CN115536059A - 一种CsPbBr3纳米片及其制备方法和应用 - Google Patents

一种CsPbBr3纳米片及其制备方法和应用 Download PDF

Info

Publication number
CN115536059A
CN115536059A CN202211315620.5A CN202211315620A CN115536059A CN 115536059 A CN115536059 A CN 115536059A CN 202211315620 A CN202211315620 A CN 202211315620A CN 115536059 A CN115536059 A CN 115536059A
Authority
CN
China
Prior art keywords
cspbbr
precursor solution
nano
sheet
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211315620.5A
Other languages
English (en)
Inventor
高妍
宋济安
胡桃
孟智超
江泽龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuyi University
Original Assignee
Wuyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuyi University filed Critical Wuyi University
Priority to CN202211315620.5A priority Critical patent/CN115536059A/zh
Publication of CN115536059A publication Critical patent/CN115536059A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明属于纳米材料技术领域,提供了一种CsPbBr3纳米片及其制备方法和应用,本发明先将含有Cs盐、Pb盐的前驱体溶液混合反应,然后再加入含有NiBr2的第三前驱体溶液,期间发生了离子交换和Ni‑Br钝化,所制得的CsPbBr3纳米片具有蓝光发射和发光强度高的特点,荧光量子产率可达78%,稳定性好,CsPbBr3纳米片分散在溶液中展现了极好的稳定性,在室温下存储30天仍能维持不低于86.3%的发射强度,可以长期存储;另外,本发明提供的制备方法简单,无需这些外部热源以及惰性气体即可在室温下进行,反应周期短,原料价格低,所需设备简单。

Description

一种CsPbBr3纳米片及其制备方法和应用
技术领域
本发明涉及纳米材料技术领域,更具体地,涉及一种CsPbBr3纳米片及其制备方法和应用。
背景技术
全无机钙钛矿纳米晶体由于荧光量子产率高、发光光谱可调、色纯度高等优点引起了科研人员的广泛关注,其在显示、照明和太阳能电池领域等方面都有很好的应用前景。而蓝光发射钙钛矿较为常见的是CsPbCl3纳米晶体或者CsPbClXBr3-X纳米晶体,但都面临稳定性差和荧光量子产率低的问题。而二维CsPbBr3纳米片在生长的过程中由于某一维度会受到限制,受量子限域效应的影响,使得带隙变大,发射峰蓝移,展现出更明显的激子吸收以及更窄的半峰宽。因此CsPbBr3纳米片蓝光发射会更加纯洁,稳定性也有很大的提升。但普遍CsPbBr3纳米片的发光强度较弱,主要是由于表面体积比较大所造成的缺陷增多,激子被缺陷捕获的可能性变大,使得荧光量子产率降低,通常其值小于40%。因此,亟需开发一种发光强度高的蓝光发射CsPbBr3纳米片。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种CsPbBr3纳米片及其制备方法和应用,所制得的CsPbBr3纳米片不仅具有蓝光发射,而且荧光量子产率高≥40%,甚至可达到78%,发光强度高,稳定性好,CsPbBr3纳米片分散在溶液中展现了极好的稳定性,在室温下存储30天仍能维持不低于86.3%的发射强度。
本发明的第一方面提供一种CsPbBr3纳米片的制备方法。
具体地,一种CsPbBr3纳米片的制备方法,包括如下步骤:
(1)将Cs盐溶于第一溶剂中,制得第一前驱体溶液;将Pb盐溶于第二溶剂中,并加入油酸和油胺,制得第二前驱体溶液;将NiBr2溶于第三溶剂中,制得第三前驱体溶液;
(2)将第一前驱体溶液和第二前驱体溶液混合,反应,然后加入有机溶剂,再加入第三前驱体溶液,继续反应,最后加入沉淀剂,离心,制得CsPbBr3纳米片。
本发明分别利用Cs盐、Pb盐制得前驱体溶液,将两者混合反应,纳米片成核与生长,其中油酸和油胺作为表面配体对纳米片进行保护,然后再添加含有NiBr2的第三前驱体溶液,期间发生了离子交换以及表面Ni-Br钝化,一方面原子半径较小的Ni取代了半径较大的Pb,造成晶体结构发生收缩,且Ni-Br之间的结合力要高于Pb-Br,这在一定程度上提高了纳米片的稳定性;另一方面,额外补充的Br离子钝化了CsPbBr3纳米片表面的卤素空位,减少了缺陷密度,提高了荧光量子产率,最后添加沉淀剂,使结晶的纳米片从溶液中析出,获得CsPbBr3纳米片。本发明所制得的CsPbBr3钙钛矿纳米片不仅具有蓝光发射,而且荧光量子产率高,发光强度高,稳定性好。
优选地,所述NiBr2中的Ni元素和所述Pb盐中的Pb元素的摩尔比为1:1-50。
更优选地,所述NiBr2中的Ni元素和所述Pb盐中的Pb元素的摩尔比为1:2-40。
进一步优选地,所述NiBr2中的Ni元素和所述Pb盐中的Pb元素的摩尔比为1:40、1:10、1:5.7、1:4或1:3.1中的一种。
优选地,所述Cs盐为Cs2CO3和/或乙酸铯。
优选地,所述Pb盐为PbBr2
优选地,所述第一溶剂为辛酸和/或油酸。
优选地,所述第二溶剂为甲苯。
优选地,所述第三溶剂为氢溴酸。
优选地,步骤(2)中,所述将第一前驱体溶液和第二前驱体溶液混合前,还包括将第二前驱体溶液投入反应容器中,并以1000-1400转/分钟的速率搅拌,再将第二前驱体溶液在1-5秒的时间注入第一前驱体溶液中。本发明采用较快的搅拌速率对第二前驱体溶液进行搅拌,然后再快速加入到第一前驱体溶液中,其目的是使组分之间更好地均匀混合,有利于纳米片的生长。
优选地,步骤(2)中,所述将第一前驱体溶液和第二前驱体溶液混合后,反应的时间为10-50s。
优选地,步骤(2)中,继续反应的温度为20-30℃,时间为20-40分钟。
更优选地,步骤(2)中,继续反应的温度为25℃,时间为30分钟。
优选地,所述沉淀剂为乙酸乙酯、丙酮、乙腈中的一种或几种。沉淀剂的作用是使纳米片从溶液中析出,同时有提纯的作用。
更优选地,所述沉淀剂为乙酸乙酯。丙酮、乙腈极性较大。
本发明的第二方面提供一种CsPbBr3纳米片。
一种CsPbBr3纳米片,所述CsPbBr3纳米片的荧光量子产率≥40%。
优选地,所述CsPbBr3纳米片的荧光量子产率为40-78%。
更优选地,所述CsPbBr3纳米片的荧光量子产率为55.5-78%。
本发明的第三方面提供一种CsPbBr3纳米片的应用。
一种CsPbBr3纳米片在显示、照明和太阳能电池领域中的应用。
相对于现有技术,本发明的有益效果如下:
(1)本发明先分别利用Cs盐、Pb盐制得前驱体溶液,将两者混合反应,然后添加含有NiBr2的前驱体溶液,期间发生了离子交换和Ni-Br钝化,使得所制得的CsPbBr3纳米片发光强度提高,本发明提供的制备方法简单,相比较于传统的需要在N2氛围保护下以及较高的温度(通常温度可以达到150℃)下完成的热注入方法,本发明的制备方法不仅无需这些外部热源以及惰性气体即可在室温下进行反应,而且反应周期短,原料价格低,所需设备简单,工艺难度低,在一般有通风橱等设置的化学实验室就能够完成;
(2)本发明所制得的CsPbBr3纳米片不仅具有蓝光发射,而且荧光量子产率高,可达到78%,发光强度高,在反应过程中就可以观察到发光强度有了明显的提升,稳定性好,半峰宽窄,不超过14.1nm;反应得到的CsPbBr3纳米片分散在溶液中展现了极好的稳定性,在室温下存储30天仍能维持不低于86.3%的发射强度,可以长期存储。
附图说明
图1为本发明实施例1-5和对比例1制得的CsPbBr3纳米片的荧光光谱图;
图2为本发明对比例1制得的CsPbBr3纳米片的透射电子显微镜图(TEM);
图3为本发明实施例3制得的CsPbBr3纳米片的透射电子显微镜图;
图4为本发明实施例3制得的CsPbBr3纳米片(侧面厚度)的透射电子显微镜图;
图5为本发明实施例1-5和对比例1制得的CsPbBr3纳米片的X射线衍射(XRD)对比图。
具体实施方式
为了让本领域技术人员更加清楚明白本发明所述技术方案,现列举以下实施例进行说明。需要指出的是,以下实施例对本发明要求的保护范围不构成限制作用。
以下实施例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途径得到,或者可以通过现有已知方法得到。
以下各实施例和对比例中所用的Cs2CO3(碳酸铯)、溴化铅(PbBr2)、NiBr2(溴化镍)、甲苯、异丙醇、油酸、油胺、乙酸乙酯等原料均为分析纯试剂,所用到的超声波清洗器的功率为450W,功率可调。
实施例1
一种CsPbBr3纳米片的制备方法,包括如下步骤:
(1)将0.04mmol Cs2CO3溶解在2mL辛酸中,超声直至粉末全部溶解,制成第一前驱体溶液;
(2)将0.2mmol PbBr2溶解在8mL甲苯中,并加入1mL油酸与1mL油胺,超声溶解直到粉末全部溶解,溶液透明即可,制成第二前驱体溶液;
(3)将0.2mmol NiBr2溶解在0.2mL氢溴酸中,直至全部溶解即可制成第三前驱体溶液;
(4)取1mL上述的第二前驱体溶液加入20mL的反应瓶中,并以1200转/分钟的速率剧烈搅拌,接着在5s内快速将75uL第一前驱体溶液注入装有第二前驱体溶液的反应瓶中,反应30s后注入100uL异丙醇继续反应60s,接着加入0.5uL上述第三前驱体溶液(NiBr2中Ni元素与PbBr2中Pb元素的摩尔比为1:40),继续反应30分钟,最后在反应溶液中注入3mL乙酸乙酯,对所得到的粗溶液离心即可获得Ni-Br钝化的CsPbBr3纳米片。
实施例2
本实施例与实施例1的区别在于,加入2uL第三前驱体溶液,NiBr2中Ni元素与PbBr2中Pb元素的摩尔比为1:10。
实施例3
本实施例与实施例1的区别在于,加入3.5uL第三前驱体溶液,NiBr2中Ni元素与PbBr2中Pb元素的摩尔比为1:5.7。
实施例4
本实施例与实施例1的区别在于,加入5uL第三前驱体溶液,NiBr2中Ni元素与PbBr2中Pb元素的摩尔比为1:4。
实施例5
本实施例与实施例1的区别在于,加入6.5uL第三前驱体溶液,NiBr2中Ni元素与PbBr2中Pb元素的摩尔比为1:3.1。
对比例1
一种CsPbBr3纳米片的制备方法,包括如下步骤:
(1)将0.04mmol Cs2CO3溶解在2mL辛酸中,超声直至全部溶解,制成所需的前驱体溶液;
(2)将0.2mmol PbBr2溶解在8mL甲苯中,并加入1mL油酸与1mL油胺,超声溶解直到溶液透明即可,制成所需的前驱体溶液;
(3)取1mL上述(2)中溶液加入20mL的反应瓶中并剧烈搅拌,接着快速注入75uL上述(1)中的溶液,反应30s后注入100uL异丙醇继续反应60s,最后在反应溶液中注入3mL乙酸乙酯,对所得到的粗溶液离心即可获得CsPbBr3纳米片(即为原始CsPbBr3纳米片)。
产品效果测试
1、荧光特性和形貌
如图1所示,实施例1-5制备得到的CsPbBr3纳米片的发光强度均高于对比例1制备的纳米片的发光强度,且晶体结构与对比例1相同,仍维持立方相晶体结构。实施例1-5和对比例1的荧光量子产率分别为56.2%、63.4%、78%、66%、55.5%、33.2%,其中实施例3制备得到的CsPbBr3纳米片的发光强度最佳,荧光量子产率达到78%。另外,本发明实施例1-5制得的钝化后的CsPbBr3纳米片相对于对比例1展现了更高的荧光发射特性,表明CsPbBr3纳米片的缺陷得到了有效钝化,半峰宽更小,表明色纯度更高。图1中Intensity为强度,Wavelength为波长。
从图2中可以明显地看出对比例1制备的CsPbBr3纳米片的形貌,尺寸大小不均匀。
从图3可以明显地看出本发明实施例5制备的CsPbBr3纳米片的形貌,相较于图2中对比例1制得的纳米片,实施例5制备的纳米片展示了更好的尺寸均匀性。
从图4中可以看到实施例3所制备CsPbBr3纳米片的侧面尺寸,其尺寸(≈3nm)小于CsPbBr3纳米晶体的激子波尔半径(7nm),这也正是本发明制得的CsPbBr3纳米片能够更好地实现蓝光发射的原因。
从图5可知,本发明的Ni-Br钝化策略并不会改变CsPbBr3纳米片的晶体结构,同时相应的晶面朝着高角度偏移也证明的Ni2+成功取代了部分Pb2+。图5中Intensity为强度,2θ为衍射角,degree为度。
2、稳定性测试
(1)测试方法
将上述制得的CsPbBr3纳米片分散于甲苯中,并存放在一个透明玻璃瓶中,将此玻璃瓶放在空气中不进行特殊保护,间隔不同的天数用光谱仪进行光谱测量。
(2)测试结果
结果表明,实施例3反应得到的CsPbBr3纳米片分散在溶液中展现了极好的稳定性,在室温下存储30天仍能维持不低于86.3%的发射强度(CsPbBr3纳米片起始的发射强度认为是100%,随着时间延长,强度一般会逐渐降低),可以长期存储。

Claims (10)

1.一种CsPbBr3纳米片的制备方法,其特征在于,包括如下步骤:
(1)将Cs盐溶于第一溶剂中,制得第一前驱体溶液;将Pb盐溶于第二溶剂中,并加入油酸和油胺,制得第二前驱体溶液;将NiBr2溶于第三溶剂中,制得第三前驱体溶液;
(2)将第一前驱体溶液和第二前驱体溶液混合,反应,然后加入有机溶剂,再加入第三前驱体溶液,继续反应,最后加入沉淀剂,离心,制得CsPbBr3纳米片。
2.根据权利要求1所述的制备方法,其特征在于,所述NiBr2中的Ni元素和所述Pb盐中的Pb元素的摩尔比为1:1-50。
3.根据权利要求1所述的制备方法,其特征在于,所述NiBr2中的Ni元素和所述Pb盐中的Pb元素的摩尔比为1:2-40。
4.根据权利要求1所述的制备方法,其特征在于,所述NiBr2中的Ni元素和所述Pb盐中的Pb元素的摩尔比为1:40、1:10、1:5.7、1:4或1:3.1中的一种。
5.根据权利要求1所述的制备方法,其特征在于,所述第一溶剂为辛酸和/或油酸。
6.根据权利要求1所述的制备方法,其特征在于,所述第二溶剂为甲苯。
7.根据权利要求1所述的制备方法,其特征在于,所述第三溶剂为氢溴酸。
8.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述将第一前驱体溶液和第二前驱体溶液混合前,还包括将第二前驱体溶液投入反应容器中,并以1000-1400转/分钟的速率搅拌,再将第二前驱体溶液在1-5秒的时间注入第一前驱体溶液中。
9.权利要求1-8任一项所述制备方法制得的CsPbBr3纳米片,其特征在于,所述CsPbBr3纳米片的荧光量子产率≥40%。
10.权利要求9所述CsPbBr3纳米片在显示、照明或太阳能电池领域中的应用。
CN202211315620.5A 2022-10-26 2022-10-26 一种CsPbBr3纳米片及其制备方法和应用 Pending CN115536059A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211315620.5A CN115536059A (zh) 2022-10-26 2022-10-26 一种CsPbBr3纳米片及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211315620.5A CN115536059A (zh) 2022-10-26 2022-10-26 一种CsPbBr3纳米片及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN115536059A true CN115536059A (zh) 2022-12-30

Family

ID=84717877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211315620.5A Pending CN115536059A (zh) 2022-10-26 2022-10-26 一种CsPbBr3纳米片及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115536059A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116970392A (zh) * 2023-08-01 2023-10-31 上海工程技术大学 原位配体修饰CsPbBr3纳米片材料的制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109810704A (zh) * 2019-04-09 2019-05-28 厦门大学 一种钙钛矿纳米片材料及其制备方法和应用
CN110041927A (zh) * 2019-04-24 2019-07-23 东南大学 一种锰掺杂二维钙钛矿纳米片的制备方法
CN110357148A (zh) * 2019-07-09 2019-10-22 济南大学 一种超稳定CsPbBr3纳米片的制备方法及其在X射线成像的闪烁屏方面的应用
US20200115629A1 (en) * 2018-10-15 2020-04-16 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Quantum dots preparation method and quantum dots
CN113265251A (zh) * 2021-05-28 2021-08-17 吉林师范大学 一种金属溴化物后处理的锰掺杂钙钛矿纳米晶的制备方法及钙钛矿纳米晶
CN113930233A (zh) * 2021-10-25 2022-01-14 五邑大学 钙钛矿纳米晶材料及其制备方法和应用
CN114203920A (zh) * 2021-12-13 2022-03-18 南开大学 一种无机材料钝化无机钙钛矿太阳电池的方法
CN114574200A (zh) * 2022-01-25 2022-06-03 北京航空航天大学 一种过渡金属离子掺杂的钙钛矿量子点材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200115629A1 (en) * 2018-10-15 2020-04-16 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Quantum dots preparation method and quantum dots
CN109810704A (zh) * 2019-04-09 2019-05-28 厦门大学 一种钙钛矿纳米片材料及其制备方法和应用
CN110041927A (zh) * 2019-04-24 2019-07-23 东南大学 一种锰掺杂二维钙钛矿纳米片的制备方法
CN110357148A (zh) * 2019-07-09 2019-10-22 济南大学 一种超稳定CsPbBr3纳米片的制备方法及其在X射线成像的闪烁屏方面的应用
CN113265251A (zh) * 2021-05-28 2021-08-17 吉林师范大学 一种金属溴化物后处理的锰掺杂钙钛矿纳米晶的制备方法及钙钛矿纳米晶
CN113930233A (zh) * 2021-10-25 2022-01-14 五邑大学 钙钛矿纳米晶材料及其制备方法和应用
CN114203920A (zh) * 2021-12-13 2022-03-18 南开大学 一种无机材料钝化无机钙钛矿太阳电池的方法
CN114574200A (zh) * 2022-01-25 2022-06-03 北京航空航天大学 一种过渡金属离子掺杂的钙钛矿量子点材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DONG HUANG ET AL.: "Luminescence and Stability Enhancement of CsPbBr3 Perovskite Quantum Dots through Surface Sacrificial Coating", ADV. OPTICAL MATER., vol. 9, pages 2100474 - 1 *
YAN ZHAN ET AL.: "NiBr2‑Treated CsPbI3 Nanocrystals with Stability and Tunable Bright Luminescence for Light-Emitting Devices", ACS APPL. NANO MATER., vol. 5, pages 5140 - 5148 *
孙智国等: "Ni2+掺杂和卤素空位填充协同抑制CsPbBr3纳米晶体中的离子迁移", 中国光学, vol. 14, no. 1, pages 3 - 6 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116970392A (zh) * 2023-08-01 2023-10-31 上海工程技术大学 原位配体修饰CsPbBr3纳米片材料的制备方法和应用

Similar Documents

Publication Publication Date Title
CN111081816B (zh) 碱金属离子钝化表面缺陷的钙钛矿纳米晶及其制备与应用
Kostopoulou et al. Low-temperature benchtop-synthesis of all-inorganic perovskite nanowires
Liu et al. Controllable synthesis of uniform CaMoO 4: Eu 3+, M+(M= Li, Na, K) microspheres and optimum luminescence properties
Zheng et al. Facile selective synthesis and luminescence behavior of hierarchical NaY (WO 4) 2: Eu 3+ and Y 6 WO 12: Eu 3+
Dhananjaya et al. Spherical and rod-like Gd 2 O 3: Eu 3+ nanophosphors—Structural and luminescent properties
Xiao et al. Synthesis and luminescence properties of YVO4: Eu3+ cobblestone-like microcrystalline phosphors obtained from the mixed solvent-thermal method
Zhao et al. Fabrication of assembled-spheres YVO 4:(Ln 3+, Bi 3+) towards optically tunable emission
Zhao et al. 3D-hierarchical Lu 2 O 2 S: Eu 3+ micro/nano-structures: controlled synthesis and luminescence properties
Rai et al. Synthesis, growth mechanism and photoluminescence of monodispersed cubic shape Ce doped YAG nanophosphor
Yang et al. Hydrothermal synthesis and luminescent properties of LuBO3: Tb3+ microflowers
CN108339562B (zh) 一种铁离子掺杂的氮化碳纳米管的制备方法及所得产品
Ray et al. Shape controlled synthesis, characterization and photoluminescence properties of YVO4: Dy3+/Eu3+ phosphors
Qu et al. Synthesis of Cu2O nano-whiskers by a novel wet-chemical route
Zhang et al. PEG-assisted hydrothermal synthesis and photoluminescence of CdMoO4: Tb3+ green phosphor
Jia et al. Uniform and well-dispersed LaBO 3 hierarchical architectures: synthesis, formation, and luminescence properties
CN115536059A (zh) 一种CsPbBr3纳米片及其制备方法和应用
Deng et al. Novel Bi19S27Br3 superstructures: facile microwave-assisted aqueous synthesis and their visible light photocatalytic performance
Zhao et al. Controllable synthesis of Sc 2 Mo 3 O 12 microcrystals with exposed {001} facets and their remarkable tunable luminescence properties by doping lanthanides
Xu et al. Self-assembled growth of LuVO 4 nanoleaves: hydrothermal synthesis, morphology evolution, and luminescence properties
Xu et al. Self-assembled 3D architectures of lanthanide orthoborate: hydrothermal synthesis and luminescence properties
Zhang et al. ZnO micro-and nano-structures: microwave-assisted solvothermal synthesis, morphology control and photocatalytic properties
Yang et al. Hydrothermal synthesis of SrCO3: Eu3+/Tb3+ microneedles and their luminescence properties
Zhou et al. Self-assembly and photoluminescence characterization of CaMoO4: Eu3+, Na+ superstructure via a facile surfactant-free hydrothermal method
Xia et al. Template-free synthesis, growth mechanism and photoluminescent properties of Ln (OH) 3 and Ln2O3 nanorods (Ln: lanthanide ion)
CN110078116B (zh) 一种钙钛矿CsPbBr3量子点及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination