CN115582544A - 一种高抗冲击韧性聚晶金刚石复合片的制备方法 - Google Patents

一种高抗冲击韧性聚晶金刚石复合片的制备方法 Download PDF

Info

Publication number
CN115582544A
CN115582544A CN202211191487.7A CN202211191487A CN115582544A CN 115582544 A CN115582544 A CN 115582544A CN 202211191487 A CN202211191487 A CN 202211191487A CN 115582544 A CN115582544 A CN 115582544A
Authority
CN
China
Prior art keywords
polycrystalline diamond
diamond compact
powder
pressure
carbon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211191487.7A
Other languages
English (en)
Inventor
赵志伟
江浩
郑红娟
王恒
陈强
卢新坡
王顺
赵小苗
关春龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN202211191487.7A priority Critical patent/CN115582544A/zh
Publication of CN115582544A publication Critical patent/CN115582544A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种高抗冲击韧性聚晶金刚石复合片的制备,属于超硬材料领域。所述制备方法包括以下步骤:a、将多壁碳纳米管置于无水乙醇中进行超声波分散处理;b、将一定量的碳化钨和钴粉均匀混合作为基体原料;将金刚石微粉、钴粉和分散过的多壁碳纳米管均匀混合作为工作层原料,使工作层各物质质量百分比:金刚石为90‑92%,钴粉6%,碳纳米管为2‑4%;聚晶金刚石复合片基体层各物质质量百分比:碳化钨84‑90%,钴10‑16%。c、将混合好的原料分层装入石墨模具中,施加一定压力后进行抽真空处理,通过放电等离子烧结炉制备预复合片。d、将制备好的预复合片置于叶蜡石模具中,在模具外加装叶蜡石环、导电钢圈和触媒片,在六面顶压机中进行高温高压合成实验。通过这种方法制备的聚晶金刚石复合片基体与工作层之间结合紧密,抗冲击韧性相较未添加碳纳米管的聚晶金刚石复合片提高了5‑8.4倍。同时使工作层中金刚石颗粒间“金刚石‑金刚石”键数量增加,增强增韧作用提高。

Description

一种高抗冲击韧性聚晶金刚石复合片的制备方法
技术领域
本发明涉及一种高抗冲击韧性聚晶金刚石复合片的制备,属于超硬材料领域。
背景技术
聚晶金刚石复合片(Polystalline Diamond Compacts,简称PDC)是由硬质合金基底和聚晶金刚石层在高温高压的条件下合成的,兼有聚晶金刚石的高耐磨性以及硬质合金的韧性和可焊接性。因其高效率的切割和加工性能被广泛的应用在机械加工、油井钻探、地质勘探和电子元器件封装贴片机等领域。
当前PDC的磨耗比与金刚石的磨耗比已经比较接近,限制PDC应用的主要原因是金刚石层的冲击破坏。想要高耐磨性要求PDC具有高的强度,想要高冲击韧性要求PDC具有一定变形的能力,这两者相互矛盾。想要得到两种性能兼得的PDC材料已经成为当前研究的热点和亟待开拓的领域。
以金属作为粘结剂合成聚晶金刚石复合片在实际应用中存在一定问题:金刚石晶粒之间残存的金属粘结剂的热膨胀系数和金刚石热膨胀系数相差较大,这是金刚石复合片抗冲击韧性下降的主要原因。碳纳米管的弹性模量实验平均值为1.8Tpa。弯曲强度为14.2Gpa,是目前已知的最强纤维。同时,碳纳米管在高温高压条件下能保持自身性能,这就使碳纳米管增强PDC称为可能。碳纳米管增强PDC材料在增韧机理上除了常规的裂纹偏转、拔出效应等之外,还具有其特殊优势。(1)碳纳米管的存在可以增加聚晶金刚石复合片颗粒间直接结和的可能性,以“金刚石-金刚石”键代替“金刚石-金属-金刚石”键,改进颗粒间连接结构,从而起到增强增韧作用。(2)碳纳米管的加入填补了由于热膨胀系数不同导致的粘结剂与金刚石之间的空隙,在金刚石之间形成了“粘结剂-碳纳米管骨架”,从而提高其抗冲击韧性。
发明内容
本发明所要解决的技术问题是提出一种使金刚石复合片具有高冲击韧性的碳纳米管增强聚晶金刚石复合片的制备方法。
为了解决上述技术问题,本发明的高抗冲击韧性聚晶金刚石复合片的合成方法包括以下步骤:
a、将多壁碳纳米管置于无水乙醇中进行超声波分散处理;
b、按照比例准备一定量的金刚石微粉、碳化钨粉末、钴粉和多壁碳纳米管。将一定量的碳化钨和钴粉均匀混合作为基体原料;将金刚石微粉、钴粉和多壁碳纳米管均匀混合作为工作层原料;
c、将步骤b中混合好的原料分层装入石墨模具中,施加一定压力后进行抽真空处理,通过放电等离子烧结炉制备预复合片。
d、将步骤c中制备好的预复合片置于叶蜡石模具中,在模具外加装叶蜡石环、导电钢圈和触媒片,在六面顶压机中进行高温高压合成实验。
本发明所述的聚晶金刚石复合片制备方法中:工作层各物质质量百分比:金刚石为90-92%,钴粉6%,碳纳米管为2-4%;聚晶金刚石复合片基体层各物质质量百分比:碳化钨84-90%,钴10-16%。
本发明所述的聚晶金刚石复合片制备方法中:原料的混合方式为高能球磨。
本发明所述的聚晶金刚石复合片制备方法中:球磨时间为24h,球磨后干燥温度为80-90℃,球磨干燥时间为12-18h。
本发明所诉的聚晶金刚石复合片制备方法中:预复合片工艺参数:烧结温度范围为1400-1600℃;压力为30-50Mpa;真空度1×10-3pa;保温保压时间为5-10min;
本发明所述的聚晶金刚石复合片制备方法中:成品PDC合成工艺参数:烧结温度范围为1400-1600℃;压力为4.0-6.0Gpa;保温保压时间为3-5min。
本发明所述的聚晶金刚石复合片制备方法中:预复合片的制备是采用放电等离子烧结;成品PDC的制备是将预复合片通过六面顶压机再次烧结。
与现有的聚晶金刚石复合片制备方法相比,本发明的优点在于:
(1)采用二次烧结工艺,先烧制预复合片,再将预复合片置于六面顶压力中进行二次烧结。这种方法可以提高基体和工作层的致密度,从而进一步提高耐磨性。
(2)金属粘结剂和金刚石之间相差较大的热膨胀系数会使聚晶金刚石复合片的抗冲击韧性降低。引入碳纳米管作为增强相可以填补由热膨胀系数差异所引起的空隙,形成“粘结剂-碳纳米管高强骨架”,改善空隙中粘结剂的分布形式,从而提高复合片的抗冲击韧性。
(3)碳纳米管的添加使聚晶金刚石颗粒间的间隙显著减少。导致大量聚晶金刚石颗粒直接连接,改善颗粒间连接结构,起到增强增韧作用。
具体实施方式
实施例1:
(1)多壁碳纳米管的分散处理
将多壁碳纳米管放置于200ml无水乙醇溶液中,进行超声波震荡分散,最后放入烘箱内烘干;
(2)合成原料制备
合成原料配方:工作层组成为质量分数为2%的多壁碳纳米管,92%的金刚石,6%的钴粉;基体层组成为质量分数为84%的WC粉和16%钴粉。在使用之前将金刚石表面进行净化处理;组装前的叶蜡石块、叶蜡石环必须先进行焙烧处理,将叶蜡石内部的水分除去;将工作层和基体层的各种粉料分别用无水乙醇湿混,烘干后再进行干混,保存混合后的原料;
(3)预复合片的合成
将均匀混合的工作层和基体层的粉料分别装入石墨模具先进行预压处理:压力为30Mpa,预压制完成后进行抽真空:真空条件为:1×10-3pa,最后进行放电等离子烧结:烧结温度1500℃,升温速率100℃/min,保温保压时间为6min;
(4) 超高压合成
将预复合片放置于叶蜡石块模具中,在模具外加装上叶蜡石环、导电钢圈和触媒片,在六面顶压机中进行超高压高温合成:合成工艺参数为:烧结温度1500℃,烧结压力5Gpa,保温保压时间2.5min。
样品效果:该聚晶金刚石复合片相对于传统烧结方式制备的金刚石复合片,抗冲击韧性约为不添加碳纳米管复合片的5倍。
实施例2:
(1)多壁碳纳米管的分散处理
将多壁碳纳米管放置于200ml无水乙醇溶液中,进行超声波震荡分散,最后放入烘箱内烘干;
(2)合成原料制备
合成原料配方:工作层组成为质量分数为3%的多壁碳纳米管,91%的金刚石,6%的钴粉;基体层组成为质量分数为87%的WC粉和13%钴粉。在使用之前将金刚石表面进行净化处理;组装前的叶蜡石块、叶蜡石环必须先进行焙烧处理,将叶蜡石内部的水分除去;将工作层和基体层的各种粉料分别用无水乙醇湿混,烘干后再进行干混,保存混合后的原料;
(3)预复合片的合成
将均匀混合的工作层和基体层的粉料分别装入石墨模具先进行预压处理:压力为40Mpa,预压制完成后进行抽真空:真空条件为:1×10-3pa,最后进行放电等离子烧结:烧结温度1500℃,升温速率100℃/min,保温保压时间为7min;
(4)超高压合成
将预复合片放置于叶蜡石块模具中,在模具外加装上叶蜡石环、导电钢圈和触媒片,在六面顶压机中进行超高压高温合成:合成工艺参数为:烧结温度1500℃,烧结压力5.5Gpa,保温保压时间3min。
样品效果:该聚晶金刚石复合片相对于传统烧结方式制备的金刚石复合片,抗冲击韧性约为不添加碳纳米管复合片的5.8倍。
实施例3:
(1)多壁碳纳米管的分散处理
将多壁碳纳米管放置于200ml无水乙醇溶液中,进行超声波震荡分散,最后放入烘箱内烘干;
(2)合成原料制备
合成原料配方:工作层组成为质量分数为4%的多壁碳纳米管,90%的金刚石,6%的钴粉;基体层组成为质量分数为85%的WC粉和16%钴粉。在使用之前将金刚石表面进行净化处理;组装前的叶蜡石块、叶蜡石环必须先进行焙烧处理,将叶蜡石内部的水分除去;将工作层和基体层的各种粉料分别用无水乙醇湿混,烘干后再进行干混,保存混合后的原料;
(3)预复合片的合成
将均匀混合的工作层和基体层的粉料分别装入石墨模具先进行预压处理:压力为50Mpa,预压制完成后进行抽真空:真空条件为:1×10-3pa,最后进行放电等离子烧结:烧结温度1500℃,升温速率100℃/min,保温保压时间为8min;
(5) 超高压合成
将预复合片放置于叶蜡石块模具中,在模具外加装上叶蜡石环、导电钢圈和触媒片,在六面顶压机中进行超高压高温合成:合成工艺参数为:烧结温度1550℃,烧结压力6Gpa,保温保压时间3.5min。
样品效果:该聚晶金刚石复合片相对于传统烧结方式制备的金刚石复合片,抗冲击韧性约为不添加碳纳米管复合片的7倍。
实施例4:
(1)多壁碳纳米管的分散处理
将多壁碳纳米管放置于200ml无水乙醇溶液中,进行超声波震荡分散,最后放入烘箱内烘干;
(2)合成原料制备
合成原料配方:工作层组成为质量分数为5%的多壁碳纳米管,89%的金刚石,6%的钴粉;基体层组成为质量分数为84%的WC粉和16%钴粉。在使用之前将金刚石表面进行净化处理;组装前的叶蜡石块、叶蜡石环必须先进行焙烧处理,将叶蜡石内部的水分除去;将工作层和基体层的各种粉料分别用无水乙醇湿混,烘干后再进行干混,保存混合后的原料;
(3)预复合片的合成
将均匀混合的工作层和基体层的粉料分别装入石墨模具先进行预压处理:压力为50Mpa,预压制完成后进行抽真空:真空条件为:1×10-3pa,最后进行放电等离子烧结:烧结温度1500℃,升温速率100℃/min,保温保压时间为10min;
(6) 超高压合成
将预复合片放置于叶蜡石块模具中,在模具外加装上叶蜡石环、导电钢圈和触媒片,在六面顶压机中进行超高压高温合成:合成工艺参数为:烧结温度1600℃,烧结压力6Gpa,保温保压时间4min。
样品效果:该聚晶金刚石复合片相对于传统烧结方式制备的金刚石复合片,抗冲击韧性约为不添加碳纳米管复合片的8.4倍。

Claims (7)

1.一种高抗冲击韧性聚晶金刚石复合片的制备方法,其特征在于:所述合成方法包括以下步骤:
a、将多壁碳纳米管置于无水乙醇中进行超声波分散处理;
b、按照比例准备一定量的金刚石微粉、碳化钨粉末、钴粉和多壁碳纳米管;
将一定量的碳化钨和钴粉均匀混合作为基体原料;将金刚石微粉、钴粉和多壁碳纳米管均匀混合作为工作层原料;
c、将步骤b中混合好的原料分层装入石墨模具中,施加一定压力后进行抽真空处理,通过放电等离子烧结炉制备预复合片;
d、将步骤c中制备好的预复合片置于叶蜡石模具中,在模具外加装叶蜡石环、导电钢圈和触媒片,在六面顶压机中进行高温高压合成实验。
2.根据权利要求1所述的制备聚晶金刚石复合片的方法,其特征在于:工作层各物质质量百分比:金刚石为90-92%,钴粉6%,碳纳米管为2-4%;聚晶金刚石复合片基体层各物质质量百分比:碳化钨84-90%,钴10-16%。
3.根据权利要求1所述的制备聚晶金刚石复合片的方法,其特征在于:原料的混合方式为高能球磨。
4.根据权力要求1所述的制备高抗冲击韧性聚晶金刚石复合片的方法,其特征在于:球磨时间为24h,球磨后干燥温度为80-90℃,球磨干燥时间为12-18h。
5.根据权力要求1所述的制备高抗冲击韧性聚晶金刚石复合片的方法,其特征在于:预复合片工艺参数:烧结温度范围为1400-1600℃;压力为30-50Mpa;真空度1×10-3pa;保温保压时间为5-10min。
6.根据权力要求1所述的制备高抗冲击韧性聚晶金刚石复合片的方法,其特征在于:成品PDC合成工艺参数:烧结温度范围为1400-1600℃;压力为4.0-6.0Gpa;保温保压时间为3-5min。
7.根据权力要求1所述的制备高抗冲击韧性聚晶金刚石复合片的方法,其特征在于:预复合片的制备是采用放电等离子烧结;成品PDC的制备是将预复合片通过六面顶压机再次烧结。
CN202211191487.7A 2022-09-28 2022-09-28 一种高抗冲击韧性聚晶金刚石复合片的制备方法 Pending CN115582544A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211191487.7A CN115582544A (zh) 2022-09-28 2022-09-28 一种高抗冲击韧性聚晶金刚石复合片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211191487.7A CN115582544A (zh) 2022-09-28 2022-09-28 一种高抗冲击韧性聚晶金刚石复合片的制备方法

Publications (1)

Publication Number Publication Date
CN115582544A true CN115582544A (zh) 2023-01-10

Family

ID=84778394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211191487.7A Pending CN115582544A (zh) 2022-09-28 2022-09-28 一种高抗冲击韧性聚晶金刚石复合片的制备方法

Country Status (1)

Country Link
CN (1) CN115582544A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116160005A (zh) * 2023-02-20 2023-05-26 中国矿业大学 一种金刚石和碳纳米管复合截齿的制备工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116160005A (zh) * 2023-02-20 2023-05-26 中国矿业大学 一种金刚石和碳纳米管复合截齿的制备工艺

Similar Documents

Publication Publication Date Title
CN110029942B (zh) 适用于钻探的热稳定型聚晶金刚石复合片及其制备方法
CN101892411B (zh) 一种新型wc基硬质合金材料及其制备方法
KR100380510B1 (ko) 개선된물성을갖는지지된다결정성콤팩트및그의제조방법
CN105950935B (zh) 冷镦成形紧固件用硬质合金模具材料的制备方法
CN108624772B (zh) 超细晶碳化钨基硬质合金材料及其制备方法
US20100104874A1 (en) High pressure sintering with carbon additives
US20070054101A1 (en) Composite material for drilling applications
CA2568672A1 (en) Microwave sintering
CN110257681B (zh) 一种聚晶立方氮化硼复合片及其制备方法
CN110465669B (zh) 一种梯度复合立方氮化硼材料及其制备工艺和应用
CN108161362B (zh) 一种聚晶金刚石复合片及其制造方法
CN108411137B (zh) 超细晶碳化钨基硬质合金的制备方法
CN115582544A (zh) 一种高抗冲击韧性聚晶金刚石复合片的制备方法
CN111943702B (zh) 一种原位自生β-SIALON晶须增韧碳化钨复合材料及其制备方法与应用
CN110157969B (zh) 一种含微量钴的超粗碳化钨硬质合金的制备方法
CN111116202A (zh) 一种放电等离子反应烧结碳化硼-硼化钛材料的方法
CN110253024B (zh) 一种含有石墨烯的金刚石复合片及其制备方法
CN111348628A (zh) 一种立方氮化硼-纳米聚晶金刚石复合材料及其制备方法
CN110576176A (zh) 一种高性能金刚石工具的制备方法
CN110129692A (zh) 一种金属陶瓷材料
CN112091221B (zh) 一种页岩油/页岩气深井钻探用聚晶金刚石复合片及其制备方法
CN112059193B (zh) 一种高韧性耐磨型聚晶金刚石复合片及其制备方法
CN110090963B (zh) 一种高韧性导电型聚晶金刚石复合片及其制备方法
CN114835496A (zh) 一种Cr3C2块体材料的制备方法
US7682557B2 (en) Multiple processes of high pressures and temperatures for sintered bodies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination