度可以为40-80℃,如40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃或80℃等,也可以为40-80℃范围内的其它任意值;优选为50-70℃。
相应地,对固相物进行干燥的时间可以为3-18h,如3h、5h、8h、10h12h、15h或18等,也可以为3-18h范围内的其它任意值;优选为6-12h。
同理地,干燥温度越高,对应的干燥时间越短。但干燥温度过高,会导致破坏材料结构,使纳米片结构坍塌。
此外,本申请还提供了一种二氧化锰吸附剂,其为上述改性锂离子筛与粘结剂的团聚物。
优选地,该团聚物为粒径为毫米级的颗粒物。示例性地,该颗粒物的粒径可以为1-100mm。
相应地,本申请还提供了上述二氧化锰吸附剂的制备方法,包括以下步骤:将上述改性锂离子筛与粘结剂以及有机溶剂混合,随后转入水相,获得团聚物,能够提高对锂离子筛的吸附能力。作为参考地,改性锂离子筛与粘结剂的质量比可以为5-100:1,如5:1、10:1、15:1、20:1、25:1、30:1、35:1、40:1、45:1、50:1、55:1、60:1、65:1、70:1、75:1、80:1、85:1、90:1、95:1或100:1等,也可以为5-100:1范围内的其它任意值;优选为10-30:1。
若粘结剂过多,会降低团聚物中改性锂离子筛的占比,降低吸附能力;若粘结剂过少,不能达到较佳的粘结效果,会使得改性锂离子筛大部分呈分散状态,无法有效团聚。
示例性地,上述粘结剂可包括羧甲基纤维素钠、丁苯橡胶、聚乙烯醇及聚氯乙烯中的至少一种,优选包括聚乙烯醇及聚氯乙烯中的至少一种。
作为参考地,改性锂离子筛与有机溶剂的料液比可以为1g:0.1-12mL,如1g:0.1mL、1g:0.5mL、1g:1mL、1g:2mL、1g:5mL、1g:8mL、1g:10mL或1g:12mL等;优选为1g:1-6mL。
上述有机溶剂示例性地可以包括醇类(如甲醇或乙醇等)或N-甲基吡咯烷酮,优选包括N-甲基吡咯烷酮。
改性锂离子筛与粘结剂以及有机溶剂混合后,其为浆料,不容易形成颗粒,将浆料整体转入水中,一方面可在干燥过程中除去有机溶剂,避免有机溶剂对后续提锂过程造成高污染,另一方面能够使改性锂离子筛在粘结剂的条件下团聚成均匀颗粒。
进一步地,对团聚物进行干燥。
对团聚物进行干燥可以于40-80℃的条件下进行,例如,该干燥温度可以为40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃或80℃等,也可以为40-80℃范围内的其它任意值;优选为50-70℃。
对团聚物进行干燥的时间为3-18h,如3h、5h、8h、10h、12h、15h或18h等,也可以为3-18h范围内的其它任意值;优选为6-12。
此外,本申请还提供了一种色谱柱,其所含的吸附剂包括上述二氧化锰吸附剂。
作为参考地,二氧化锰吸附剂在色谱柱中的填充量可以为色谱柱体积的30-80%,如30%、35%、40%、45%、50%、55%、60%、65%、70%、75%或80%等,也可以为30-80%范围内的其它任意值。
此外,本申请还提供了上述改性锂离子筛或上述二氧化锰吸附剂在提取锂元素中的应用。
例如,改性锂离子筛或二氧化锰吸附剂可用于盐湖提锂。
相应地,本申请还提供了一种盐湖提锂方法,可包括以下步骤:于填充有二氧化锰吸附剂的色谱柱中通入待提取的盐湖卤水,待二氧化锰吸附剂吸附饱和后,洗出二氧化锰吸附剂,随后进行解吸处理,得到富锂的解吸排出液。
作为参考地,盐湖卤水的通入色谱柱的流速可以为1-100mL/min,如1mL/min、2mL/min、5mL/min、10mL/min、20mL/min、50mL/min、80mL/min或100mL/min等,也可以为1-100mL/min范围内的其它任意值;优选为10-30mL/min。
上述流速可确保吸二氧化锰吸附剂与盐湖卤水充分接触,若流速过大,会导致二氧化锰吸附剂与盐湖卤水无法充分接触;若流速过小,会降低吸附效率。
吸附时间可以为0.1-6h,如0.1h、0.2h、0.5h、1h、1.5h、2h、5.5h、3h、3.5h、4h、4.5h、5h、5.5h或6h等,也可以为0.1-6h范围内的其它任意值;优选为0.5-3h。
同理地,若吸附时间过短,会导致二氧化锰吸附剂与盐湖卤水无法充分接触;若吸附时间过长,会降低吸附效率。
作为参考地,上述解吸处理所用的解吸试剂为酸,如盐酸、硫酸、硝酸或磷酸等,优选为盐酸。
解吸试剂的流速可以为0.1-50mL/min,如0.1mL/min、0.2mL/min、0.5mL/min、1mL/min、2mL/min、5mL/min、10mL/min、15mL/min、2mL/min、25mL/min、30mL/min、35mL/min、40mL/min、45mL/min或50mL/min等,也可以为0.1-50mL/min范围内的其它任意值;优选为1-6mL/min。
解吸试剂的浓度为0.1-10mol/L,如0.1mol/L、0.mol/L、0.5mol/L、1mol/L、2mol/L、3mol/L、4mol/L、5mol/L、6mol/L、7mol/L、8mol/L、9mol/L或10mol/L等,也可以为0.1-10mol/L范围内的其它任意值;优选为0.3-1.5mol/L。
解吸时间为0.3-9h,如0.3h、0.5h、1h、2h、3h、4h、5h、6h、7h、8h或9h等,也可以为0.3-9h范围内的其它任意值;优选为1-3h。
通过解吸,二氧化锰吸附剂可重复利用。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
本实施例提供一种二氧化锰吸附剂,其可按以下方式制备得到:
步骤(1):将5g的Mn2O3与2.35g的Na2CO3混合后在800℃煅烧12h,得到NaxMnO2材料;
步骤(2):取5g步骤(1)所得材料用15mL的浓度为1.5mol/L的稀盐酸处理3h,过滤后在55℃干燥12h,得到HMnO2材料;
步骤(3):将步骤(2)中制备的材料(5g)分散在200mL浓度为1g/L的TBAOH水溶液中,并保持5h超声处理,获得剥离成纳米片的MnO2材料;
步骤(4):将超声处理后的物料于7000r/min条件下低速离心,收集上层悬浮液,然后于16000r/min条件下高速离心,收集MnO2纳米片固体材料,再在50℃进行7h干燥处理(所得的固体材料的SEM图如图1所示);
步骤(5):将步骤(4)干燥处理后的固体材料(5g)与0.17g的PVC粘结剂在20mL的NMP溶剂中混匀制浆,然后逐渐转入水中使固体材料在粘结剂的条件下团聚为均匀颗粒,随后于55℃进行12h干燥处理,获得二氧化锰吸附剂。
在获得上述二氧化锰吸附剂之后,将该吸附剂颗粒填充进色谱柱(填充量为色谱柱体积的50%)中,然后向色谱柱按20mL/min的流速循环2h通入盐湖卤水;待吸附剂吸附饱和后,向柱中通入去离子水用于清洗吸附剂,然后按1mL/min速度保持3h通入0.4mol/L的盐酸进行解吸处理,解吸排出液即为富锂溶液。
实施例2
本实施例提供一种二氧化锰吸附剂,其可按以下方式制备得到:
步骤(1):将10g的MnO2与6.66g的CH3COONa混合后在800℃煅烧12h,得到NaxMnO2材料;
步骤(2):取10g步骤(1)所得材料用20mL的浓度为3mol/L的稀盐酸处理6h,过滤后在60℃干燥8h,得到HMnO2材料;
步骤(3):将步骤(2)中制备的材料(10g)分散在200mL浓度为0.1g/L的TBAOH水溶液中,并保持4h超声处理,获得剥离成纳米片的MnO2材料;
步骤(4):将超声处理后的物料于6000r/min条件下低速离心,收集上层悬浮液,然后于14000r/min条件下高速离心,收集MnO2纳米片固体材料,再在65℃进行8h干燥处理;
步骤(5):将步骤(4)干燥处理后的固体材料(10g)与0.5g的PVC粘结剂在30mL的NMP溶剂中混匀制浆,然后逐渐转入水中使固体材料在粘结剂的条件下团聚为均匀颗粒,随后于70℃进行6h干燥处理,获得二氧化锰吸附剂。
在获得上述二氧化锰吸附剂之后,将该吸附剂颗粒填充进色谱柱(填充量为色谱柱体积的50%)中,然后向色谱柱按15mL/min的流速循环0.5h通入盐湖卤水;待吸附剂吸附饱和后,向柱中通入去离子水用于清洗吸附剂,然后按2mL/min速度保持2h通入0.3mol/L的盐酸进行解吸处理,解吸排出液即为富锂溶液。
实施例3
本实施例提供一种二氧化锰吸附剂,其可按以下方式制备得到:
步骤(1):将8g的Mn3O4与5.15g的KNO3混合后在900℃煅烧16h,得到KxMnO2材料;
步骤(2):取8g步骤(1)所得材料用28mL的浓度为2mol/L的稀盐酸处理1h,过滤后在50℃干燥15h,得到HMnO2材料;
步骤(3):将步骤(2)中制备的材料(8g)分散在240mL浓度为0.5g/L的TBAOH水溶液中,并保持3h超声处理,获得剥离成纳米片的MnO2材料;
步骤(4):将超声处理后的物料于5000r/min条件下低速离心,收集上层悬浮液,然后于18000r/min条件下高速离心,收集MnO2纳米片固体材料,再在70℃进行6h干燥处理;
步骤(5):将步骤(4)干燥处理后的固体材料(8g)与0.8g的PVC粘结剂在16mL的NMP溶剂中混匀制浆,然后逐渐转入水中使固体材料在粘结剂的条件下团聚为均匀颗粒,随后于60℃进行8h干燥处理,获得二氧化锰吸附剂。
在获得上述二氧化锰吸附剂之后,将该吸附剂颗粒填充进色谱柱(填充量为色谱柱体积的50%)中,然后向色谱柱按25mL/min的流速循环1.2h通入盐湖卤水;待吸附剂吸附饱和后,向柱中通入去离子水用于清洗吸附剂,然后按3mL/min速度保持1h通入0.1mol/L的盐酸进行解吸处理,解吸排出液即为富锂溶液。
实施例4
本实施例提供一种二氧化锰吸附剂,其可按以下方式制备得到:
步骤(1):将7g的Mn2O3与2.62g的Li2CO3混合后在1000℃煅烧14h,得到LixMnO2材料;
步骤(2):取7g步骤(1)所得材料用28mL的浓度为2.4mol/L的稀盐酸处理2h,过滤后在65℃干燥9h,得到HMnO2材料;
步骤(3):将步骤(2)中制备的材料(7g)分散在350mL浓度为2g/L的TBAOH水溶液中,并保持1h超声处理,获得剥离成纳米片的MnO2材料;
步骤(4):将超声处理后的物料于5500r/min条件下低速离心,收集上层悬浮液,然后于15000r/min条件下高速离心,收集MnO2纳米片固体材料,再在55℃进行12h干燥处理;
步骤(5):将步骤(4)干燥处理后的固体材料(7g)与0.35g的PVC粘结剂在7mL的NMP溶剂中混匀制浆,然后逐渐转入水中使固体材料在粘结剂的条件下团聚为均匀颗粒,随后于50℃进行9h干燥处理,获得二氧化锰吸附剂。
在获得上述二氧化锰吸附剂之后,将该吸附剂颗粒填充进色谱柱(填充量为色谱柱体积的50%)中,然后向色谱柱按30mL/min的流速循环2.5h通入盐湖卤水;待吸附剂吸附饱和后,向柱中通入去离子水用于清洗吸附剂,然后按4mL/min速度保持1.5h通入0.5mol/L的盐酸进行解吸处理,解吸排出液即为富锂溶液。
实施例5
本实施例提供一种二氧化锰吸附剂,其可按以下方式制备得到:
步骤(1):将15g的MnO2与2.48g的LiOH混合后在1000℃煅烧18h,得到LixMnO2材料;
步骤(2):取15g步骤(1)所得材料用75mL的浓度为1mol/L的稀盐酸处理5h,过滤后在70℃干燥6h,得到HMnO2材料;
步骤(3):将步骤(2)中制备的材料(15g)分散在750mL浓度为3g/L的TBAOH水溶液中,并保持2h超声处理,获得剥离成纳米片的MnO2材料;
步骤(4):将超声处理后的物料于8000r/min条件下低速离心,收集上层悬浮液,然后于17000r/min条件下高速离心,收集MnO2纳米片固体材料,再在60℃进行9h干燥处理;
步骤(5):将步骤(4)干燥处理后的固体材料(15g)与1g的PVC粘结剂在90mL的NMP溶剂中混匀制浆,然后逐渐转入水中使固体材料在粘结剂的条件下团聚为均匀颗粒,随后于65℃进行6h干燥处理,获得二氧化锰吸附剂。
在获得上述二氧化锰吸附剂之后,将该吸附剂颗粒填充进色谱柱(填充量为色谱柱体积的50%)中,然后向色谱柱按10mL/min的流速循环3h通入盐湖卤水;待吸附剂吸附饱和后,向柱中通入去离子水用于清洗吸附剂,然后按6mL/min速度保持2.5h通入0.2mol/L的盐酸进行解吸处理,解吸排出液即为富锂溶液。
实施例6
本实施例与实施例1的区别在于:步骤(2)中支撑剂为TMAOH。
实施例7
本实施例与实施例1的区别在于:步骤(1)中,煅烧温度为700℃,时间为24h。
实施例8
本实施例与实施例1的区别在于:步骤(1)中,煅烧温度为1200℃,时间为6h。
实施例9
本实施例与实施例1的区别在于:步骤(2)中,稀酸浓度为0.1mol/L。
实施例10
本实施例与实施例1的区别在于:步骤(2)中,稀酸浓度为6mol/L。
实施例11
本实施例与实施例1的区别在于:步骤(2)中,液固比为1mL:1g。
实施例12
本实施例与实施例1的区别在于:步骤(2)中,液固比为10mL:1g。
实施例13
本实施例与实施例1的区别在于:步骤(2)中,干燥温度为40℃,干燥时间为18h。
实施例14
本实施例与实施例1的区别在于:步骤(2)中,干燥温度为80℃,干燥时间为3h。
实施例15
本实施例与实施例1的区别在于:步骤(3)中,TBAOH浓度为0.01g/L。
实施例16
本实施例与实施例1的区别在于:步骤(3)中,TBAOH浓度为5g/L。
实施例17
本实施例与实施例1的区别在于:步骤(3)中,液固比为10g:1L。
实施例18
本实施例与实施例1的区别在于:步骤(3)中,液固比为100g:1L。
实施例19
本实施例与实施例1的区别在于:步骤(3)中,超声处理时间为0.5h。
实施例20
本实施例与实施例1的区别在于:步骤(3)中,超声处理时间为24h。
实施例21
本实施例与实施例1的区别在于:步骤(4)中,低速离心的转速为3000r/min,高速离心的转速为10000r/min。
实施例22
本实施例与实施例1的区别在于:步骤(4)中,低速离心的转速为8000r/min,高速离心的转速为20000r/min。
实施例23
本实施例与实施例1的区别在于:步骤(4)中,干燥温度为40℃,干燥时间为18h。
实施例24
本实施例与实施例1的区别在于:步骤(4)中,干燥温度为80℃,干燥时间为3h。
实施例25
本实施例与实施例1的区别在于:步骤(5)中,固体材料与粘结剂的质量比为5:1。
实施例26
本实施例与实施例1的区别在于:步骤(5)中,固体材料与粘结剂的质量比为100:1。
实施例27
本实施例与实施例1的区别在于:步骤(5)中,固体材料与有机溶剂的固液比为1g:0.1mL。
实施例28
本实施例与实施例1的区别在于:步骤(5)中,固体材料与有机溶剂的固液比为1g:12mL。
实施例29
本实施例与实施例1的区别在于:步骤(5)中,干燥温度为40℃,干燥时间为18h。
实施例30
本实施例与实施例1的区别在于:步骤(5)中,干燥温度为80℃,干燥时间为3h。
对比例1
本对比例与实施例1区别在于:直接将MnO2纳米片制备为锂离子筛(其SEM图如图2所示),也即,未对MnO2纳米片进行改性处理。
对比例2
本对比例与实施例1的区别在于:步骤(1)中,煅烧温度为500℃。
对比例3
本对比例与实施例1的区别在于:步骤(1)中,煅烧温度为1500℃。
对比例4
本对比例与实施例1的区别在于:步骤(2)中,稀酸浓度为0.05mol/L。
对比例5
本对比例与实施例1的区别在于:步骤(2)中,稀酸浓度为8mol/L。
对比例6
本对比例与实施例1的区别在于:步骤(2)中,液固比为0.5mL:1g。
对比例7
本对比例与实施例1的区别在于:步骤(2)中,液固比为15mL:1g。
对比例8
本对比例与实施例1的区别在于:步骤(2)中,干燥温度为100℃。
对比例9
本对比例与实施例1的区别在于:步骤(3)中,TBAOH浓度为0.005g/L。
对比例10
本对比例与实施例1的区别在于:步骤(3)中,TBAOH浓度为10g/L。
对比例11
本对比例与实施例1的区别在于:步骤(3)中,液固比为5g:1L。
对比例12
本对比例与实施例1的区别在于:步骤(3)中,液固比为120g:1L。
对比例13
本对比例与对实施例1的区别在于:步骤(4)中,只进行低速离心,无高速离心。
对比例14
本对比例与实施例1的区别在于:步骤(4)中,只进行高速离心,无低速离心。
对比例15
本对比例与实施例1的区别在于:步骤(4)中,干燥温度为100℃。
对比例16
本对比例与实施例1的区别在于:步骤(5)中,固体材料与粘结剂的质量比为2:1。
对比例17
本对比例与实施例1的区别在于:步骤(5)中,固体材料与粘结剂的质量比为120:1。
对比例18
本对比例与实施例1的区别在于:步骤(5)中,固体材料与有机溶剂的固液比为1g:0.05mL。
对比例19
本对比例与实施例1的区别在于:步骤(5)中,固体材料与有机溶剂的固液比为1g:15mL。
对比例20
本对比例与实施例1的区别在于:步骤(5)中,干燥温度为100℃。
试验例
上述实施例1-30以及对比例1-20均处理相同的盐湖卤水,该盐湖卤水中的主要元素的浓度如表1所示。
各实施例和对比例的锂离子筛材料的比表面积如表2所示。各实施例及对比例的单位锂离子筛锂吸附量如表3所示,各实施例及对比例的单位锂离子筛锰溶出率如表4所示。
表1盐湖卤水中主要元素的浓度
主要元素 浓度(mg/L)
Li<sup>+</sup> 389
Na<sup>+</sup> 9120
Mg<sup>2+</sup> 6550
K<sup>+</sup> 2770
表2锂离子筛材料比表面积
Figure BDA0003906805140000221
Figure BDA0003906805140000231
表3单位锂离子筛锂吸附量
Figure BDA0003906805140000232
Figure BDA0003906805140000241
Figure BDA0003906805140000251
表4单位锂离子筛锰溶出率
Figure BDA0003906805140000252
Figure BDA0003906805140000261
由上可以看出,本申请提供的由改性锂离子筛制得的二氧化锰吸附剂能够较未改性锂离子筛锂制得的二氧化锰吸附剂在吸附量方面提高30%以上,Mn溶出率也显著降低,极大地提高了MO基锂离子筛的使用价值并充分降低了使用成本。
此外,通过对比各实施例和对比例可以看出,实施例2对应的效果最佳,说明在该实施例的条件最优。而当其制备条件发生变化后,相应的效果会变差。
综上所述,本本申请提供的改性锂离子筛具备较大的比表面积,相应的锂吸附量显著提高;且本申请提供的改性锂离子筛具有三维层状骨架结构,提供了更好的循环稳定性,具有更长久的使用寿命。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种改性锂离子筛,其特征在于,所述改性锂离子筛为三维层状骨架结构的MnO2纳米片材料。
2.根据权利要求1所述的改性锂离子筛,其特征在于,所述改性锂离子筛包括多层MnO2纳米片依次间隔设置的主体结构,相邻两层MnO2纳米片之间具有支撑骨架;
优选地,所述MnO2纳米片材料的比表面积不低于75m2/g;
优选地,相邻两层MnO2纳米片之间的间隙大于0nm且≤100nm。
3.如权利要求1或2所述的改性锂离子筛的制备方法,其特征在于,包括以下步骤:将AxMnO2材料进行酸处理,固液分离,干燥,得到HMnO2材料;其中,A为碱金属元素,0<x<1;
将HMnO2材料与支撑剂的水溶液混合,超声处理,收集纳米片材料,获得MnO2纳米片;
优选地,所述AxMnO2材料经以下方法制备得到:将碱金属化合物与锰的氧化物混合,煅烧;
优选地,锰的氧化物包括MnO2、Mn2O3和Mn3O4中的至少一种;
优选地,所述碱金属化合物中的碱金属包括锂、钠及钾中的至少一种;
优选地,所述碱金属化合物中碱金属的摩尔量不超过锰的氧化物中锰的摩尔量,更优地,所述碱金属化合物中的碱金属与锰的氧化物中的锰的摩尔比为0.5-0.8:1;
优选地,煅烧温度为700-1200℃,更优为800-1000℃;
优选地,煅烧时间为6-24h,更优为12-18h。
4.根据权利要求3所述的制备方法,其特征在于,对所述AxMnO2材料进行酸处理所用的酸的浓度为0.1-6mol/L;和/或,所述支撑剂的水溶液中,所述支撑剂的浓度为0.01-5g/L;
优选地,所述酸的浓度为0.3-1.5mol/L;和/或,所述支撑剂的浓度为0.1-3g/L;
优选地,所述AxMnO2材料与所述酸的固液比为1g:1-10mL;更优为1g:2-5mL;
优选地,酸处理的时间为0.1-24h,更优为1-6h;
优选地,干燥温度为40-80℃,更优为50-70℃;
优选地,干燥时间为3-18h,更优为6-15h;
优选地,HMnO2材料与所述支撑剂的水溶液的固液比为10-100g:1L,更优为20-50g:1L;
优选地,所述支撑剂包括有机铵类物质,更优包括四正丁基氢氧化氨、四甲基氢氧化铵、四乙基氢氧化铵和四丙基氢氧化铵中的至少一种;
优选地,超声处理时间为0.5-24h,更优为1-6h。
5.根据权利要求3所述的制备方法,其特征在于,收集纳米片材料包括:将超声处理后得到的物料进行低速离心,收集上层悬浮液,获得去质子化的MnO2纳米片材料;
优选地,收集纳米片材料还包括:将去质子化的MnO2纳米片材料进行高速离心,收集固相物,得到MnO2纳米片;
优选地,收集固相物后,还包括对所述固相物进行干燥;
优选地,低速离心的转速为3000-8000r/min,更优为5000-8000r/min;
优选地,高速离心的转速为10000-20000r/min,更优为14000-18000r/min;
优选地,对所述固相物进行干燥的温度为40-80℃,更优为50-70℃;
优选地,对所述固相物进行干燥的时间为3-18h,更优为6-12h。
6.一种二氧化锰吸附剂,其特征在于,所述二氧化锰吸附剂为权利要求1或2所述的改性锂离子筛与粘结剂的团聚物;
优选地,所述团聚物为粒径为毫米级的颗粒物。
7.如权利要求6所述的二氧化锰吸附剂的制备方法,其特征在于,包括以下步骤:将权利要求1或2所述的改性锂离子筛与粘结剂以及有机溶剂混合,随后转入水相,获得团聚物;
优选地,还包括对团聚物进行干燥;
优选地,所述改性锂离子筛与所述粘结剂的质量比为5-100:1,更优为10-30:1;
优选地,所述粘结剂包括羧甲基纤维素钠、丁苯橡胶、聚乙烯醇及聚氯乙烯中的至少一种,更优包括聚乙烯醇及聚氯乙烯中的至少一种;
优选地,所述改性锂离子筛与所述有机溶剂的料液比为1g:0.1-12mL,更优为1g:1-6mL;
优选地,对团聚物进行干燥是于40-80℃的条件下进行,更优为50-70℃;
优选地,对团聚物进行干燥的时间为3-18h,更优为6-12h。
8.一种色谱柱,其特征在于,所述色谱柱的吸附剂为包括权利要求6所述的二氧化锰吸附剂;
优选地,所述二氧化锰吸附剂在所述色谱柱中的填充量为所述色谱柱体积的30-80%。
9.如权利要求1-2任一项所述的改性锂离子筛或权利要求6所述的二氧化锰吸附剂在提取锂元素中的应用;
优选地,所述改性锂离子筛或所述二氧化锰吸附剂用于盐湖提锂。
10.一种盐湖提锂方法,其特征在于,包括以下步骤:于填充有权利要求6所述的二氧化锰吸附剂的色谱柱中通入待提取的盐湖卤水,待所述二氧化锰吸附剂吸附饱和后,洗出二氧化锰吸附剂,随后进行解吸处理,得到富锂的解吸排出液;
优选地,所述盐湖卤水的通入所述色谱柱的流速为1-100mL/min,优选为10-30mL/min;
优选地,吸附时间为0.1-6h,更优为0.5-3h;
优选地,解吸处理所用的解吸试剂为酸,更优为盐酸;
优选地,所述解吸试剂的流速为0.1-50mL/min,更优为1-6mL/min;
优选地,所述解吸试剂的浓度为0.1-10mol/L,更优为0.3-1.5mol/L;
优选地,解吸时间为0.3-9h,更优为1-3h。
CN202211310012.5A 2022-10-25 2022-10-25 改性锂离子筛、二氧化锰吸附剂及其制备方法与应用、盐湖提锂方法 Pending CN115594223A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211310012.5A CN115594223A (zh) 2022-10-25 2022-10-25 改性锂离子筛、二氧化锰吸附剂及其制备方法与应用、盐湖提锂方法
PCT/CN2023/083151 WO2024087477A1 (zh) 2022-10-25 2023-03-22 改性锂离子筛、MnO2吸附剂及其制备方法与应用、盐湖提锂方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211310012.5A CN115594223A (zh) 2022-10-25 2022-10-25 改性锂离子筛、二氧化锰吸附剂及其制备方法与应用、盐湖提锂方法

Publications (1)

Publication Number Publication Date
CN115594223A true CN115594223A (zh) 2023-01-13

Family

ID=84849775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211310012.5A Pending CN115594223A (zh) 2022-10-25 2022-10-25 改性锂离子筛、二氧化锰吸附剂及其制备方法与应用、盐湖提锂方法

Country Status (2)

Country Link
CN (1) CN115594223A (zh)
WO (1) WO2024087477A1 (zh)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800016A (zh) * 2005-12-19 2006-07-12 北京化工大学 一种氨基酸插层二氧化锰及其制备方法
CN1944544A (zh) * 2006-09-22 2007-04-11 北京化工大学 一种含二氧化锰纳米片的紫外屏蔽剂及其制备、使用方法
JP2008218105A (ja) * 2007-03-01 2008-09-18 Matsushita Electric Ind Co Ltd アルカリ乾電池用活物質及びその製造方法並びにそれを用いた電池
US20120213995A1 (en) * 2011-02-22 2012-08-23 University Of South Carolina Flexible Zn2SnO4/MnO2 Core/Shell Nanocable - Carbon Microfiber Hybrid Composites for High Performance Supercapacitor Electrodes
CN102921408A (zh) * 2012-11-27 2013-02-13 广东工业大学 一种层状氧化锰多孔材料催化剂的制备方法及其应用
CN103121724A (zh) * 2012-12-24 2013-05-29 华东理工大学 一种制备锂离子筛MnO2·0.5H2O及其前驱体Li1.6Mn1.6O4的方法
WO2015070706A1 (zh) * 2013-11-12 2015-05-21 江苏华东锂电技术研究院有限公司 电极浆料、负电极及应用该负电极的锂离子电池
CN107275121A (zh) * 2017-07-12 2017-10-20 广东工业大学 一种具有自愈合的超级电容器及其制备方法
CN108987715A (zh) * 2018-07-23 2018-12-11 芜湖彰鸿工程技术有限公司 一种锂离子电池负极浆料及其制备方法
CN109126889A (zh) * 2018-08-03 2019-01-04 湖南大学 一种适于电催化水氧化的锰氧化物/金属卟啉复合层状夹心纳米材料
CN109678219A (zh) * 2018-12-28 2019-04-26 湘潭大学 一种纳米层状镍钴锰酸锂的制备方法
KR20190072301A (ko) * 2017-12-15 2019-06-25 주식회사 엘지화학 이산화망간/탄소 나노 복합체의 제조 방법
CN111471308A (zh) * 2020-04-27 2020-07-31 郭仁圆 一种抗老化改性沥青及其制备方法
CN111671899A (zh) * 2020-06-16 2020-09-18 西北工业大学 一种二氧化锰纳米片杂化水凝胶的制备方法及抗肿瘤应用
CN111826524A (zh) * 2020-07-13 2020-10-27 礼思(上海)材料科技有限公司 一种利用吸附剂从盐湖卤水中提锂的方法
CN111933456A (zh) * 2020-08-11 2020-11-13 苏州柯诺思高新材料有限公司 一种MnO2/碳纤维复合电极的制备方法及具有其的电容器
CN112076717A (zh) * 2020-09-10 2020-12-15 南京工业大学 一种熔融浸渍反应制备锂离子筛的方法
WO2022114714A1 (ko) * 2020-11-24 2022-06-02 재단법인 파동에너지 극한제어 연구단 금속-유기 골격체 및 2차원 시트를 포함하는 하이브리드 복합체

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800016A (zh) * 2005-12-19 2006-07-12 北京化工大学 一种氨基酸插层二氧化锰及其制备方法
CN1944544A (zh) * 2006-09-22 2007-04-11 北京化工大学 一种含二氧化锰纳米片的紫外屏蔽剂及其制备、使用方法
JP2008218105A (ja) * 2007-03-01 2008-09-18 Matsushita Electric Ind Co Ltd アルカリ乾電池用活物質及びその製造方法並びにそれを用いた電池
US20120213995A1 (en) * 2011-02-22 2012-08-23 University Of South Carolina Flexible Zn2SnO4/MnO2 Core/Shell Nanocable - Carbon Microfiber Hybrid Composites for High Performance Supercapacitor Electrodes
CN102921408A (zh) * 2012-11-27 2013-02-13 广东工业大学 一种层状氧化锰多孔材料催化剂的制备方法及其应用
CN103121724A (zh) * 2012-12-24 2013-05-29 华东理工大学 一种制备锂离子筛MnO2·0.5H2O及其前驱体Li1.6Mn1.6O4的方法
WO2015070706A1 (zh) * 2013-11-12 2015-05-21 江苏华东锂电技术研究院有限公司 电极浆料、负电极及应用该负电极的锂离子电池
CN107275121A (zh) * 2017-07-12 2017-10-20 广东工业大学 一种具有自愈合的超级电容器及其制备方法
KR20190072301A (ko) * 2017-12-15 2019-06-25 주식회사 엘지화학 이산화망간/탄소 나노 복합체의 제조 방법
CN108987715A (zh) * 2018-07-23 2018-12-11 芜湖彰鸿工程技术有限公司 一种锂离子电池负极浆料及其制备方法
CN109126889A (zh) * 2018-08-03 2019-01-04 湖南大学 一种适于电催化水氧化的锰氧化物/金属卟啉复合层状夹心纳米材料
CN109678219A (zh) * 2018-12-28 2019-04-26 湘潭大学 一种纳米层状镍钴锰酸锂的制备方法
CN111471308A (zh) * 2020-04-27 2020-07-31 郭仁圆 一种抗老化改性沥青及其制备方法
CN111671899A (zh) * 2020-06-16 2020-09-18 西北工业大学 一种二氧化锰纳米片杂化水凝胶的制备方法及抗肿瘤应用
CN111826524A (zh) * 2020-07-13 2020-10-27 礼思(上海)材料科技有限公司 一种利用吸附剂从盐湖卤水中提锂的方法
CN111933456A (zh) * 2020-08-11 2020-11-13 苏州柯诺思高新材料有限公司 一种MnO2/碳纤维复合电极的制备方法及具有其的电容器
CN112076717A (zh) * 2020-09-10 2020-12-15 南京工业大学 一种熔融浸渍反应制备锂离子筛的方法
WO2022114714A1 (ko) * 2020-11-24 2022-06-02 재단법인 파동에너지 극한제어 연구단 금속-유기 골격체 및 2차원 시트를 포함하는 하이브리드 복합체

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
云斯宁等: "新型能源材料与器件", 中国建材工业出版社, pages: 288 - 289 *

Also Published As

Publication number Publication date
WO2024087477A1 (zh) 2024-05-02

Similar Documents

Publication Publication Date Title
Orooji et al. Recent advances in nanomaterial development for lithium ion-sieving technologies
Ryu et al. Recovery of lithium in seawater using a titanium intercalated lithium manganese oxide composite
CN105238927B (zh) 一种钛系锂离子筛吸附剂、其前驱体、制备方法及应用
Li et al. Highly selective separation of lithium with hierarchical porous lithium-ion sieve microsphere derived from MXene
CN107376827A (zh) 一种二氧化锆包覆锰系锂离子筛及其制备方法和应用
CN108328706A (zh) 一种mof衍生多孔碳/石墨烯复合电极材料的制备及应用
CN102049238A (zh) 一种选择性提取锂的离子筛及其应用
Sun et al. Preparation of high hydrophilic H2TiO3 ion sieve for lithium recovery from liquid lithium resources
Chitrakar et al. Magnesium-doped manganese oxide with lithium ion-sieve property: lithium adsorption from salt lake brine
Zhang et al. A scalable three-dimensional porous λ-MnO2/rGO/Ca-alginate composite electroactive film with potential-responsive ion-pumping effect for selective recovery of lithium ions
CN111647746A (zh) 膜电极材料及其制备方法及应用于吸附-电耦合法提取锂
CN106505183B (zh) 氮化碳-硫复合材料及其制法和应用
CN107787248B (zh) 包括在特定条件下使勃姆石沉淀的步骤的制备吸附材料的方法以及利用该材料从盐溶液提取锂的方法
CN110180489B (zh) 一种掺硫富锂锰系锂吸附剂及其制备方法和应用
CN106390957A (zh) 一种高性能染料吸附剂及其制备方法
CN104923154A (zh) 一种六方片状磁性金属/金属氧化物/碳纳米复合吸附材料及其制备方法
CN115594223A (zh) 改性锂离子筛、二氧化锰吸附剂及其制备方法与应用、盐湖提锂方法
WO2023083062A1 (zh) 一种钛基锂离子交换体的制备方法
CN109621922A (zh) 一种整体式酚醛树脂基锂离子筛及其制备方法和应用
WO2023071355A1 (zh) 一种废水吸附剂及其制备方法和应用
CN113429943B (zh) 一种改性凹凸棒石及改性凹凸棒石基复合相变材料的制备方法
CN115646474A (zh) 一种锰钛基复合锂离子筛及其制备方法与应用
CN113041988B (zh) 一种钛系锂离子筛及其制备方法与应用
CN104324691B (zh) 一种高co2吸附性能碳吸附剂的制备方法
CN110711551A (zh) 一种锂吸附剂及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination