CN115536390A - 一种透明介质储能陶瓷材料及制备方法与应用 - Google Patents

一种透明介质储能陶瓷材料及制备方法与应用 Download PDF

Info

Publication number
CN115536390A
CN115536390A CN202211250523.2A CN202211250523A CN115536390A CN 115536390 A CN115536390 A CN 115536390A CN 202211250523 A CN202211250523 A CN 202211250523A CN 115536390 A CN115536390 A CN 115536390A
Authority
CN
China
Prior art keywords
raw material
energy storage
niobate
magnesium niobate
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211250523.2A
Other languages
English (en)
Other versions
CN115536390B (zh
Inventor
李卓
王子煊
张家勇
杨强斌
张丹丹
王卓
耿九光
牛艳辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN202211250523.2A priority Critical patent/CN115536390B/zh
Publication of CN115536390A publication Critical patent/CN115536390A/zh
Application granted granted Critical
Publication of CN115536390B publication Critical patent/CN115536390B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种铌酸钠‑铌镁酸铋‑铌镁酸钡‑钛酸锶透明介质储能陶瓷材料,组成式为:0.95[0.90NaNbO3‑0.10((1‑x)Bi(Mg2/3Nb1/3)O3‑xBa(Mg1/3Nb2/3)O3)]‑0.05SrTiO3,x为摩尔百分比,0.10≤x≤0.25。还提供了制备方法,将干后的Na2CO3原料、Bi2O3原料、BaCO3原料、SrCO3原料、Nb2O5原料、TiO2原料和MgO原料按照称取混合后球磨、预烧、二次球磨、压片、烧结后,经过抛光和表面金属化制备而成。本发明制备方法简单、重复性好、成品率高,具有优异的储能性能和一定的透光率。实用性强,易于常规化批量生产,且能兼顾储能性能和光学性能,是一种性能优良的无铅透明储能陶瓷,有望用于透明脉冲电容器等方面。

Description

一种透明介质储能陶瓷材料及制备方法与应用
技术领域
本发明属于陶瓷材料技术领域,具体涉及一种铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料及制备方法与应用。
背景技术
电介质电容器作为极其关键的电子元器件,在脉冲功率***、电动汽车、航空航天、防御技术等领域有着广泛的应用。近年来,随着电子元器件小型化、轻量化、安全化以及应用领域多元化的发展,无机电子信息材料向着高效能、高可靠、智能化和功能集成化的方向迈进,进而对新材料的设计和制备技术的创新提出了更高的要求,在同一种介质材料中实现多个功能响应,成为新型智能化材料的研究热点之一。
铌酸钠陶瓷作为电介质电容器材料的一个重要体系,因其宽的带隙(大击穿电场)、无挥发性K元素(易制备)和低的体积密度(轻量化)被认为是最具商业应用潜力的材料,引起了广大科技工作者和企业的广泛关注。目前关于铌酸钠基陶瓷的研究,广大科研人员主要集中在储能性能的提升和优化方面,一方面通过A/B位离子掺杂、两相以及多相组元固溶构造局部随机场,破坏铁电长程有序,增强其弛豫特性,以此获得大的ΔP(Pmax-Pr);另一方面则通过制备工艺的优化获得分布均匀、尺寸细小的晶粒,从而提高材料的击穿场强(Eb),实现提高材料储能特性。
考虑到材料高智能化、高集成化的发展以及透明脉冲电容器的开发和应用,将储能性能和光学透明度结合的新材料设计和制备顺应当前材料设计理念,尤其对新一代透明脉冲电容器的开发有着极其重要的作用。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料及制备方法与应用,该制备方法简单、重复性好、成品率高,具有优异的储能性能和一定的透光率。实用性强,易于常规化批量生产,且能兼顾储能性能和光学性能,是一种性能优良的无铅透明储能陶瓷,有望用于透明脉冲电容器等方面。
为解决上述技术问题,本发明采用的技术方案是:一种铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料,所述透明介质储能陶瓷材料的组成式为:0.95[0.90NaNbO3-0.10((1-x)Bi(Mg2/3Nb1/3)O3-xBa(Mg1/3Nb2/3)O3)]-0.05SrTiO3,式中x为摩尔百分比,0.10≤x≤0.25。
本发明还提供了制备上述的铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料的方法,该方法为:
S1、烘料:分别将Na2CO3原料、Bi2O3原料、BaCO3原料和SrCO3原料分别在温度为300℃的条进行烘干6h;
将Nb2O5原料、TiO2原料和MgO原料分别在温度为900℃的条进行烘干4h;
所述Na2CO3原料的纯度为99.8%,所述Bi2O3原料的纯度为99.8%,所述BaCO3原料的纯度为99%,所述SrCO3原料的纯度为99%,所述Nb2O5的纯度为99.5%,所述MgO原料的纯度为98.5%;
S2、配料:将S1中烘干后的Na2CO3原料、Bi2O3原料、BaCO3原料、SrCO3原料、Nb2O5原料、TiO2原料和MgO原料按照0.95[0.90 NaNbO3-0.10((1-x)Bi(Mg2/3Nb1/3)O3-x Ba(Mg1/ 3Nb2/3)O3)]-0.05SrTiO3的化学计量比分别称取、混合均匀后,得到预混料,加入玛瑙球和无水乙醇,球磨6h~10h,分离玛瑙球后,在温度为80℃~100℃下干燥12h~24h,研磨后过120目筛,得到原料混合物;
S3、预烧:将S2中得到的原料混合物在温度为850℃~950℃的条件下预烧2h~4h,自然冷却至室温,研磨后,得到预烧粉;
S4、二次球磨:向S3中得到的预烧粉中加入玛瑙球和无水乙醇,球磨6h~10h,分离玛瑙球后,在温度为80℃~100℃下干燥12h~24h,研磨后过180目筛,得到磨球后的预烧粉;
S5、压片:向S4中得到的磨球后的预烧粉中加入质量分数为6%聚乙烯醇水溶液,造粒后过40目筛,得到球状粉粒物质,在压力为150MPa~200MPa的单向压力条件下保压20s~60s,得到圆片状陶瓷坯体;
S6、烧结:将S5中得到的圆片状陶瓷坯体进行烧结,得到烧结后的陶瓷坯体;烧结的条件为:先以3℃/min的升温速率从室温升温至550℃,保温3h后,再以3℃/min~5℃/min的升温速率升温至1230℃~1300℃,烧结2h~4h,然后以5℃/min的降温速率冷却至室温;
S7、抛光:将S6中得到的烧结后的陶瓷坯体的上、下表面用600目的砂纸打磨,再用2000目的砂纸和金刚砂抛光至厚度为0.3mm~0.5mm,放入去离子水中,超声清洗干净并烘干,得到抛光后的陶瓷坯体;
S8、表面金属化:在S7中得到的抛光后的陶瓷坯体的上、下表面均匀涂覆厚度为0.01mm~0.03mm的银浆,在温度为850℃的条件下保温10min,自然冷却至室温,得到铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料。
本发明选用Na2CO3原料、Bi2O3原料、BaCO3、SrCO3原料、Nb2O5原料、TiO2原料、和MgO直接合成制备铌酸钠、铌镁酸铋、铌镁酸钡、钛酸锶四元固溶体系,合成的组分具有对称性较高的伪立方相结构,有效避免了入射光在相邻晶粒间的双折射现象,减少了光散射损失,提高了陶瓷材料的透光性;制备过程中两次球磨,一方面有助于初始原料混合均匀、充分反应形成均一的单相结构,另一方面细化粉体颗粒,减小陶瓷晶粒尺寸和气孔,提高其致密度,使入射光容易通过晶体的同时减少晶界的光散射,提高陶瓷的透明度。
优选地,S2中所述预混料、玛瑙球和无水乙醇的用量比为0.35g:1g:0.52mL。
优选地,S4所述预烧粉中加入玛瑙球和无水乙醇的用量比为0.30g:1g:0.40mL。
优选地,S5中所述6%聚乙烯醇水溶液和磨球后的预烧粉的质量比为(25%~35%):1。
本发明还提供了上述制备的铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料的应用,其特征在于,所述铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料具有透光性,用于透明脉冲电容器的制备。
本发明与现有技术相比具有以下优点:
本发明制备的陶瓷材料的制备方法简单、重复性好、成品率高,且所得0.95[0.90NaNbO3-0.10((1-x)Bi(Mg2/3Nb1/3)O3-xBa(Mg1/3Nb2/3)O3)]-0.05SrTiO3透明介质储能陶瓷材料具有优异的储能性能和一定的透光率。实用性强,易于常规化批量生产,且能兼顾储能性能和光学性能,是一种性能优良的无铅透明储能陶瓷,有望用于透明脉冲电容器等方面。
下面结合附图和实施例对本发明作进一步详细说明。
附图说明
图1是本发明实施例1-4中制得的陶瓷样品的XRD图谱。
图2是本发明实施例1-4中制得的陶瓷样品的电子显微镜图片。
图3是本发明实施例1-4中制得的陶瓷样品的击穿场强图。
图4是本发明实施例1-4中制得的陶瓷样品的P-E曲线。
图5是本发明实施例3中制得的0.95[0.90NaNbO3-0.10(0.80Bi(Mg2/3Nb1/3)O3-0.20Ba(Mg1/3Nb2/3)O3)]-0.05SrTiO3陶瓷样品储能性能的温度稳定性图片。
图6是本发明实施例3中制得的0.95[0.90NaNbO3-0.10(0.80Bi(Mg2/3Nb1/3)O3-0.20Ba(Mg1/3Nb2/3)O3)]-0.05SrTiO3陶瓷样品储能性能的频率稳定性图片。
图7是本发明实施例3中制得的0.95[0.90NaNbO3-0.10(0.80Bi(Mg2/3Nb1/3)O3-0.20Ba(Mg1/3Nb2/3)O3)]-0.05SrTiO3陶瓷样品的透光率测试结果。
具体实施方式
实施例1
本实施例的铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料,所述透明介质储能陶瓷材料的组成式为:0.95[0.90NaNbO3-0.10(0.90Bi(Mg2/3Nb1/3)O3-0.10Ba(Mg1/3Nb2/3)O3)]-0.05SrTiO3
本实施例还提供了制备上述的铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料的方法,该方法为:
S1、烘料:分别将Na2CO3原料、Bi2O3原料、BaCO3原料和SrCO3原料分别在温度为300℃的条进行烘干6h;
将Nb2O5原料、TiO2原料和MgO原料分别在温度为900℃的条进行烘干4h;
所述Na2CO3原料的纯度为99.8%,所述Bi2O3原料的纯度为99.8%,所述BaCO3原料的纯度为99%,所述SrCO3原料的纯度为99%,所述Nb2O5的纯度为99.5%,所述MgO原料的纯度为98.5%,均购于国药集团化学试剂有限公司;
S2、配料:将S1中烘干后的Na2CO3原料、Bi2O3原料、BaCO3原料、SrCO3原料、Nb2O5原料、TiO2原料和MgO原料按照0.95[0.90NaNbO3-0.10(0.90Bi(Mg2/3Nb1/3)O3-0.10Ba(Mg1/ 3Nb2/3)O3)]-0.05SrTiO3的化学计量比分别称取,即称取烘干后的Na2CO3原料5.1089g、Bi2O3原料2.2642g、BaCO3原料0.2131g、SrCO3原料0.8391g、Nb2O5原料13.3748g、TiO2原料0.4586g、和MgO原料0.2770g,混合均匀后,得到预混料,加入玛瑙球和无水乙醇,以300r/min的速率球磨8h,分离玛瑙球后,在温度为90℃下干燥12h,研磨后过120目筛,得到原料混合物;所述预混料、玛瑙球和无水乙醇的用量比为0.35g:1g:0.52mL;
S3、预烧:将S2中得到的原料混合物在温度为900℃的条件下预烧3h,自然冷却至室温,研磨后,得到预烧粉;
S4、二次球磨:向S3中得到的预烧粉中加入玛瑙球和无水乙醇,球磨8h,分离玛瑙球后,在温度为90℃下干燥20h,研磨后过180目筛,得到磨球后的预烧粉;所述预烧粉中加入玛瑙球和无水乙醇的用量比为0.30g:1g:0.40mL;
S5、压片:向S4中得到的磨球后的预烧粉中加入质量分数为6%聚乙烯醇水溶液,造粒后过40目筛,得到球状粉粒物质,在压力为180MPa的单向压力条件下保压40s,得到圆片状陶瓷坯体;所述6%聚乙烯醇水溶液和磨球后的预烧粉的质量比为30%:1;
S6、烧结:将S5中得到的圆片状陶瓷坯体进行烧结,得到烧结后的陶瓷坯体;烧结的条件为:先以3℃/min的升温速率从室温升温至550℃,保温3h后,再以4℃/min的升温速率升温至1250℃,烧结3h,然后以5℃/min的降温速率冷却至室温;
S7、抛光:将S6中得到的烧结后的陶瓷坯体的上、下表面用600目的砂纸打磨,再用2000目的砂纸和金刚砂抛光至厚度为0.3mm,放入去离子水中,超声清洗干净并烘干,得到抛光后的陶瓷坯体;
S8、表面金属化:在S7中得到的抛光后的陶瓷坯体的上、下表面均匀涂覆厚度为0.03mm的银浆,在温度为850℃的条件下保温10min,自然冷却至室温,得到铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料。
实施例2
本实施例的铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料,所述透明介质储能陶瓷材料的组成式为:0.95[0.90NaNbO3-0.10(0.85Bi(Mg2/3Nb1/3)O3-0.15Ba(Mg1/3Nb2/3)O3)]-0.05SrTiO3
本实施例还提供了制备上述的铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料的方法,该方法为:
S1、烘料:分别将Na2CO3原料、Bi2O3原料、BaCO3原料和SrCO3原料分别在温度为300℃的条进行烘干6h;
将Nb2O5原料、TiO2原料和MgO原料分别在温度为900℃的条进行烘干4h;
所述Na2CO3原料的纯度为99.8%,所述Bi2O3原料的纯度为99.8%,所述BaCO3原料的纯度为99%,所述SrCO3原料的纯度为99%,所述Nb2O5的纯度为99.5%,所述MgO原料的纯度为98.5%,均购于国药集团化学试剂有限公司;
S2、配料:将S1中烘干后的Na2CO3原料、Bi2O3原料、BaCO3原料、SrCO3原料、Nb2O5原料、TiO2原料和MgO原料按照0.95[0.90NaNbO3-0.10(0.85Bi(Mg2/3Nb1/3)O3-0.15Ba(Mg1/ 3Nb2/3)O3)]-0.05SrTiO3的化学计量比分别称取,即称取烘干后的Na2CO3原料5.1156g、Bi2O3原料2.1412g、BaCO3原料0.3200g、SrCO3原料0.8401g、Nb2O5原料13.4161g、TiO2原料0.4592g和MgO原料0.2701g,混合均匀后,得到预混料,加入玛瑙球和无水乙醇,以300r/min的速率球磨10h,分离玛瑙球后,在温度为80℃下干燥24h,研磨后过120目筛,得到原料混合物;所述预混料、玛瑙球和无水乙醇的用量比为0.35g:1g:0.52mL;
S3、预烧:将S2中得到的原料混合物在温度为850℃的条件下预烧4h,自然冷却至室温,研磨后,得到预烧粉;
S4、二次球磨:向S3中得到的预烧粉中加入玛瑙球和无水乙醇,球磨6h,分离玛瑙球后,在温度为80℃下干燥24h,研磨后过180目筛,得到磨球后的预烧粉;所述预烧粉中加入玛瑙球和无水乙醇的用量比为0.30g:1g:0.40mL;
S5、压片:向S4中得到的磨球后的预烧粉中加入质量分数为6%聚乙烯醇水溶液,造粒后过40目筛,得到球状粉粒物质,在压力为150MPa的单向压力条件下保压60s,得到圆片状陶瓷坯体;所述6%聚乙烯醇水溶液和磨球后的预烧粉的质量比为25%:1;
S6、烧结:将S5中得到的圆片状陶瓷坯体进行烧结,得到烧结后的陶瓷坯体;烧结的条件为:先以3℃/min的升温速率从室温升温至550℃,保温3h后,再以3℃/min的升温速率升温至1230℃,烧结4h,然后以5℃/min的降温速率冷却至室温;
S7、抛光:将S6中得到的烧结后的陶瓷坯体的上、下表面用600目的砂纸打磨,再用2000目的砂纸和金刚砂抛光至厚度为0.5mm,放入去离子水中,超声清洗干净并烘干,得到抛光后的陶瓷坯体;
S8、表面金属化:在S7中得到的抛光后的陶瓷坯体的上、下表面均匀涂覆厚度为0.01mm的银浆,在温度为850℃的条件下保温10min,自然冷却至室温,得到铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料。
实施例3
本实施例的铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料,所述透明介质储能陶瓷材料的组成式为:0.95[0.90NaNbO3-0.10(0.80Bi(Mg2/3Nb1/3)O3-0.20Ba(Mg1/3Nb2/3)O3)]-0.05SrTiO3
本实施例还提供了制备上述的铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料的方法,该方法为:
S1、烘料:分别将Na2CO3原料、Bi2O3原料、BaCO3原料和SrCO3原料分别在温度为300℃的条进行烘干6h;
将Nb2O5原料、TiO2原料和MgO原料分别在温度为900℃的条进行烘干4h;
所述Na2CO3原料的纯度为99.8%,所述Bi2O3原料的纯度为99.8%,所述BaCO3原料的纯度为99%,所述SrCO3原料的纯度为99%,所述Nb2O5的纯度为99.5%,所述MgO原料的纯度为98.5%,均购于国药集团化学试剂有限公司;
S2、配料:将S1中烘干后的Na2CO3原料、Bi2O3原料、BaCO3原料、SrCO3原料、Nb2O5原料、TiO2原料和MgO原料按照0.95[0.90NaNbO3-0.10(0.8Bi(Mg2/3Nb1/3)O3-0.2Ba(Mg1/3Nb2/3)O3)]-0.05SrTiO3的化学计量比分别称取,即称取烘干后的Na2CO3原料5.1223g、Bi2O3原料2.0179g、BaCO3原料0.4273g、SrCO3原料0.8412g、Nb2O5原料13.4575g、TiO2原料0.4598g和MgO原料0.2631g,混合均匀后,得到预混料,加入玛瑙球和无水乙醇,以300r/min的速率球磨6h,分离玛瑙球后,在温度为100℃下干燥12h,研磨后过120目筛,得到原料混合物;所述预混料、玛瑙球和无水乙醇的用量比为0.35g:1g:0.52mL;
S3、预烧:将S2中得到的原料混合物在温度为950℃的条件下预烧2h,自然冷却至室温,研磨后,得到预烧粉;
S4、二次球磨:向S3中得到的预烧粉中加入玛瑙球和无水乙醇,球磨10h,分离玛瑙球后,在温度为100℃下干燥12h,研磨后过180目筛,得到磨球后的预烧粉;所述预烧粉中加入玛瑙球和无水乙醇的用量比为0.30g:1g:0.40mL;
S5、压片:向S4中得到的磨球后的预烧粉中加入质量分数为6%聚乙烯醇水溶液,造粒后过40目筛,得到球状粉粒物质,在压力为200MPa的单向压力条件下保压20s,得到圆片状陶瓷坯体;所述6%聚乙烯醇水溶液和磨球后的预烧粉的质量比为35%:1;
S6、烧结:将S5中得到的圆片状陶瓷坯体进行烧结,得到烧结后的陶瓷坯体;烧结的条件为:先以3℃/min的升温速率从室温升温至550℃,保温3h后,再以5℃/min的升温速率升温至1300℃,烧结2h,然后以5℃/min的降温速率冷却至室温;
S7、抛光:将S6中得到的烧结后的陶瓷坯体的上、下表面用600目的砂纸打磨,再用2000目的砂纸和金刚砂抛光至厚度为0.5mm,放入去离子水中,超声清洗干净并烘干,得到抛光后的陶瓷坯体;
S8、表面金属化:在S7中得到的抛光后的陶瓷坯体的上、下表面均匀涂覆厚度为0.03mm的银浆,在温度为850℃的条件下保温10min,自然冷却至室温,得到铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料。
实施例4
本实施例的铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料,所述透明介质储能陶瓷材料的组成式为:0.95[0.90NaNbO3-0.10(0.75Bi(Mg2/3Nb1/3)O3-0.25Ba(Mg1/3Nb2/3)O3)]-0.05SrTiO3
本实施例还提供了制备上述的铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料的方法,该方法为:
S1、烘料:分别将Na2CO3原料、Bi2O3原料、BaCO3原料和SrCO3原料分别在温度为300℃的条进行烘干6h;
将Nb2O5原料、TiO2原料和MgO原料分别在温度为900℃的条进行烘干4h;
所述Na2CO3原料的纯度为99.8%,所述Bi2O3原料的纯度为99.8%,所述BaCO3原料的纯度为99%,所述SrCO3原料的纯度为99%,所述Nb2O5的纯度为99.5%,所述MgO原料的纯度为98.5%,均购于国药集团化学试剂有限公司;
S2、配料:将S1中烘干后的Na2CO3原料、Bi2O3原料、BaCO3原料、SrCO3原料、Nb2O5原料、TiO2原料和MgO原料按照0.95[0.90NaNbO3-0.10(0.75Bi(Mg2/3Nb1/3)O3-0.25Ba(Mg1/ 3Nb2/3)O3)]-0.05SrTiO3的化学计量比分别称取,即称取烘干后的Na2CO3原料5.1290g、Bi2O3原料1.8942g、BaCO3原料0.5348g、SrCO3原料0.8423g、Nb2O5原料13.4990g、TiO2原料0.4604g、和MgO原料0.2562g,混合均匀后,得到预混料,加入玛瑙球和无水乙醇,以300r/min的速率球磨7h,分离玛瑙球后,在温度为90℃下干燥15h,研磨后过120目筛,得到原料混合物;所述预混料、玛瑙球和无水乙醇的用量比为0.35g:1g:0.52mL;
S3、预烧:将S2中得到的原料混合物在温度为880℃的条件下预烧2h,自然冷却至室温,研磨后,得到预烧粉;
S4、二次球磨:向S3中得到的预烧粉中加入玛瑙球和无水乙醇,球磨9h,分离玛瑙球后,在温度为95℃下干燥15h,研磨后过180目筛,得到磨球后的预烧粉;所述预烧粉中加入玛瑙球和无水乙醇的用量比为0.30g:1g:0.40mL;
S5、压片:向S4中得到的磨球后的预烧粉中加入质量分数为6%聚乙烯醇水溶液,造粒后过40目筛,得到球状粉粒物质,在压力为180MPa的单向压力条件下保压30s,得到圆片状陶瓷坯体;所述6%聚乙烯醇水溶液和磨球后的预烧粉的质量比为25%:1;
S6、烧结:将S5中得到的圆片状陶瓷坯体进行烧结,得到烧结后的陶瓷坯体;烧结的条件为:先以3℃/min的升温速率从室温升温至550℃,保温3h后,再以3℃/min的升温速率升温至1280℃,烧结3h,然后以5℃/min的降温速率冷却至室温;
S7、抛光:将S6中得到的烧结后的陶瓷坯体的上、下表面用600目的砂纸打磨,再用2000目的砂纸和金刚砂抛光至厚度为0.4mm,放入去离子水中,超声清洗干净并烘干,得到抛光后的陶瓷坯体;
S8、表面金属化:在S7中得到的抛光后的陶瓷坯体的上、下表面均匀涂覆厚度为0.02mm的银浆,在温度为850℃的条件下保温10min,自然冷却至室温,得到铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料。
由图1可见,实施例1~4制备的陶瓷材料均为纯的钙钛矿结构。由图2可见,实施例1~4制备的陶瓷材料晶粒尺寸均匀,颗粒分布致密。由图3和图4可见,实施例1~4制备的陶瓷材料击穿场强分别达到326Kv/cm,347Kv/cm,424Kv/cm和372Kv/cm,其中实施例3制备的0.95[0.90NaNbO3-0.10(0.80Bi(Mg2/3Nb1/3)O3-0.20Ba(Mg1/3Nb2/3)O3)]-0.05SrTiO3陶瓷材料储能性能最佳,最大极化强度(Pmax)为27.56μC/cm2,剩余极化强度(Pr)为0.92μC/cm2,储能密度(Wrec)达到4.49J/cm3,储能效率(η)达到87%。由图5和图6可以看出,实施例3制备的0.95[0.90NaNbO3-0.10(0.80Bi(Mg2/3Nb1/3)O3-0.20Ba(Mg1/3Nb2/3)O3)]-0.05SrTiO3陶瓷材料储能性能温度稳定性和频率稳定性优良,其储能密度Wrec在25-175℃的温度区间内变化值<17%,在1-300Hz范围内变化值<2%。由图7可见,实施例3制备的陶瓷材料呈现一定透光性,其在近红外区的透光率可达50.60%。
同时测得实施例1、实施例2、实施例4制备的陶瓷材料在近红外区的透光率分别为48.90%、47.80%和49.80%
因此,实施例1-4制备的铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料具有透光性,可用于透明脉冲电容器的制备,相比于目前透明陶瓷制备中常用的热压烧结、热等静压烧结、真空烧结、微波烧结等方法,该制备采用普通的常压烧结,且无需添加烧结助剂,生产工艺简单、成本低,经济节能,所获陶瓷材料纯度高,用该材料制备的电容器克服了现有脉冲电容器不能同时兼具高透光率和高储能密度的要求,其在透明电子设备,如电子阅读器、智能手机和触摸屏等领域表现出巨大应用潜力和经济效益。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (6)

1.一种铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料,其特征在于,所述铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料的组成式为:0.95[0.90NaNbO3-0.10((1-x)Bi(Mg2/3Nb1/3)O3-xBa(Mg1/3Nb2/3)O3)]-0.05SrTiO3,式中x为摩尔百分比,0.10≤x≤0.25。
2.一种制备如权利要求1所述的铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料的方法,其特征在于,该方法为:
S1、烘料:分别将Na2CO3原料、Bi2O3原料、BaCO3原料和SrCO3原料分别在温度为300℃的条进行烘干6h;
将Nb2O5原料、TiO2原料和MgO原料分别在温度为900℃的条进行烘干4h;
所述Na2CO3原料的纯度为99.8%,所述Bi2O3原料的纯度为99.8%,所述BaCO3原料的纯度为99%,所述SrCO3原料的纯度为99%,所述Nb2O5的纯度为99.5%,所述MgO原料的纯度为98.5%;
S2、配料:将S1中烘干后的Na2CO3原料、Bi2O3原料、BaCO3原料、SrCO3原料、Nb2O5原料、TiO2原料和MgO原料按照0.95[0.90NaNbO3-0.10((1-x)Bi(Mg2/3Nb1/3)O3-x Ba(Mg1/3Nb2/3)O3)]-0.05SrTiO3的化学计量比分别称取、混合均匀后,得到预混料,加入玛瑙球和无水乙醇,球磨6h~10h,分离玛瑙球后,在温度为80℃~100℃下干燥12h~24h,研磨后过120目筛,得到原料混合物;
S3、预烧:将S2中得到的原料混合物在温度为850℃~950℃的条件下预烧2h~4h,自然冷却至室温,研磨后,得到预烧粉;
S4、二次球磨:向S3中得到的预烧粉中加入玛瑙球和无水乙醇,球磨6h~10h,分离玛瑙球后,在温度为80℃~100℃下干燥12h~24h,研磨后过180目筛,得到磨球后的预烧粉;
S5、压片:向S4中得到的磨球后的预烧粉中加入质量分数为6%聚乙烯醇水溶液,造粒后过40目筛,得到球状粉粒物质,在压力为150MPa~200MPa的单向压力条件下保压20s~60s,得到圆片状陶瓷坯体;
S6、烧结:将S5中得到的圆片状陶瓷坯体进行烧结,得到烧结后的陶瓷坯体;烧结的条件为:先以3℃/min的升温速率从室温升温至550℃,保温3h后,再以3℃/min~5℃/min的升温速率升温至1230℃~1300℃,烧结2h~4h,然后以5℃/min的降温速率冷却至室温;
S7、抛光:将S6中得到的烧结后的陶瓷坯体的上、下表面用600目的砂纸打磨,再用2000目的砂纸和金刚砂抛光至厚度为0.3mm~0.5mm,放入去离子水中,超声清洗干净并烘干,得到抛光后的陶瓷坯体;
S8、表面金属化:在S7中得到的抛光后的陶瓷坯体的上、下表面均匀涂覆厚度为0.01mm~0.03mm的银浆,在温度为850℃的条件下保温10min,自然冷却至室温,得到铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料。
3.根据权利要求2所述的方法,其特征在于,S2中所述预混料、玛瑙球和无水乙醇的用量比为0.35g:1g:0.52mL。
4.根据权利要求2所述的方法,其特征在于,S4所述预烧粉中加入玛瑙球和无水乙醇的用量比为0.30g:1g:0.40mL。
5.根据权利要求2所述的方法,其特征在于,S5中所述6%聚乙烯醇水溶液和磨球后的预烧粉的质量比为(25%~35%):1。
6.一种如权利要求2-5任一权利要求要求制备的铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料的应用,其特征在于,所述铌酸钠-铌镁酸铋-铌镁酸钡-钛酸锶透明介质储能陶瓷材料具有透光性,用于透明脉冲电容器的制备。
CN202211250523.2A 2022-10-12 2022-10-12 一种透明介质储能陶瓷材料及制备方法与应用 Active CN115536390B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211250523.2A CN115536390B (zh) 2022-10-12 2022-10-12 一种透明介质储能陶瓷材料及制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211250523.2A CN115536390B (zh) 2022-10-12 2022-10-12 一种透明介质储能陶瓷材料及制备方法与应用

Publications (2)

Publication Number Publication Date
CN115536390A true CN115536390A (zh) 2022-12-30
CN115536390B CN115536390B (zh) 2023-04-18

Family

ID=84732878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211250523.2A Active CN115536390B (zh) 2022-10-12 2022-10-12 一种透明介质储能陶瓷材料及制备方法与应用

Country Status (1)

Country Link
CN (1) CN115536390B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116063074A (zh) * 2023-01-19 2023-05-05 同济大学 一种具有高储能密度的陶瓷材料及其制备方法和用途
CN116854469A (zh) * 2023-06-28 2023-10-10 长安大学 钛酸铋钠基高熵介质储能陶瓷材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2342259A1 (fr) * 1976-02-26 1977-09-23 Morin Denise Procede de preparation d'une plaquette ferroelectrique transparente en ceramique de niobate mixte de strontium et de sodium
JP2008056549A (ja) * 2006-09-04 2008-03-13 National Institute Of Advanced Industrial & Technology 無鉛圧電磁器組成物
CN110342933A (zh) * 2019-06-19 2019-10-18 西安交通大学 一种调控铌酸钠陶瓷居里温度的方法
CN111704463A (zh) * 2020-07-18 2020-09-25 桂林理工大学 电介质陶瓷材料及其制备方法
CN112919907A (zh) * 2021-02-09 2021-06-08 杭州电子科技大学 一种储能效率加强高储能无铅铁电陶瓷材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2342259A1 (fr) * 1976-02-26 1977-09-23 Morin Denise Procede de preparation d'une plaquette ferroelectrique transparente en ceramique de niobate mixte de strontium et de sodium
JP2008056549A (ja) * 2006-09-04 2008-03-13 National Institute Of Advanced Industrial & Technology 無鉛圧電磁器組成物
CN110342933A (zh) * 2019-06-19 2019-10-18 西安交通大学 一种调控铌酸钠陶瓷居里温度的方法
CN111704463A (zh) * 2020-07-18 2020-09-25 桂林理工大学 电介质陶瓷材料及其制备方法
CN112919907A (zh) * 2021-02-09 2021-06-08 杭州电子科技大学 一种储能效率加强高储能无铅铁电陶瓷材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CONGCONG SUN ET AL.: ""Simultaneously with large energy density and high efficiency achieved in NaNbO3-based relaxor ferroelectric ceramics"" *
JIAMING YE ET AL.: "\"Excellent comprehensive energy storage properties in novel lead-free NaNbO3- based ceramics for dielectric capacitor applications\"" *
MINGXING ZHOU ET AL.: ""Novel Sodium Niobate-Based Lead-Free Ceramics as New Environment-Friendly Energy Storage Materials with High Energy Density, High Power Density, and Excellent Stability"" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116063074A (zh) * 2023-01-19 2023-05-05 同济大学 一种具有高储能密度的陶瓷材料及其制备方法和用途
CN116063074B (zh) * 2023-01-19 2023-09-26 同济大学 一种具有高储能密度的陶瓷材料及其制备方法和用途
CN116854469A (zh) * 2023-06-28 2023-10-10 长安大学 钛酸铋钠基高熵介质储能陶瓷材料及其制备方法与应用

Also Published As

Publication number Publication date
CN115536390B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
CN115536390B (zh) 一种透明介质储能陶瓷材料及制备方法与应用
CN109574656A (zh) 一种高储能钛酸铋钠-钛酸锶基介质材料及其制备方法
CN108623300B (zh) 钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷及其制备方法
CN113213929A (zh) 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法
CN112876247B (zh) 一种宽温度稳定性的高储能密度铌酸锶钠基钨青铜陶瓷及制备方法
CN114621004B (zh) 一种高储能密度的高熵陶瓷材料及其制备方法
CN112552048B (zh) 一种具有高压电性能和高剩余极化强度铌酸钾钠陶瓷的制备方法
CN106587997A (zh) 一种SrTiO3基无铅高储能密度陶瓷材料及其制备方法
CN102674832A (zh) 一种钛酸钡基无铅含铋弛豫铁电陶瓷材料及制备方法
CN111484325A (zh) 一种钛酸锶钡基陶瓷材料及其制备方法和应用
CN110981479B (zh) 一种高击穿的铁电陶瓷及其制备方法
CN110357624B (zh) 高介电常数玻璃料改性锆酸锶掺杂铌酸钾钠无铅透明陶瓷材料及其制备方法
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN106064942A (zh) 高居里温度无铅snkbt压电陶瓷及其制备方法
CN113929458A (zh) 一种高效高储能铌酸钠基陶瓷材料及其制备方法
CN113800904A (zh) 一种高能量低损耗的BNT-SBT-xSMN陶瓷材料及其制备方法
CN116986902A (zh) 一种亚微米细晶结构的高熵钙钛矿陶瓷材料及制备方法
CN112645709A (zh) 一种pzt基压电陶瓷及其制备方法
CN111217604A (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷及制备方法
CN105884352A (zh) 一种新型陶瓷电容器材料Ba4RFe0.5Nb9.5O30(R=La,Eu,Gd)及其制备方法
CN115073160A (zh) 一种具有微纳米电畴结构、高使用温区的高性能铁酸铋-钛酸钡陶瓷及其热压烧结制备方法
CN111153698B (zh) 一种透明铁电陶瓷材料及其制备方法和应用
CN111087242A (zh) 一种高极化的铁电陶瓷及其制备方法
CN114560695B (zh) 一种高储能密度和高储能效率的复合陶瓷材料制备方法
CN116751051B (zh) 一种钛酸铋钠基高储能性能陶瓷电容器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant