CN115487791A - 一种两亲型磁性固相萃取材料及其制备方法和在检测类固醇激素中的应用 - Google Patents

一种两亲型磁性固相萃取材料及其制备方法和在检测类固醇激素中的应用 Download PDF

Info

Publication number
CN115487791A
CN115487791A CN202211012108.3A CN202211012108A CN115487791A CN 115487791 A CN115487791 A CN 115487791A CN 202211012108 A CN202211012108 A CN 202211012108A CN 115487791 A CN115487791 A CN 115487791A
Authority
CN
China
Prior art keywords
phase extraction
extraction material
amphiphilic
magnetic solid
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211012108.3A
Other languages
English (en)
Inventor
赖华杰
王浩东
刘博�
李念
赵嘉辉
肖甯兰
张淼
***
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke Testing Technology Service Guangzhou Co ltd
Original Assignee
Zhongke Testing Technology Service Guangzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongke Testing Technology Service Guangzhou Co ltd filed Critical Zhongke Testing Technology Service Guangzhou Co ltd
Priority to CN202211012108.3A priority Critical patent/CN115487791A/zh
Publication of CN115487791A publication Critical patent/CN115487791A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明属于环境功能材料及环境检测技术领域,公开了一种两亲型磁固相萃取材料及其制备方法和在检测类固醇激素中的应用。该两亲型磁固相萃取材料的制备方法包括如下步骤:将氯化铁与氯化亚铁通过氨气进行还原制备得到四氧化三铁磁珠,并使用油酸进行混合包裹提高其油溶性;然后以N‑乙烯基吡咯烷酮和二乙烯基苯为主要原料、甲苯为溶剂,在磁珠表面聚合得到具有两亲性的HLB层,得到所述的两亲型磁固相萃取材料。本发明中的两亲型磁固相萃取材料可用于水体环境中的类固醇激素如含羧基、羟基的甾体激素等,萃取操作步骤简单,萃取相与样品易于分离,同时还有效避免了有机溶剂的消耗,应用前景好。

Description

一种两亲型磁性固相萃取材料及其制备方法和在检测类固醇 激素中的应用
技术领域
本发明属于环境功能材料及环境检测技术领域,特别涉及一种两亲型磁性固相萃取材料及其制备方法和在检测类固醇激素中的应用。
背景技术
类固醇激素又称甾体激素,是一类以环戊烷多氢菲结构为核心的脂溶性低分子化合物,它在调节新陈代谢、治疗相关炎症、维持水盐平衡、促进性征发育等方面都起着关键的作用。正因如此,其被广泛的应用于免疫调节、生育调控等领域,而这也导致了其容易流入环境,并随着食物链富集,对相关生物产生影响。有研究证实,在ng/L水平下,类固醇***能诱导卵黄蛋白原生成,进而导致一些生物产生雌性化、生殖障碍、免疫力降低等问题。近年来,许多相关报道也指出环境水样中类固醇激素的检出。其在环境中的富集,必然会对相关水生生物及生态***带来严重的危害。
由于其能在低浓度尺度对环境带来影响,因此找寻合适的富集、浓缩、净化等前处理方法是对其进行监测的关键。目前常用的样品前处理技术主要有液液萃取、分散萃取和固相萃取等。其中,固相萃取具有操作简便,富集倍数较高等优点,主要被应用于成分组成复杂的样品中被检测物质的富集和分离,以此来提高检测的灵敏度。但是,传统的固相萃取方法主要依靠固相萃取柱来进行操作,在面对非纯液体的环境样品时,胶体或微小颗粒的存在可能导致萃取柱堵塞,进而影响富集;而且为了提高前处理效率,通常需要加压以加快样品的流速,增加了操作步骤。
以磁性材料作为吸附剂的固相萃取被称为磁固相萃取,该技术的出现克服了上述固相萃取的缺点。而在磁性材料的基础上加以改性,制备具有针对性的检测类固醇激素的磁固相萃取材料,具有广泛的应用前景和实际意义。
发明内容
本发明的首要目的在于克服现有技术的缺点与不足,提供一种两亲型磁性固相萃取材料的制备方法。
本发明的另一目的在于提供所述方法制备得到的两亲型磁性固相萃取材料。
本发明的另一目的在于所述两亲型磁性固相萃取材料在检测类固醇激素中的应用。
本发明的目的通过下述技术方案实现:
一种两亲型磁性固相萃取材料的制备方法,包括如下步骤:
(1)将六水合氯化铁和四水合氯化亚铁搅拌溶解于超纯水中,滴加溶有油酸的丙酮溶液;滴加完毕后搅拌混匀10~30min后,在混合液中逐滴加入氨水,加热至50~100℃进行反应;反应结束后冷却至室温,收集磁性纳米粒子,分别用乙醇和超纯水洗涤,然后真空干燥,得到油酸包裹的磁性纳米粒子;
(2)将十二烷基硫酸钠、聚乙烯吡咯烷酮和羟乙基纤维素溶于超纯水中得到水相;将步骤(1)所得油酸包裹的磁性纳米粒子和偶氮二异丁腈溶于甲苯中得到油相;将油相均分为两份,一份用于溶解二乙烯基苯得到X溶液,另一份用于溶解乙烯基吡咯烷酮得到Y溶液;
将水相搅拌加热至20~40℃,滴加Y溶液,滴加完毕之后继续升温至60~80℃,滴加X溶液,最终于80℃下恒温反应24~48h,分别用乙醇和乙腈洗涤,然后将产物在30~50℃下真空干燥6h,得到两亲型磁性固相萃取材料。
步骤(1)中所述的六水合氯化铁和四水合氯化亚铁的摩尔比为1:1;
步骤(2)中所述的十二烷基硫酸钠、聚乙烯吡咯烷酮和羟乙基纤维素的质量比为3:5:3;
步骤(2)中所述的二乙烯基苯与乙烯基吡咯烷酮的摩尔比为1:1~1:2,优选为2:3。
步骤(1)中所述的氨水的质量浓度为25%;
步骤(2)中所述的聚乙烯吡咯烷酮的平均分子量10000,K13~18;
步骤(2)中所述的羟乙基纤维素的粘度250~400mpa.s;
步骤(1)中所述的搅拌转速为300~450rpm,优选为350rpm;
步骤(1)中所述的反应是加热至80℃进行反应;
步骤(2)中所述的搅拌转速为300~450rpm,优选为400rpm。
一种由上述的制备方法制备得到的两亲型磁性固相萃取材料。
上述的两亲型磁性固相萃取材料在富集、浓缩和/或检测类固醇激素中的应用。
所述类固醇激素为化学结构中含有羟基、羧基的甾体激素,包括氟米龙、氢化可的松和波尼松龙中的至少一种。
一种利用上述的两亲型磁性固相萃取材料富集、浓缩和检测类固醇激素的方法,包括如下步骤:
(A)样品制备:将待萃取的样品调节pH值至6.5~7.5;
(B)萃取:按照每10mL待萃取的样品使用100mg的量称取两亲型磁性固相萃取材料,放入待萃取的样品中,震荡混匀以富集浓缩目标物,再利用磁吸附将两亲型磁性固相萃取材料取出,晾干;
(C)洗脱:用甲醇对两亲型磁性固相萃取材料进行洗脱、过滤,得到洗脱液;
(D)利用液相色谱串联质谱对洗脱液进行检测;根据相应的类固醇激素标准品的浓度和液相色谱串联质谱的检测结果绘制的标准工作曲线,再根据待测样品的液相色谱串联质谱的检测结果,换算得到待测样品中类固醇激素的浓度或含量。
步骤(A)中所述的pH值是调节至7;
步骤(A)中所述的待萃取的样品为地表水、废水;
步骤(B)中所述的震荡混匀的转速为1000~2500rpm,优选为1500rpm;
步骤(B)中所述的震荡时间为3~20min,优选为10min;
步骤(C)中所述的甲醇用量与两亲型磁性固相萃取材料的比值为 1mL/100mg,洗脱次数为两次;
步骤(D)中所述的液相色谱串联质谱的条件如下:
色谱条件:色谱柱为2.1×100mm,1.9μm的C18柱,流动相A相为0.1%甲酸水溶液,B相为乙腈,流速为0.3mL/min,柱温为40℃,进样量为10μL;
质谱条件:离子源为电喷雾离子源(ESI);检测方式和扫描方式分别设置为多反应检测(MRM)和正离子/负离子模式;其中雾化气流量、加热气流量和干燥气流量分别为3L/min、10L/min和10L/min;接口温度、脱溶剂温度、DL温度、加热块温度依次为300℃、526℃、250℃和400℃。
本发明相对于现有技术具有如下的优点及效果:
(1)本发明提供了一种两亲型磁性固相萃取材料,该材料由磁核(Fe3O4) 和两亲型吸附层(N-乙烯基吡咯烷酮与二乙烯基苯聚合物)两部分构成;即将磁核分散于溶剂中,然后通过N-乙烯基吡咯烷酮和二乙烯基苯进行聚合,在磁核表面形成具有两亲性的聚合物,进而得到能应用于类固醇激素的富集萃取的固相萃取材料。
(2)本发明两亲型磁性固相萃取材料制备流程简单,对类固醇激素具有优异的吸附容量与检出限;且该材料体现了较好的稳定性,在多次重复使用下依然具有较高的回收率,具有良好的经济效益,绿色环保。能广泛的应用于小体积的快速检测场景。
附图说明
图1是磁性纳米粒子和两亲型磁固相萃取材料的傅里叶变换红外光谱图;其中,(a)为磁性纳米粒子的傅里叶变换红外光谱图;(b)为两亲型磁固相萃取材料的傅里叶变换红外光谱图。
图2是磁性纳米粒子和两亲型磁固相萃取材料的磁滞回曲线图。
图3是两亲型磁固相萃取材料对目标化合物的吸附情况图,(a)为氟米龙, (b)为氢化可的松,(c)为波尼松龙。
图4是类固醇激素的色谱图,其中(a)为氟米龙,(b)为氢化可的松,(c) 为波尼松龙。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。下列实施例中未注明具体实验条件的试验方法,通常按照常规实验条件或按照制造厂所建议的实验条件。除非特别说明,本发明所用试剂和原材料均可通过市售获得。
实施例1
制备两亲型磁固相萃取材料:
(1)分别称取5.40g六水合氯化铁、1.99g四水合氯化亚铁,搅拌溶解于 150mL超纯水中,得到A溶液;称取2.00g油酸,充分溶解于15mL丙酮中,缓慢滴加于A溶液中。
搅拌混匀30min后,在混合液中逐滴加入15mL氨水,在20~30℃下搅拌混匀1h,加热至80℃,反应3h,得到磁性纳米粒子。待冷却至室温,收集黑色磁性粒子,分别用乙醇和超纯水洗涤4次,然后将产物在45℃下真空干燥12h,得到油酸包裹的磁性纳米粒子MNP;
(2)分别称取0.30g十二烷基硫酸钠、0.50g聚乙烯吡咯烷酮和0.30g羟乙基纤维素,溶于100mL超纯水中,得到水相;分别称取2.00g油酸包裹的磁性纳米粒子MNP和0.30g偶氮二异丁腈,溶于15mL甲苯中,得到油相;称取1.56g 二乙烯基苯,溶于7.50mL油相溶液中,得到X溶液;称取2.00g N-乙烯基吡咯烷酮,溶于7.50mL油相溶液中,得到Y溶液;
将水相搅拌加热至40℃,缓慢滴加Y溶液;继续升温至70℃,缓慢滴加X 溶液,最终于80℃下恒温反应48h,分别用乙醇和乙腈洗涤5次,然后将产物在45℃下真空干燥6h,得到两亲型磁固相萃取材料HLB-MNP;
通过傅里叶变换红外图(FT-IR)可以证明:N-乙烯基吡咯烷酮和二乙烯基苯在磁珠表面成功聚合(图1)。通过振动样品磁强计(VSM)可以证明,材料磁滞回线呈S型曲线,通过磁化零点。所有的VSM曲线几乎没有磁滞、剩磁和矫顽力。具有典型的超顺磁性(图2)。
(3)两亲型磁固相萃取材料对类固醇激素的吸附量
测定步骤(2)中制备的两亲型磁固相萃取材料(HLB-MNP)对类固醇激素(氟米龙、氢化可的松和波尼松龙)的吸附量,具体步骤如下:
用去离子水配制浓度为400、800、1200、1600、2000μg/L的类固醇激素混合溶液(氟米龙、氢化可的松和波尼松龙的质量比为1:1:1),取5mL溶液并放入100mg两亲型磁固相萃取材料进行萃取,为保证达到萃取平衡,设置萃取时间为10min。用LC-MS/MS分别测定初始浓度和萃取后溶液浓度,吸附量=(初始浓度-萃取后浓度)×溶液体积/两亲型磁固相萃取材料质量;LC-MS/MS检测条件如下:
液相:SHIMADZU 20ADXR液相色谱仪,色谱柱为C18柱(2.1×100mm, 1.9μm),流动相A相为0.1%甲酸水溶液,B相为乙腈,流速为0.3mL/min,柱温为40℃,进样量为10μL;
质谱:SHIMADZU LCMS-8045三重四极杆液质联用仪,离子源为电喷雾离子源(ESI);检测方式和扫描方式分别设置为多反应检测(MRM)和正离子模式(氢化可的松为负离子模式);其中雾化气流量、加热气流量和干燥气流量分别为 3L/min、10L/min和10L/min;接口温度、脱溶剂温度、DL温度、加热块温度依次为300℃、526℃、250℃和400℃。
两亲型磁固相萃取材料对类固醇激素的吸附量结果如表1所示。
表1两亲型磁固相萃取材料对类固醇激素的吸附量结果(单位:ug/mg)
氟米龙 波尼松龙 氢化可的松
HLB-MNP 97.79 92.80 92.82
另外,图3为两亲型磁固相萃取材料对类固醇激素的吸附量探索。实验表明,两亲型磁固相萃取材料对目标化合物的吸附率均高于90%,同时还探索了该材料对目标化合物的吸附量,随着加标浓度增加,吸附量也在增加,且加标浓度已远超过仪器的测上限。表1给出了该材料对几种类固醇激素的吸附量。
实施例2
两亲型磁固相萃取材料与液质联用应用于萃取检测地表水中类固醇激素的方法,包括以下步骤:
(1)标准品的配制,用甲醇(色谱纯)为溶剂,配制氟米龙、氢化可的松和波尼松龙40mg/L储备液并置于4℃保存;然后配制混合标准溶液,浓度依次为10μg/L、20μg/L、40μg/L、100μg/L、200μg/L、400μg/L、1000μg/L,用LC-MS/MS 进行检测分析,检测条件与下述待测样品一致;根据其响应强度和浓度进行一元线性回归拟合,绘制标准工作曲线(曲线模型为y=Ax,其中x为浓度,y为响应强度,A为相关系数),标准工作曲线具体见表1。
(2)固相萃取
①萃取:将100mg由上述实施例所得两亲型磁固相萃取材料置于5mL样品溶液中,恒温下振荡混匀10min(转速1500rpm);接着通过磁吸附将两亲型磁固相萃取材料从样品溶液中取出,用水洗涤并烘干;
②洗脱:用1mL甲醇溶液对两亲型磁固相萃取材料洗脱两次,每次在 1500rpm转速下震荡洗脱5min,得到的洗脱液用0.22μm过滤器过滤除去样品中的细小颗粒,利用液质串联质谱(LC-MS/MS)进行检测。其中,LC-MS/MS检测条件如下:
液相:SHIMADZU 20ADXR液相色谱仪,色谱柱为C18柱(2.1×100mm, 1.9μm),流动相A相为0.1%甲酸水溶液,B相为乙腈,流速为0.3mL/min,柱温为40℃,进样量为10μL;
质谱:SHIMADZU LCMS-8045三重四极杆液质联用仪,离子源为电喷雾离子源(ESI);检测方式和扫描方式分别设置为多反应检测(MRM)和正离子模式(氢化可的松为负离子模式);其中雾化气流量、加热气流量和干燥气流量分别为 3L/min、10L/min和10L/min;接口温度、脱溶剂温度、DL温度、加热块温度依次为300℃、526℃、250℃和400℃。
其他参数见表2,梯度洗脱程序见表3,目标物的色谱图见图4((a)、(b) 和(c)分别为氟米龙、氢化可的松和波尼松龙)。
(3)结果:目标分析物(表4)的检出限、线性范围及回收率见表5(回收率=(解吸后浓度×2)/(样品浓度×5)×100%)。
表2目标分析物定性、定量离子和质谱分析参数
Figure BDA0003810982810000081
表3梯度洗脱程序表
Figure BDA0003810982810000082
表4目标分析物
Figure BDA0003810982810000091
表5目标物在地表水中回收率
Figure BDA0003810982810000092
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种两亲型磁性固相萃取材料的制备方法,其特征在于,包括如下步骤:
(1)将六水合氯化铁和四水合氯化亚铁搅拌溶解于超纯水中,滴加溶有油酸的丙酮溶液;滴加完毕后搅拌混匀10~30min后,在混合液中逐滴加入氨水,加热至50~100℃进行反应;反应结束后冷却至室温,收集磁性纳米粒子,分别用乙醇和超纯水洗涤,然后真空干燥,得到油酸包裹的磁性纳米粒子;
(2)将十二烷基硫酸钠、聚乙烯吡咯烷酮和羟乙基纤维素溶于超纯水中得到水相;将步骤(1)所得油酸包裹的磁性纳米粒子和偶氮二异丁腈溶于甲苯中得到油相;将油相均分为两份,一份用于溶解二乙烯基苯得到X溶液,另一份用于乙烯基吡咯烷酮得到Y溶液;
将水相搅拌加热至20~40℃,滴加Y溶液,滴加完毕之后继续升温至60~80℃,滴加X溶液,最终于80℃下恒温反应24~48h,分别用乙醇和乙腈洗涤,然后将产物在30~50℃下真空干燥6h,得到两亲型磁性固相萃取材料。
2.根据权利要求1所述的两亲型磁性固相萃取材料的制备方法,其特征在于:
步骤(1)中所述的六水合氯化铁和四水合氯化亚铁的摩尔比为1:1;
步骤(2)中所述的十二烷基硫酸钠、聚乙烯吡咯烷酮和羟乙基纤维素的质量比为3:5:3;
步骤(2)中所述的二乙烯基苯与乙烯基吡咯烷酮的摩尔比为1:1~1:2。
3.根据权利要求1所述的两亲型磁性固相萃取材料的制备方法,其特征在于:
步骤(1)中所述的氨水的质量浓度为25%;
步骤(2)中所述的聚乙烯吡咯烷酮的平均分子量10000,K13~18;
步骤(2)中所述的羟乙基纤维素的粘度250~400mpa.s;
步骤(1)中所述的搅拌转速为300~450rpm;
步骤(1)中所述的反应是加热至80℃进行反应;
步骤(2)中所述的搅拌转速为300~450rpm。
4.根据权利要求1所述的两亲型磁性固相萃取材料的制备方法,其特征在于:步骤(2)中所述的二乙烯基苯与乙烯基吡咯烷酮的摩尔比为2:3;
步骤(1)中所述的搅拌转速为350rpm;
步骤(2)中所述的搅拌转速为400rpm。
5.一种由权利要求1~4任一项所述的制备方法制备得到的两亲型磁性固相萃取材料。
6.根据权利要求5所述的两亲型磁性固相萃取材料在富集、浓缩和/或检测类固醇激素中的应用。
7.根据权利要求6所述的应用,其特征在于:所述类固醇激素为化学结构中含有羟基、羧基的甾体激素,包括氟米龙、氢化可的松和波尼松龙中的至少一种。
8.一种利用权利要求5所述的两亲型磁性固相萃取材料富集、浓缩和检测类固醇激素的方法,其特征在于,包括如下步骤:
(A)样品制备:将待萃取的样品调节pH值至6.5~7.5;
(B)萃取:按照每10mL待萃取的样品使用100mg的量称取两亲型磁性固相萃取材料,放入待萃取的样品中,震荡混匀以富集浓缩目标物,再利用磁吸附将两亲型磁性固相萃取材料取出,晾干;
(C)洗脱:用甲醇对两亲型磁性固相萃取材料进行洗脱、过滤,得到洗脱液;
(D)利用液相色谱串联质谱对洗脱液进行检测;根据相应的类固醇激素标准品的浓度和液相色谱串联质谱的检测结果绘制的标准工作曲线,再根据待测样品的液相色谱串联质谱的检测结果,换算得到待测样品中类固醇激素的浓度或含量。
9.根据权利要求8所述的方法,其特征在于:
步骤(A)中所述的pH值是调节至7;
步骤(A)中所述的待萃取的样品为地表水、废水;
步骤(B)中所述的震荡混匀的转速为1000~2500rpm;
步骤(B)中所述的震荡时间为3~20min;
步骤(C)中所述的甲醇用量与两亲型磁性固相萃取材料的比值为1mL/100mg,洗脱次数为两次;
步骤(D)中所述的液相色谱串联质谱的条件如下:
色谱条件:色谱柱为2.1×100mm,1.9μm的C18柱,流动相A相为0.1%甲酸水溶液,B相为乙腈,流速为0.3mL/min,柱温为40℃,进样量为10μL;
质谱条件:离子源为电喷雾离子源(ESI);检测方式和扫描方式分别设置为多反应检测(MRM)和正离子/负离子模式;其中雾化气流量、加热气流量和干燥气流量分别为3L/min、10L/min和10L/min;接口温度、脱溶剂温度、DL温度、加热块温度依次为300℃、526℃、250℃和400℃。
10.根据权利要求8所述的方法,其特征在于:所述的震荡混匀的转速为1500rpm;所述的震荡时间为10min。
CN202211012108.3A 2022-08-23 2022-08-23 一种两亲型磁性固相萃取材料及其制备方法和在检测类固醇激素中的应用 Pending CN115487791A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211012108.3A CN115487791A (zh) 2022-08-23 2022-08-23 一种两亲型磁性固相萃取材料及其制备方法和在检测类固醇激素中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211012108.3A CN115487791A (zh) 2022-08-23 2022-08-23 一种两亲型磁性固相萃取材料及其制备方法和在检测类固醇激素中的应用

Publications (1)

Publication Number Publication Date
CN115487791A true CN115487791A (zh) 2022-12-20

Family

ID=84466905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211012108.3A Pending CN115487791A (zh) 2022-08-23 2022-08-23 一种两亲型磁性固相萃取材料及其制备方法和在检测类固醇激素中的应用

Country Status (1)

Country Link
CN (1) CN115487791A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117368380A (zh) * 2023-12-08 2024-01-09 北京梅斯质谱生物科技有限责任公司 一种类固醇激素的检测试剂盒以及检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106458644A (zh) * 2014-05-20 2017-02-22 米兰理工大学 用于除去烃和金属离子的两亲性磁性纳米粒子和聚集体及其合成
CN107999037A (zh) * 2017-12-18 2018-05-08 南京大学 一种磁性高分子吸附材料、制备方法和应用
CN109001335A (zh) * 2018-09-13 2018-12-14 山东师范大学 用于测定南极磷虾中17种类固醇激素的方法
CN109682897A (zh) * 2019-01-17 2019-04-26 南京大学 一种同时测定环境水样中多种内分泌干扰物的方法
CN110658280A (zh) * 2019-10-21 2020-01-07 天津师范大学 一种基于磁性金属有机骨架复合材料检测双酚类化合物的方法
CN114324643A (zh) * 2021-12-24 2022-04-12 浙江树人学院(浙江树人大学) 有机肥中大环内酯类抗生素的检测方法及其样品处理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106458644A (zh) * 2014-05-20 2017-02-22 米兰理工大学 用于除去烃和金属离子的两亲性磁性纳米粒子和聚集体及其合成
CN107999037A (zh) * 2017-12-18 2018-05-08 南京大学 一种磁性高分子吸附材料、制备方法和应用
WO2019119568A1 (zh) * 2017-12-18 2019-06-27 南京大学 一种磁性高分子吸附材料、制备方法和应用
CN109001335A (zh) * 2018-09-13 2018-12-14 山东师范大学 用于测定南极磷虾中17种类固醇激素的方法
CN109682897A (zh) * 2019-01-17 2019-04-26 南京大学 一种同时测定环境水样中多种内分泌干扰物的方法
CN110658280A (zh) * 2019-10-21 2020-01-07 天津师范大学 一种基于磁性金属有机骨架复合材料检测双酚类化合物的方法
CN114324643A (zh) * 2021-12-24 2022-04-12 浙江树人学院(浙江树人大学) 有机肥中大环内酯类抗生素的检测方法及其样品处理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
VAROON SINGH ET AL.: ""Magnetic hydrophilic–lipophilic balance sorbent for efficientextraction of chemical warfare agents from water samples"", 《JOURNAL OF CHROMATOGRAPHY A》, vol. 1434, pages 39 - 49, XP029405773, DOI: 10.1016/j.chroma.2016.01.028 *
ZEYING HE ET AL.: ""Hydrophilic–lipophilic balanced magnetic nanoparticles: Preparation and application in magnetic solid-phase extraction of organochlorine pesticides and triazine herbicides in environmental water samples"", 《TALANTA》, vol. 127, pages 1 - 8, XP028850717, DOI: 10.1016/j.talanta.2014.03.074 *
ZHIJIAN YAO ET AL.: ""Fabrication and characterization of amphiphilic magnetic water purification materials for efficient PPCPs removal"", 《CHEMICAL ENGINEERING JOURNAL》, vol. 360, pages 511 - 518 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117368380A (zh) * 2023-12-08 2024-01-09 北京梅斯质谱生物科技有限责任公司 一种类固醇激素的检测试剂盒以及检测方法
CN117368380B (zh) * 2023-12-08 2024-03-01 北京梅斯质谱生物科技有限责任公司 一种类固醇激素的检测试剂盒以及检测方法

Similar Documents

Publication Publication Date Title
Tang et al. Determination of ractopamine in pork using a magnetic molecularly imprinted polymer as adsorbent followed by HPLC
Xu et al. Adsorption of aflatoxins and ochratoxins in edible vegetable oils with dopamine-coated magnetic multi-walled carbon nanotubes
Huang et al. Magnetic immobilization of amine-functionalized magnetite microspheres in a knotted reactor for on-line solid-phase extraction coupled with ICP-MS for speciation analysis of trace chromium
Jia et al. Thermo-responsive polymer tethered metal-organic framework core-shell magnetic microspheres for magnetic solid-phase extraction of alkylphenols from environmental water samples
Du et al. Novel magnetic SPE method based on carbon nanotubes filled with cobalt ferrite for the analysis of organochlorine pesticides in honey and tea
Razmkhah et al. Extraction and determination of three steroid molecules in milk using functionalized magnetic carbon nanotube-based solid phase extraction coupled with HPLC
CN110841612A (zh) 一种磁性NH2-MOFs纳米材料的制备及其应用
Yan et al. Synthesis of 3-fluorobenzoyl chloride functionalized magnetic sorbent for highly efficient enrichment of perfluorinated compounds from river water samples
Liu et al. Facile synthesis of boric acid-functionalized magnetic covalent organic frameworks and application to magnetic solid-phase extraction of trace endocrine disrupting compounds from meat samples
Xu et al. Simultaneous determination of sulfonamides and fluoroquinolones from environmental water based on magnetic double-template molecularly imprinting technique
CN113295795B (zh) 检测玉米赤霉烯酮类真菌毒素的方法、试剂盒及其用途
Amiri et al. Preparation and characterization of magnetic Wells–Dawson heteropoly acid nanoparticles for magnetic solid-phase extraction of aromatic amines in water samples
Fei et al. In-tube solid-phase microextraction with a hybrid monolithic column for the preconcentration of ultra-trace metals prior to simultaneous determination by ICP-MS
Qiao et al. Magnetic nanospheres with a molecularly imprinted shell for the preconcentration of diethylstilbestrol
CN115487791A (zh) 一种两亲型磁性固相萃取材料及其制备方法和在检测类固醇激素中的应用
Wang et al. Determination of estrogens in milk samples by magnetic‐solid‐phase extraction technique coupled with high‐performance liquid chromatography
Ding et al. Determination of roxithromycin from human plasma samples based on magnetic surface molecularly imprinted polymers followed by liquid chromatography-tandem mass spectromer.
Cao et al. Preparation of magnetic dummy template molecularly imprinted polymers for the determination of aminoglycosides antibiotics in milk
Chen et al. Magnetic solid‐phase extraction based on a triethylenetetramine‐functionalized magnetic graphene oxide composite for the detection of ten trace phenolic environmental estrogens in environmental water
CN101274154A (zh) 表面被含萃取剂的离子液膜覆盖的浸渍树脂及其制法和应用
CN111495332A (zh) 一种磁性吸附材料及其在苯甲酰脲类杀虫剂检测中的应用
Yang et al. Porous capillary monolithic column coupled with ultrahigh performance liquid chromatography-tandem mass spectrometry for fast and effective separation and determination of estrogens
Wang et al. Effective extraction of the metabolites of toluene and xylene based on a postsynthetic-modified magnetic covalent organic polymer
CN116459797A (zh) 一种复合磁性固相萃取材料及其制备方法和在类固醇激素提取中的应用
Pourreza et al. Vortex-assisted dispersive solid-phase extraction using schiff-base ligand anchored nanomagnetic iron oxide for preconcentration of phthalate esters and determination by gas chromatography and flame ionization detector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination