CN115485889A - 电化学泵和燃料电池*** - Google Patents

电化学泵和燃料电池*** Download PDF

Info

Publication number
CN115485889A
CN115485889A CN202080100436.1A CN202080100436A CN115485889A CN 115485889 A CN115485889 A CN 115485889A CN 202080100436 A CN202080100436 A CN 202080100436A CN 115485889 A CN115485889 A CN 115485889A
Authority
CN
China
Prior art keywords
anode
fuel cell
gas
electrochemical pump
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080100436.1A
Other languages
English (en)
Inventor
见神祐一
后藤丈人
寺山健
布尾孝祐
黑羽智宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of CN115485889A publication Critical patent/CN115485889A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0681Reactant purification by the use of electrochemical cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)

Abstract

本公开的电化学泵具有第1阳极、第1阴极和第1电解质膜,从含有氢的气体中使所述氢分离,所述第1电解质膜包含具有质子传导性的氧化物。

Description

电化学泵和燃料电池***
技术领域
本公开涉及电化学泵和燃料电池***。
背景技术
作为以往的燃料电池***,例如已知有专利文献1所示的燃料电池***。该燃料电池***中,燃料电池堆的燃料排气口通过第一导管而与电化学泵分离单元的第一吸入口连接,电化学泵分离单元的排出口通过第二导管而与燃料电池堆的燃料吸入口连接。该燃料电池堆是固体氧化物型燃料电池堆,电化学泵分离单元包括聚苯并咪唑膜即非氟化离子交换离聚物膜。在燃料电池堆与电化学泵分离单元之间设有多个热交换器。
在先技术文献
专利文献1:日本特许第5542333号公报
发明内容
发明要解决的课题
对于上述专利文献1所示的燃料电池***,从谋求燃料电池***的热损失的降低以及小型化的观点出发,仍有改善的空间。
本公开是为了解决这样的课题而完成的,目的在于提供能够谋求燃料电池***的燃料利用率的提高、并且能够谋求热损失的降低以及小型化的电化学泵和燃料电池***。
用于解决课题的手段
本公开涉及的电化学泵的一个技术方案,具有第1阳极、第1阴极和第1电解质膜,从含氢的气体中使所述氢分离,所述第1电解质膜包含具有质子传导性的氧化物。
本公开涉及的燃料电池***的一个技术方案,具有上述电化学泵、固体氧化物型燃料电池、阳极供给路径、第2阳极排出路径、再循环气体路径、以及电源,所述固体氧化物型燃料电池具有第2阳极、第2阴极、以及包含固体氧化物系电解质的第2电解质膜,使燃料气体与氧化剂气体反应而发电,所述阳极供给路径与所述第2阳极连接,将所述燃料气体供给到所述第2阳极,所述第2阳极排出路径与所述第2阳极和所述第1阳极连接,将从所述第2阳极排出并且含有所述氢的第2阳极废气供给到所述第1阳极,所述再循环气体路径与所述第1阴极和所述阳极供给路径连接,使含有通过所述电化学泵分离出的所述氢并且从所述第1阴极排出的第1阴极废气返回所述阳极供给路径,所述电源与所述电化学泵连接,对所述电化学泵供电。
发明的效果
根据本公开的电化学泵和燃料电池***,发挥能够谋求燃料电池***的燃料利用率的提高、并且谋求热损失的降低以及***的小型化的效果。
附图说明
图1是示意性地表示本公开的第1实施方式涉及的燃料电池***的功能框图。
图2是表示BaZr0.8Yb0.2O3-δ的温度和质子传导率的关系的图表。
图3是示意性地表示本公开的第2实施方式涉及的燃料电池***的功能框图。
图4是示意性地表示本公开的第3实施方式涉及的燃料电池***的功能框图。
图5是示意性地表示本公开的第3实施方式的变形例1涉及的燃料电池***的功能框图。
图6是示意性地表示本公开的第3实施方式的变形例2涉及的燃料电池***的功能框图。
图7是示意性地表示本公开的第3实施方式的变形例3涉及的燃料电池***的功能框图。
图8是示意性地表示本公开的第3实施方式的变形例4涉及的燃料电池***的功能框图。
图9是示意性地表示本公开的第3实施方式的变形例5涉及的燃料电池***的功能框图。
图10是示意性地表示本公开的第4实施方式涉及的燃料电池***的功能框图。
图11是示意性地表示本公开的第5实施方式涉及的燃料电池***的功能框图。
图12是示意性地表示本公开的第6实施方式以及其他变形例涉及的燃料电池***的功能框图。
具体实施方式
(成为本公开的基础的见解)
本公开人对于谋求燃料利用率的提高并且谋求热损失的降低以及小型化的燃料电池***反复进行了深入研究。
其结果,在上述专利文献1的燃料电池***中,在燃料电池堆中通过燃料和空气进行发电。然后,含氢的燃料排气流从燃料电池堆排出并被供给到电化学泵分离单元。在该电化学泵分离单元中,氢从燃料排气流分离并返回燃料电池堆。因此,可谋求燃料利用率的提高。
但是,从燃料电池堆排出的燃料排气流,通过多个热交换器,温度降低至200℃以下,然后进一步降低至90℃以上且110℃以下,然后被供给到电化学泵分离单元。这样,由于使用多个热交换器,导致燃料电池***大型化。
另外,使氢从电化学泵分离单元返回燃料电池堆时,利用燃烧器使氢升温。通过这样的燃料排气流的降温和氢的升温会产生热损失,导致燃料电池***的发电效率降低。
与此相对,本公开人发现,通过将包含具有质子传导性的氧化物的第1电解质膜用于电化学泵,能够谋求燃料电池***的燃料利用率的提高、并且谋求热损失的降低以及小型化。本公开是基于该见解而完成的。
本公开的第1技术方案涉及的电化学泵,具有第1阳极、第1阴极和第1电解质膜,从含氢的气体中使所述氢分离,所述第1电解质膜包含具有质子传导性的氧化物。在将该电化学泵用于具有燃料电池的燃料电池***的情况下,通过将阴极废气作为燃料气体从电化学泵经由再循环气体路径和阳极供给路径返回燃料电池,能够谋求燃料电池***的燃料利用率的提高。另外,通过第1电解质膜包含具有质子传导性的氧化物,电化学泵和固体氧化物型燃料电池等燃料电池的工作温度带接近。因此,能够降低由于从燃料电池向电化学泵供给的阳极废气的降温以及从电化学泵返回固体氧化物型燃料电池的阴极废气的升温引起的热损失。另外,能够减少燃料电池与电化学泵之间的热交换器的数量,谋求燃料电池***的小型化。
本公开的第2技术方案涉及的电化学泵,所述第1电解质膜包含选自A1Zr1- x1M1x1O3-δ、A2Ce1-x2M2x2O3-δ和A3Zr1-x3-y3Cex3M3y3O3-δ中的至少一者,A1、A2、A3分别包含选自Ba、Sr、Ca中的至少一种元素,M1、M2和M3分别包含选自Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Y、Sc、In和Lu中的至少一种,x1满足0<x1<1,x2满足0<x2<1,x3满足0<x3<1,y3满足0<y3<1。根据上述技术构成,电化学泵的氢分离效率高,能够谋求燃料电池***的能量效率的提高。
本公开的第3技术方案涉及的电化学泵,在所述第1电解质膜中,A1、A2、A3包含Ba。根据上述技术构成,电化学泵的氢分离效率高,能够谋求燃料电池***的能量效率的提高。
本公开的第4技术方案涉及的电化学泵,所述第1电解质膜包含BaZr1-x1M1x1O3-δ。根据上述技术构成,电化学泵的氢分离效率高,能够谋求燃料电池***的能量效率的提高。
本公开的第5技术方案涉及的电化学泵,在所述第1电解质膜中,M1至少包含Yb。根据上述技术构成,电化学泵的氢分离效率高,能够谋求燃料电池***的能量效率的提高。
本公开的第6技术方案涉及的电化学泵,至少一部分在400℃以上进行工作。能够在第1电解质膜的质子传导率良好的状态下使电化学泵工作。
本公开的第7技术方案涉及的电化学泵,连同燃烧器、燃料电池或改性器一起被收纳在隔热构件形成的隔热空间中。根据上述技术构成,通过将电化学泵连同燃烧器、燃料电池或改性器一起隔热,能够降低燃料电池***的热损失。
本公开的第8技术方案涉及的燃料电池***,具备上述电化学泵、固体氧化物型燃料电池、阳极供给路径、第2阳极排出路径、再循环气体路径、以及电源,所述固体氧化物型燃料电池具有第2阳极、第2阴极、以及包含固体氧化物系电解质的第2电解质膜,使燃料气体与氧化剂气体反应而发电,所述阳极供给路径与所述第2阳极连接,将所述燃料气体供给到所述第2阳极,所述第2阳极排出路径与所述第2阳极和所述第1阳极连接,将从所述第2阳极排出并且含有所述氢的第2阳极废气供给到所述第1阳极,所述再循环气体路径与所述第1阴极和所述阳极供给路径连接,使含有通过所述电化学泵分离出的所述氢并且从所述第1阴极排出的第1阴极废气返回所述阳极供给路径,所述电源与所述电化学泵连接,对所述电化学泵供电。
根据上述技术构成,通过将第1阴极废气作为燃料气体从电化学泵经由再循环气体路径和阳极供给路径返回固体氧化物型燃料电池,能够谋求燃料电池***的燃料利用率的提高。另外,通过第1电解质膜包含具有质子传导性的氧化物,电化学泵和固体氧化物型燃料电池的工作温度带相互接近。因此,能够降低由于从固体氧化物型燃料电池向电化学泵供给的第2阳极废气的降温以及从电化学泵返回固体氧化物型燃料电池的第2阴极废气的升温引起的热损失。另外,能够减少固体氧化物型燃料电池与电化学泵之间的热交换器的数量,谋求燃料电池***的小型化。
本公开的第9技术方案涉及的燃料电池***,所述电化学泵的至少一部分在400℃以上工作。根据上述技术构成,能够在第1电解质膜的质子传导率良好的状态下使电化学泵工作,能够谋求燃料电池***的燃料利用率的提高。
本公开的第10技术方案涉及的燃料电池***,所述固体氧化物型燃料电池的温度T1与所述电化学泵的温度T2的温度差,在T1为600以上且800℃以下所述固体氧化物型燃料电池工作的情况下为200℃以下,在T1为800℃以上且1000℃以下所述电化学泵工作的情况下为400℃以下。根据上述技术构成,电化学泵和固体氧化物型燃料电池能够在彼此合适的温度下工作。
本公开的第11技术方案涉及的燃料电池***,所述固体氧化物型燃料电池的温度T1高于所述电化学泵的温度T2。根据上述技术构成,电化学泵和固体氧化物型燃料电池能够在彼此合适的温度下工作。
本公开的第12技术方案涉及的燃料电池***,在上述第1技术方案的基础上,还具备设置在所述阳极供给路径上、将燃料改性而生成所述燃料气体的改性器。根据上述技术构成,通过将燃料改性而生成的燃料气体供给到固体氧化物型燃料电池,能够降低由碳析出等引起的固体氧化物型燃料电池的劣化。
本公开的第13技术方案涉及的燃料电池***,还具备将所述固体氧化物型燃料电池和所述电化学泵收纳于隔热空间中的隔热构件,所述固体氧化物型燃料电池和所述电化学泵被收纳于相同的隔热空间中。根据上述技术构成,通过将电化学泵和固体氧化物型燃料电池隔热,能够降低燃料电池***的热损失。另外,由于将电化学泵和固体氧化物型燃料电池一体地隔热,因此隔热构件能够共通化,能够抑制由隔热构件引起的成本上升,并且能够抑制燃料电池***的大型化。
本公开的第14技术方案涉及的燃料电池***,还具备将所述电化学泵和所述改性器收纳于隔热空间中的隔热构件,所述电化学泵和所述改性器被收纳于相同的隔热空间中。根据上述技术构成,通过将电化学泵和改性器隔热,能够降低燃料电池***的热损失。另外,由于将电化学泵和改性器一体地隔热,因此隔热构件能够共通化,能够抑制由隔热构件引起的成本上升,并且能够抑制燃料电池***的大型化。
本公开的第15技术方案涉及的燃料电池***,还具备将所述固体氧化物型燃料电池和所述电化学泵收纳于隔热空间中的隔热构件,所述隔热空间具有收纳了所述固体氧化物型燃料电池的第1隔热空间、以及与所述第1隔热空间隔热并且收纳了所述电化学泵的第2隔热空间。根据上述技术构成,电化学泵和固体氧化物型燃料电池能够降低燃料电池***的热损失并且在彼此合适的温度下工作。
本公开的第16技术方案涉及的燃料电池***,还具备将所述改性器和所述电化学泵收纳于隔热空间中的隔热构件,所述隔热空间具有收纳了所述改性器的第1隔热空间、以及与所述第1隔热空间隔热并且收纳了所述电化学泵的第2隔热空间。根据上述技术构成,电化学泵和改性器能够降低燃料电池***的热损失并且在彼此合适的温度下工作。
本公开的第17技术方案涉及的燃料电池***,在上述第3或第4技术方案的基础上,所述隔热构件将所述再循环气体路径收纳于所述隔热空间中。根据上述技术构成,能够在从电化学泵通过再循环气体路径返回固体氧化物型燃料电池的气体的循环路径中抑制气体的温度降低,降低燃料电池***的热损失。
本公开的第18技术方案涉及的燃料电池***,在上述第1~第6技术方案中任一方案的基础上,还具备第1阳极排出路径和燃烧器,所述第1阳极排出路径与所述第1阳极连接,供从所述第1阳极排出的第1阳极废气流动,所述燃烧器设置于所述第1阳极排出路径,使所述第1阳极废气燃烧。根据上述技术构成,例如在第1阳极废气包含一氧化碳的情况下,能够使一氧化碳燃烧而将其排除。另外,通过利用燃烧热来加热构成物(例如改性器、再循环气体路径),能够谋求燃料电池***的热损失的降低。
本公开的第19技术方案涉及的燃料电池***,在上述第7技术方案的基础上,还具备改性器和第1热交换器,所述改性器设置在所述阳极供给路径上,将燃料改性而生成所述燃料气体,所述第1热交换器在从所述第1阳极排出的所述第1阳极废气与向所述改性器供给的所述燃料气体之间进行热交换。根据上述技术构成,通过利用第1阳极废气加热燃料气体,能够降低燃料电池***的热损失。
本公开的第20技术方案涉及的燃料电池***,在上述第1~第8技术方案中任一方案的基础上,具备阴极供给路径、阴极排出路径和第2热交换器,所述阴极供给路径与所述第2阴极连接,将所述氧化剂气体供给到所述第2阴极,所述阴极排出路径与所述第2阴极连接,供从所述第2阴极排出的第2阴极废气流动,所述第2热交换器在向所述第2阴极供给的所述氧化剂气体与从所述第2阴极排出的所述第2阴极废气之间进行热交换。根据上述技术构成,通过利用第2阴极废气加热氧化剂气体,能够降低燃料电池***的热损失。
本公开的第21技术方案涉及的燃料电池***,在上述第1~第9技术方案中任一方案的基础上,还具备设置在所述阳极供给路径上、将燃料改性而生成所述燃料气体的改性器,所述再循环气体路径连接到所述改性器与所述第2阳极之间的所述阳极供给路径。根据上述技术构成,第1阴极废气从再循环气体路径流入阳极供给路径,作为燃料气体被供给到第2阳极,能够谋求燃料利用率的提高。
以下,参照附图对本公开的实施方式进行说明。再者,在以下的所有附图中,对相同或对应的构成部件标注相同的参照符号,有时省略其说明。
[第1实施方式]
<燃料电池***的构成>
如图1所示,本公开的第1实施方式涉及的燃料电池***10具备固体氧化物型燃料电池(SOFC30)、电化学泵40、温度测定器30a、40a。电化学泵40具有由多个单元层叠而成的堆(stack)。电化学泵40的单元具有第1阳极41、第1阴极42和第1电解质膜43。SOFC30具有燃料电池堆。燃料电池堆具有多个单元,这些单元以串联电连接的方式层叠。燃料电池堆的单元具有第2阳极31、第2阴极32和第2电解质膜33。再者,图1中示出了1个单元。以下,对各结构进行详细说明。
SOFC30基于第2阳极31中的下述化学式(1)和第2阴极32中的下述化学式(2),使燃料气体与氧化剂气体反应而发电。另外,如下述整体式(3)所示,通过发电的化学反应生成水。
第2阳极:2H2+2O2-→2H2O+4e- (1)
第2阴极:O2+4e-→2O2- (2)
整体式:2H2+O2→2H2O (3)
第2阳极31具有第2阳极催化剂层31a和第2阳极流路31b。第2阳极31可以在第2阳极催化剂层31a与第2阳极流路31b之间具有第2阳极扩散层。该情况下,第2阳极催化剂层31a与第2阳极扩散层可以一体形成。第2阳极流路31b具有供给口和排出口。
第2阳极催化剂层31a配置在第2电解质膜33的一个面上,含有用于促进氢的电化学氧化反应的催化剂。作为该催化剂,可以使用Ni等金属。第2阳极催化剂层31a可以由金属陶瓷构成。金属陶瓷是金属和陶瓷材料的混合物。作为金属陶瓷,可以举出Ni和稳定化氧化锆(例如氧化钇稳定化氧化锆:YSZ)的混合物、Ni和二氧化铈系氧化物的混合物等。如果第2阳极催化剂层31a由金属陶瓷构成,则用于使氢氧化的反应活性点增加,氧化反应得到促进。另外,为了促进由氢的氧化而产生的水的扩散,第2阳极催化剂层31a可以由多孔体形成。
第2阴极32具有第2阴极催化剂层32a和第2阴极流路32b。第2阴极32可以在第2阴极催化剂层32a与第2阴极流路32b之间具有第2阴极扩散层。该情况下,第2阴极催化剂层32a与第2阴极扩散层可以一体形成。第2阴极流路32b具有供给口和排出口。
第2阴极催化剂层32a配置在第2电解质膜33的另一面上,含有用于促进氧的电化学还原反应的催化剂。作为该催化剂,可以举出含有选自Mn、Fe、Co和Ni中的至少一种的氧化物。作为催化剂的具体例,可以举出镧锶钴铁复合氧化物(LSCF)、镧锶钴复合氧化物(LSC)、镧锶铁复合氧化物(LSF)、镧锶锰复合氧化物(LSM)、钡锶钴铁复合氧化物(BSCF)、钐锶钴复合氧化物(SSC)、镧镍铁复合氧化物、镧镍复合氧化物、钡钆镧钴复合氧化物等。另外,催化剂可以是含有选自Mn、Fe、Co和Ni中的至少一种的氧化物与其他氧化物或金属的复合体。为了促进通过氧的还原而生成的氧化物离子(O2-)的扩散,第2阴极32可以由多孔体形成。
第2电解质膜33夹在第2阳极31与第2阴极32之间。第2电解质膜33包含固体氧化物系电解质。例如,第2电解质膜33由氧化物离子传导性的固体电解质形成,使用稳定化氧化锆(例如氧化钇稳定化氧化锆:YSZ)、镓酸镧系氧化物和二氧化铈系氧化物等氧化物离子传导体。第2电解质膜33例如可以由其测定密度为理论密度的95%以上的致密体形成。
SOFC30在第2电解质膜33显示出氧化物离子传导的温度下运转,例如在600℃以上且1000℃以下、优选为700℃以上且1000℃以下运转。SOFC30的温度例如由温度测定器30a测定。温度测定器30a例如是热电偶,可以以接触第2电解质膜33的方式、测定第2电解质膜33附近的温度的方式设置。温度测定器30a也可以是其他公知的温度测定器,可以以测定堆或单元的温度的公知的方式设置。
电化学泵40基于第1阳极41中的下述化学式(4)和第1阴极42中的下述化学式(5),从含有氢的含氢气体中分离氢。
第1阳极:H2→2H++2e- (4)
第1阴极:2H++2e-→H2 (5)
第1阳极41具有第1阳极催化剂层41a和第1阳极流路41b。第1阳极41可以在第1阳极催化剂层41a与第1阳极流路41b之间具有第1阳极扩散层。该情况下,第1阳极催化剂层41a和第1阳极扩散层可以一体形成。第1阳极流路41b具有供给口和排出口。
第1阳极催化剂层41a配置在第1电解质膜43的一个面上,含有用于促进氢的电化学氧化反应的催化剂。作为该催化剂,例如具有Ni等金属。第1阳极催化剂层41a也可以由金属陶瓷构成。作为金属陶瓷,是Ni和质子传导性氧化物的混合物,例如可以举出Ni和BaZr1-x1Ybx1O3-δ的混合物等。如果第1阳极催化剂层41a由金属陶瓷构成,则设置多个用于使氢氧化的反应活性点,迅速地进行氢的氧化反应。为了促进氢和水蒸气的扩散,第1阳极催化剂层41a可以由多孔体形成。
第1阴极42具有第1阴极催化剂层42a和第1阴极流路42b。第1阴极42可以在第1阴极催化剂层42a与第1阴极流路42b之间具有第1阴极扩散层。该情况下,第1阴极催化剂层42a和第1阴极扩散层可以一体形成。第1阴极流路42b具有排出口。
第1阴极催化剂层42a配置在第1电解质膜43的另一面上,含有用于促进质子(H+)的电化学还原反应的催化剂。作为催化剂可以使用Ni等金属。第1阴极催化剂层42a可以由金属陶瓷构成。作为金属陶瓷,可以举出Ni和质子传导性氧化物的混合物,例如Ni和BaZr1-x1Ybx1O3-δ的混合物等。如果第1阴极催化剂层42a由金属陶瓷构成,则设置多个用于还原质子的反应活性点,迅速进行质子的还原反应。为了促进通过质子的还原反应而形成的氢的扩散,第1阴极42可以由多孔体形成。
第1电解质膜43包含具有质子传导性的氧化物。该氧化物例如可以举出质子传导陶瓷,所述第1电解质膜包含选自A1Zr1-x1M1x1O3-δ、A2Ce1-x2M2x2O3-δ和A3Zr1-x3-y3Cex3M3y3O3-δ中的至少一者,A1、A2、A3分别包含选自Ba、Sr、Ca中的至少一种元素,M1、M2和M3分别包含选自Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Y、Sc、In和Lu中的至少一种元素,x1满足0<x1<1,x2满足0<x2<1,x3满足0<x3<1,y3满足0<y3<1。另外,A1Zr1-x1M1x1O3-δ、A2Ce1- x2M2x2O3-δ和A3Zr1-x3-y3Cex3M3y3O3-δ可以满足x3+y3<1、0<δ<0.5。另外,在第1电解质膜中,A1、A2、A3可以含有Ba。
另外,δ的值根据x1的值和第1电解质膜43的环境(例如温度、氧分压、水蒸气分压)而变化。另外,第1电解质膜43例如可以由其测定密度为理论密度的95%以上的致密体形成。
第1电解质膜43例如在400℃以上的温度带具有预定值(例如1.0×10-3S/cm)以上的质子传导率。作为具体例,含有BaZr0.8Y0.2O3-α作为主要成分的第1电解质膜43在600℃以上的温度带显示出1.0×10-2S/cm以上的质子传导率。电化学泵40在第1电解质膜43显示出预定值以上的质子传导率的温度下运转,例如在400℃以上且800℃以下、优选为600℃以上且800℃以下运转。
另外,第1电解质膜可以由BaZr1-x1M1x1O3-δ构成。BaZr1-x1M1x1O3-δ、BaCe1-x2M2x2O3-δ和BaZr1-x3-y3Cex3M3y3O3-δ在高温带(例如600℃以上)除了具有质子传导性外还具有氧化物离子传导性。其中,由BaZr1-x1M1x1O3-δ表示的复合氧化物即使在高温带也发挥高的质子迁移率。因此,包含由BaZr1-x1M1x1O3-δ形成的第1电解质膜43的电化学泵40能够以高效率分离氢。另外,质子迁移率不包含来自于氧欠缺的空穴传导。
另外,在第1电解质膜中,M1可以至少包含Yb。第1电解质膜43可以由BaZr1- x1M1x1O3-δ之中的BaZr1-x1Ybx1O3-δ形成。该BaZr1-x1Ybx1O3-δ在BaZr1-x1M1x1O3-δ中能够发挥高的质子传导性。由此,电化学泵40能够以具有高的质子迁移率的高效率分离氢。
图2是表示BaZr0.8Yb0.2O3-δ的温度和质子传导率的关系的图表。图2的横轴表示温度和1000/T(温度)的值,纵轴表示质子传导率。如图2所示,BaZr0.8Yb0.2O3-δ的质子传导率在400℃以上沿虚线a推移,在低于400℃时沿虚线b推移。
BaZr0.8Yb0.2O3-δ的温度例如是用热电偶测定样品附近的温度而得到的值。BaZr0.8Yb0.2O3-δ的质子传导率例如根据由BaZr0.8Yb0.2O3-δ的粉末制作的评价用颗粒的电阻和评价用颗粒的厚度而算出。评价用颗粒的电阻可以基于交流阻抗法进行测定。评价用颗粒例如通过将BaZr0.8Yb0.2O3-δ的粉末压制、烧成后的烧结体颗粒切断成厚度约500μm的盘状,用3μm磨粒的研磨膜片等对两面进行研磨而制作。另外,可以在研磨后的评价用颗粒的两面形成用于交流阻抗测定的集电极。作为集电极,例如可以通过丝网印刷法涂布Ag糊剂并对其进行烧成而得到。
质子传导率的求法例如有以下方法。使用Solartron1287(Solartron Analytical制),以10mV的振幅,在1MHz~0.01Hz的频率范围内,对评价用颗粒施加交流信号。该测定在加湿氢气氛下,以期待适当测定的温度实施。根据输出的cole-cole图的圆弧,求出圆弧与实数轴的交点。实数轴是cole-cole图的图表中的Y轴的值为0的轴。求出的交点中,将高频率侧的交点作为评价用颗粒的电阻。根据求得的电阻和评价用颗粒的厚度,算出样品的质子传导率。
BaZr0.8Yb0.2O3-δ在400℃以上时质子传导率良好。另外,在除了BaZr0.8Yb0.2O3-δ以外的上述A1Zr1-x1M1x1O3-δ、A2Ce1-x2M2x2O3-δ和A3Zr1-x3-y3Cex3M3y3O3-δ所表示的物质中也有同样的倾向。
电化学泵40的至少一部分或全部可以在400℃以上工作。由此,电化学泵40能够在第1电解质膜43的质子传导率良好的状态下工作。电化学泵40的至少一部分或全部也可以在500℃以上、600℃以上工作。电化学泵40的至少一部分或全部也可以在900℃以下、800℃以下工作。在此,至少一部分是电化学泵40的结构的一部分,例如可以是第1电解质膜43的一部分。电化学泵40的温度由温度测定器40a测定。温度测定器40a例如是热电偶,可以以接触第1电解质膜43的方式、测定第1电解质膜43附近的温度的方式设置。温度测定器40a也可以是公知的温度测定器,可以以测定堆或单元的温度的公知的方式设置。
燃料电池***10还具备阳极供给路径11、第1阳极第2阳极排出路径12、再循环气体路径13、电源14、第2阳极第1阳极排出路径15、阴极供给路径16和阴极排出路径17。阳极供给路径11与第2阳极31的供给口和燃料气体的供给源连接,向第2阳极31供给燃料气体。燃料气体是含有氢的含氢气体等。该供给源可举出储存氢的氢罐、水电解装置等氢制造装置、以及具有氢罐和氢制造装置的氢站和氢基础设施等。
第2阳极排出路径12与第2阳极31的排出口和第1阳极41的供给口连接,将从第2阳极31排出的第2阳极废气供给到第1阳极41。第2阳极废气具有在SOFC30中的化学反应中生成的水、以及在该化学反应中未被使用而残留的燃料气体。由于燃料气体含有氢,所以含有燃料气体的第2阳极废气含有氢。例如,在SOFC30的燃料利用率为80%的情况下,燃料气体所含有的氢中的20%的氢未被SOFC30的化学反应消耗而包含在第2阳极废气中。
再循环气体路径13与第1阴极42的排出口和阳极供给路径11连接。再循环气体路径13使从第1阴极42排出的第1阴极废气返回阳极供给路径11。第1阴极废气中含有由电化学泵40从第2阳极废气中分离出的氢。
阴极供给路径16与第2阴极32的供给口和氧化剂气体的供给源连接,向第2阴极32供给氧化剂气体。氧化剂气体是含有氧的气体,例如可以使用空气、以及含氧的合成气体。在氧化剂气体使用空气的情况下,氧化剂气体的供给源可使用输送空气的鼓风机以及将空气吸入燃料电池***10内的吸入装置等。
第1阳极排出路径15与第1阳极41的排出口连接,例如与燃料电池***10的外部连通。通过第1阳极排出路径15,从第1阳极41排出的第1阳极废气被排出到燃料电池***10的外部,向大气开放。第1阳极废气是通过电化学泵40从第2阳极废气中分离出氢而残留的气体。
阴极排出路径17与第2阴极32的排出口连接,例如与燃料电池***10的外部连通。通过阴极排出路径17,从第2阴极32排出的第2阴极废气被排出到燃料电池***10的外部,向大气开放。第2阴极废气含有未用于SOFC30中的化学反应而残留的氧化剂气体。
电源14是电池等,与电化学泵40的第1阳极41和第1阴极42连接,向电化学泵40供电。由此,电化学泵40通过来自于电源14的电力驱动。另外,电化学泵40也可以具有与外部电源连接的端子,从与端子连接的外部电源施加电流。
<燃料电池***的工作>
在燃料电池***10中,SOFC30保持在其发电效率高的温度,例如600℃以上且1000℃以下,优选保持在700℃以上且1000℃以下。在该SOFC30中,燃料气体通过阳极供给路径11被供给到第2阳极31,另外,氧化剂气体通过阴极供给路径16被供给到第2阴极32。
由此,在第2阴极32中,从第2阴极流路32b向第2阴极催化剂层32a供给氧化剂气体。在第2阴极催化剂层32a中,如上述化学式(2)所示,氧化剂气体的氧被还原,产生氧化物离子。氧化物离子从第2阴极32通过第2电解质膜33传导至第2阳极31。
在第2阳极31中,从第2阳极流路31b向第2阳极催化剂层31a供给燃料气体。在第2阳极催化剂层31a中,如上述化学式(1)所示,燃料气体的氢被氧化物离子氧化,生成水和电子。电子流过外部电路而发电。
并且,第2阳极废气从SOFC30的第2阳极31通过第2阳极排出路径12被供给到电化学泵40的第1阳极41。该电化学泵40保持在其氢分离效率高的温度,例如400℃以上且800℃以下,优选保持在600℃以上且800℃以下。另外,从电源14向电化学泵40施加电流。
在此,SOFC30的温度T1可以高于电化学泵40的温度T2。另外,SOFC30的温度T1与电化学泵40的温度T2的温度差,在T1为600℃~800℃的情况下可以为200℃以下,在T1为800℃~1000℃的情况下可以为400℃以下。根据上述技术构成,电化学泵和固体氧化物型燃料电池可以在相互适宜的温度下工作。如上所述,SOFC30的温度T1由温度测定器30a测定,电化学泵40的温度T2由温度测定器40a测定。
在电化学泵40中,在第1阳极41中从第1阳极流路41b向第1阳极催化剂层41a供给第2阳极废气。在第1阳极催化剂层41a中,如上述化学式(4)所示,第2阳极废气的氢被氧化,产生质子和电子。质子通过第1电解质膜43从第1阳极41传导至第1阴极42。
在第1阴极42中,在第1阴极催化剂层42a中如上述化学式(5)所示,质子得到电子而被还原,生成氢,流向第1阴极流路42b。这样从第2阳极废气中分离出的氢作为第1阴极废气从第1阴极42的第1阴极流路42b排出,通过再循环气体路径13返回阳极供给路径11。并且,第1阴极废气与在阳极供给路径11中流动的燃料气体合流,作为燃料气体被供给到SOFC30的第2阳极31,用于SOFC30的发电。
这样,在燃料电池***10中,通过电化学泵40将在SOFC30的发电中未消耗的氢从第2阳极废气中分离,经由再循环气体路径13和阳极供给路径11返回SOFC30。由此,能够提高SOFC30的燃料利用率(用于发电的氢相对于供给到SOFC30的燃料气体的比例)。由于SOFC30的发电效率由电压效率与燃料利用率的乘积确定,因此随着该燃料利用率的提高,能够提高发电效率。
另外,在燃料电池***10中,将包含具有质子传导性的氧化物的第1电解质膜43用于电化学泵40。由此,能够在抑制电化学泵40的氢分离效率和SOFC30的发电效率的降低的同时,使电化学泵40的工作温度带与SOFC30的工作温度带彼此相同或接近。因此,能够降低从SOFC30向电化学泵40供给第2阳极废气时、以及使第1阴极废气从电化学泵40返回SOFC30时的热损失。
此外,电化学泵40和SOFC30能够在彼此相同或接近的温度带工作。因此,从SOFC30向电化学泵40供给第2阳极废气时的第2阳极废气的温度下降较小,并且使第1阴极废气从电化学泵40返回SOFC30时的第1阴极废气的温度上升较小。由此,能够减少电化学泵40与SOFC30之间的热交换器的数量,谋求燃料电池***10的小型化。
[第2实施方式]
第2实施方式涉及的燃料电池***10如图3所示,在第1实施方式涉及的燃料电池***10的基础上,还具备设置在阳极供给路径11上、对燃料进行改性(重整)而生成燃料气体的改性器(重整器)18。
阳极供给路径11与第2阳极31的供给口和燃料的供给源连接。燃料包括甲烷和丙烷等烃气、以及包含烃气的天然气和LP气体。作为燃料的供给源,可以举出贮存燃料的燃料瓶以及燃料基础设施等。
改性器18配置于比阳极供给路径11与再循环气体路径13的连接点靠上游的阳极供给路径11。改性器18将通过阳极供给路径11供给的燃料改性为燃料气体。该改性可以使用水蒸气改性法和氧化改性法等。在水蒸气改性法中,燃料电池***10还可以具备加湿器19。加湿器19设置于比改性器18靠上游的阳极供给路径11。
加湿器19例如具有高分子膜和海绵等多孔质体以及焓轮。向加湿器19供给水(加湿水)。加湿水例如可以从燃料电池***10的外部供给。另外,在燃料电池***10具有燃烧器的情况下,也可以利用燃烧器使第1阳极废气燃烧,从该燃烧后的燃烧废气中使水蒸气冷凝,将该冷凝水作为加湿器19使用。
加湿器19将加湿水以水蒸气的形式向阳极供给路径11供给,对在阳极供给路径11中流动的燃料进行加湿。被加湿的燃料例如具有露点温度为80℃以上且90℃以下的水蒸气量,并被供给到改性器18。将被供给到该改性器18的每单位时间的水蒸气的分子数设为S,将被供给到改性器18的每单位时间的燃料的碳原子数设为C。S相对于C之比(蒸汽碳比)例如为1.5以上且3.5以下,优选2.0以上且3.0以下,更优选为2.0以上且2.5以下。在这样的蒸汽碳比S/C下,燃料被有效地进行水蒸气改性。
另外,在水蒸气改性法中,改性器18具有改性催化剂。改性催化剂只要是水蒸气改性反应的催化剂就没有特别限定。例如,作为改性催化剂可举出包含Ni、Rh、Ru、Ir、Pd、Pt、Re、Co、Fe和Mo中的至少一种作为催化剂金属的水蒸气改性用催化剂。
在改性器18中,使燃料与水蒸气在改性催化剂的存在下反应而生成氢和一氧化碳。例如,CnHm(n、m的值均为正实数)的燃料如下述反应式(6)所示进行水蒸气改性反应。另外,甲烷(CH4)的燃料如下述反应式(7)所示进行水蒸气改性反应。
CnHm+nH2O→nCO+[(m/2)+n]H2 (6)
CH4+H2O→CO+3H2 (7)
并且,再循环气体路径13连接到改性器18与第2阳极31之间的阳极供给路径11。因此,由改性器18生成的气体与从再循环气体路径13返回的第1阴极废气在阳极供给路径11中合流,这些气体作为燃料气体被供给到SOFC30的第2阳极31。在SOFC30中,燃料气体和氧化剂气体发生化学反应,进行发电。
由该改性器18生成的气体含有一氧化碳。该一氧化碳,在高温下工作的SOFC30中作为燃料气体使用。因此,SOFC30能够在抑制由一氧化碳引起的催化剂中毒的同时谋求发电效率的提高。
另外,由于电化学泵40也在与SOFC30相同的高温的温度带工作,因此能够抑制由一氧化碳引起的催化剂的中毒,并且从含有一氧化碳的第2阳极废气中分离氢。由此,燃料电池***10可以不使用从通过改性器18改性了的气体中除去一氧化碳的变换反应器,能够抑制由变换反应器导致的燃料电池***10的大型化。
[第3实施方式]
第3实施方式涉及的燃料电池***10如图4所示,在第1或第2实施方式涉及的燃料电池***10中,还具备将SOFC30和电化学泵40收纳在隔热空间51中的隔热构件50。隔热构件50在内部具有隔热空间51,将隔热空间51与外部隔热。隔热构件50可以以与SOFC30和电化学泵40接触的方式覆盖它们,也可以在与SOFC30和电化学泵40之间空出间隔地包围它们的周围。
隔热构件50的种类没有特别限定,可以使用具有隔热性的材料(隔热材料)。作为该隔热材料,可以举出微孔隔热材料(microtherm)、玻璃棉、超细棉、岩棉、陶瓷纤维、矿棉、硅酸钙和硬质聚氨酯泡沫等。另外,作为隔热材料,也可以是以气相二氧化硅为主要成分,在其中配合有无机纤维状物质和红外线阻断材料的具有耐热性和隔热性的材料。另外,隔热构件50也可以具有真空隔热材料。真空隔热材料具有外层被覆材料和芯材,外层被覆材料在其内部收纳有芯材,被减压密封。特别优选在作为SOFC的优选工作温度的700~1000℃下具有耐热性和高隔热性的微孔隔热材料等。外包装材料(外层被覆材料)例如是金属箔和树脂薄膜层叠而成的金属层压薄膜。芯材例如是玻璃棉等多孔质结构材料。
再循环气体路径13的一部分配置在隔热空间51中,剩余部分配置在隔热空间51之外。另外,也可以将再循环气体路径13的整体配置在隔热空间51之外。另外,在燃料电池***10具备改性器18的情况下,改性器18配置在隔热空间51之外。而且,隔热构件50例如也可以构成具有长方体形状的隔热框体。隔热构件50也可以被金属板等支持材料覆盖。
这样,SOFC30和电化学泵40彼此之间没有隔热,相互配置在相同的隔热空间51中。该隔热空间51保持在SOFC30和电化学泵40共通的工作温度带,例如600℃以上且800℃以下,优选保持在700℃以上且800℃以下的温度。因此,能够有效地利用将SOFC30和电化学泵40维持在高温的工作温度带的热量。另外,由于隔热构件50将SOFC30和电化学泵40一体地隔热,因此能够通过SOFC30和电化学泵40使隔热构件50通用化,能够抑制由隔热构件50引起的成本上升,并且能够抑制燃料电池***10的大型化。
<变形例1>
在第3实施方式的变形例1涉及的燃料电池***10中,如图5所示,隔热空间51具有收纳SOFC30的第1隔热空间51a、以及收纳电化学泵40并且与第1隔热空间51a隔热的第2隔热空间51b。
即、在图4中,收纳SOFC30的第1隔热空间51a和收纳电化学泵40的第2隔热空间51b是共通的,在隔热构件50中一体形成。与此相对,在图5中,在隔热构件50中,第1隔热空间51a和第2隔热空间51b分别单独设置,相互独立,它们之间被隔热。因此,第1隔热空间51a被保持在适合于SOFC30的工作温度带,第2隔热空间51b被保持在适合于电化学泵40的工作温度带。由此,能够谋求SOFC30的发电效率以及电化学泵40的氢分离效率的提高。
隔热构件50具备形成第1隔热空间51a的第1隔热构件50a、以及形成第2隔热空间51b的第2隔热构件50b。第1隔热构件50a对SOFC30进行隔热,第2隔热构件50b对电化学泵40进行隔热。第1隔热构件50a和第2隔热构件50b可以分别单独形成。该情况下,SOFC30和电化学泵40的配置自由度提高。另一方面,第1隔热构件50a与第2隔热构件50b可以一体形成,隔热构件50具有将第1隔热空间51a和第2隔热空间51b隔离的隔热壁。该情况下,能够抑制由隔热构件50引起的成本上升和大型化。
<变形例2>
在第3实施方式的变形例2涉及的燃料电池***10中,如图6所示,隔热构件50将再循环气体路径13收纳在隔热空间51中。SOFC30、电化学泵40和再循环气体路径13各自的隔热空间51是共通的,相互配置在同一个隔热空间51中。隔热构件50将SOFC30、电化学泵40以及再循环气体路径13的整体一体地覆盖。
这样,由于SOFC30、电化学泵40以及再循环气体路径13相互由同一隔热构件50覆盖,因此能够抑制由隔热构件50引起的成本上升和大型化。另外,由于通过隔热构件50抑制了在SOFC30、电化学泵40以及再循环气体路径13中循环的气体的温度降低,因此能够降低燃料电池***10中的热损失。另外,能够将SOFC30和电化学泵40中的发热反应的热用于再循环气体路径13的加热,谋求燃料电池***10的热损失的降低。
另外,燃料电池***10还可以具备计算机等控制装置以及在阳极气体供给路径具备调整阀。该情况下,可以通过存储在控制装置中的程序以及操作者对控制装置的操作,利用调整阀来控制燃料气体的供给量,以保持燃料电池***10的热平衡。
另外,如变形例1所示,隔热空间51可以具有收纳SOFC30的第1隔热空间51a和收纳电化学泵40的第2隔热空间51b。该情况下,再循环气体路径13可以收纳在第1隔热空间51a、第2隔热空间51b、以及除了第1隔热空间51a和第2隔热空间51b以外的第3隔热空间中的任一个中。因此,隔热构件50可以具备第1隔热构件50a、第2隔热构件50b、以及形成第3隔热空间的第3隔热构件。
<变形例3>
在第3实施方式的变形例3涉及的燃料电池***10中,如图7所示,还具备设置在阳极供给路径11上、对燃料进行改性而生成燃料气体的改性器18。隔热构件50将改性器18收纳在隔热空间51中。
具体而言,隔热构件50将SOFC30、电化学泵40和改性器18一体地覆盖。SOFC30、电化学泵40和改性器18各自的隔热空间51是共通的,相互配置在同一个隔热空间51中。
这样,由于SOFC30、电化学泵40和改性器18相互由同一隔热构件50覆盖,因此能够抑制由隔热构件50引起的成本上升和大型化。另外,能够将SOFC30和电化学泵40中的发热反应的热量用于改性器18的加热,谋求燃料电池***10的热损失的降低。
而且,隔热构件50可以将SOFC30、电化学泵40、再循环气体路径13和改性器18一体地覆盖。这样,通过使隔热构件50通用化,能够抑制隔热构件50的成本上升和大型化。另外,SOFC30、电化学泵40、再循环气体路径13以及改性器18各自的隔热空间51是共通的,相互配置在同一个隔热空间51中。由此,通过隔热构件50抑制了在SOFC30、电化学泵40以及再循环气体路径13中循环的气体的温度降低,因此能够降低燃料电池***10中的热损失。
另外,如变形例1所示,隔热空间51可以具有收纳SOFC30的第1隔热空间51a和收纳电化学泵40的第2隔热空间51b。该情况下,改性器18可以收纳在第1隔热空间51a、第2隔热空间51b、以及除了第1隔热空间51a和第2隔热空间51b以外的第4隔热空间中的任一个中。因此,隔热构件50可以具备第1隔热构件50a、第2隔热构件50b、以及形成第4隔热空间的第4隔热构件。
<变形例4>
在第3实施方式的变形例4涉及的燃料电池***10中,如图8所示,与变形例1同样地,隔热空间51具有收纳SOFC30的第1隔热空间51a、以及收纳电化学泵40且与第1隔热空间51a隔热的第2隔热空间51b。另外,还具备设置在阳极供给路径11上、对燃料进行改性而生成燃料气体的改性器18。隔热构件50将改性器18收纳在第1隔热空间51a中。由此,由于通过隔热构件50抑制了在SOFC30、电化学泵40、改性器18和再循环气体路径13中循环的气体的温度降低,因此能够降低燃料电池***10中的热损失。
<变形例5>
在第3实施方式的变形例5涉及的燃料电池***10中,如图9所示,与变形例1同样,隔热空间51具有收纳SOFC30的第1隔热空间51a、以及收纳电化学泵40并且与第1隔热空间51a隔热的第2隔热空间51b。另外,还具备设置在阳极供给路径11上、对燃料进行改性而生成燃料气体的改性器18。隔热构件50将改性器18收纳在第2隔热空间51b中。由此,由于通过隔热构件50抑制了在SOFC30、电化学泵40、改性器18以及再循环气体路径13中循环的气体的温度降低,因此能够降低燃料电池***10中的热损失。另外,在图9中,电源14、阳极供给路径11、再循环气体路径13、第1阳极排出路径15等路径的一部分被收纳在第2隔热空间51b中,但实际上也可以配置在第2隔热空间51b的外部。
[第4实施方式]
第4实施方式涉及的燃料电池***10如图10所示,在第1~第3实施方式及其变形例的任一个涉及的燃料电池***10的基础上,具备与第1阳极41连接、供从第1阳极41排出的第1阳极废气流动的第1阳极排出路径15,以及设置在第1阳极排出路径15上、使第1阳极废气燃烧的燃烧器20。
具体而言,第1阳极排出路径15与第1阳极41的排出口连接,供从第1阳极41排出的第1阳极废气流动。第1阳极废气是通过电化学泵40从第2阳极废气中分离氢而残留的气体。因此,第1阳极废气具有从没有用于SOFC30的化学反应而残留的燃料气体中减去由电化学泵40分离的氢而得到的残留气体作为可燃性气体。
燃烧器20设置于第1阳极排出路径15,从第1阳极排出路径15供给第1阳极废气,使第1阳极废气的可燃性的残留气体燃烧,排出燃烧废气。由此,在残留气体中包含一氧化碳的情况下,能够使一氧化碳燃烧而作为二氧化碳排出。此外,能够将通过燃烧产生的热用于改性器18等燃料电池***10的结构的加热,从而谋求燃料电池***10的热损失的降低。另外,在燃料电池***10具有储水罐的情况下,能够将通过燃烧产生的热用于该储水罐的加热,谋求燃料电池***10的热损失的降低。
另外,通过电化学泵40从SOFC30的第2阳极废气中分离氢,将由此残留的第1阴极废气作为SOFC30的燃料气体再利用。因此,从电化学泵40排出的第1阳极废气中含有的氢比第2阳极废气少,由第1阳极废气的燃烧产生的热量比第2阳极废气低。即使在这种情况下,由于SOFC30和电化学泵40的工作温度彼此相同或相近,因此对从电化学泵40向SOFC30的第1阴极废气进行加热的热量也可以较少。由此,能够避免因使用了第1阳极废气的燃烧器20的加热不足而导致SOFC30不能热自立(热量自我维持)的状况。
另外,燃烧器20可以设置于第1阳极排出路径15和阴极排出路径17。该情况下,从第1阳极排出路径15向燃烧器20供给第1阳极废气,并且从阴极排出路径17向燃烧器20供给第2阴极废气。因此,燃烧器20能够利用第2阴极废气中的残留氧化剂气体高效地燃烧第1阳极废气。另外,燃烧器20可以与电化学泵40一起被收纳在隔热空间40中。另外,与图5等同样地,可以设置第1隔热空间51a、第2隔热空间51b,将SOFC30收纳在第1隔热空间51a中,将燃烧器20与电化学泵40一起收纳在第2隔热空间51b中。
[第5实施方式]
第5实施方式涉及的燃料电池***10如图11所示,在第1~第4实施方式和变形例中的任一个涉及的燃料电池***10的基础上,具备设置在阳极供给路径11上、对燃料进行改性而生成燃料气体的改性器18,以及在从第1阳极41排出的第1阳极废气与向改性器18供给的燃料气体之间进行热交换的第1热交换器21。
第1热交换器21配置于第1阳极排出路径15以及比改性器18靠上游的阳极供给路径11。另外,在燃料电池***10具备加湿器19的情况下,第1热交换器21配置于加湿器19与改性器18之间的阳极供给路径11。另外,在燃料电池***10具备燃烧器20的情况下,第1热交换器21配置于电化学泵40与燃烧器20之间的第1阳极排出路径15。
在第1热交换器21中,第1阳极排出路径15的第1阳极废气与阳极供给路径11的燃料气体进行热交换。该第1阳极废气从在高温下工作的电化学泵40排出,因此温度高。所以燃料气体被高温的第1阳极废气加热。
然后,升温了的燃料气体被供给到改性器18。在改性器18中,燃料气体在高温下被改性。由于在该燃料气体的升温中利用第1阳极废气的热,因此能够降低燃料电池***10中的热损失。
[第6实施方式]
第6实施方式涉及的燃料电池***10如图12所示,在第1~第5实施方式和变形例中的任一个涉及的燃料电池***10的基础上具有:与第2阴极32连接、向第2阴极32供给氧化剂气体的阴极供给路径16;与第2阴极32连接、供从第2阴极32排出的第2阴极废气流动的阴极排出路径17;以及在向第2阴极32供给的氧化剂气体与从第2阴极32排出的第2阴极废气之间进行热交换的第2热交换器22。
第2热交换器22设置于阴极供给路径16和阴极排出路径17。另外,在燃料电池***10具备燃烧器20的情况下,第2热交换器22配置于SOFC30与燃烧器20之间的阴极排出路径17。
在第2热交换器22中,阴极供给路径16的氧化剂气体与阴极排出路径17的第2阴极废气进行热交换。该第2阴极废气从在高温下工作的SOFC30排出,因此温度高。所以氧化剂气体被高温的第2阴极废气加热。
然后,升温了的氧化剂气体被供给到SOFC30,在SOFC30中与燃料气体发生化学反应而用于发电。这样,在氧化剂气体的升温中利用第2阴极废气的热,因此能够降低燃料电池***10中的热损失。
<其他变形例>
在上述第2~第6实施方式和变形例中的任一个涉及的燃料电池***10的基础上,如图11所示,在燃料电池***10具备改性器18的情况下,再循环气体路径13可以与比改性器18靠上游的阳极供给路径11连接。此外,在燃料电池***10具备加湿器19的情况下,再循环气体路径13可以连接到加湿器19与改性装置18之间的阳极供应路径11。
此外,在燃料电池***10具备第1热交换器21的情况下,再循环气体路径13可以连接到第1热交换器21与改性器18之间的阳极供应路径11。该情况下,从再循环气体路径13返回的第1阴极废气不被供给到第1热交换器21,由此能够通过第1热交换器21将燃料有效地升温。
上述所有实施方式和变形例中的任一个涉及的燃料电池***10,可以具备对SOFC30和电化学泵40中的至少任一方进行加热的加热器。加热器可以是燃烧器等燃烧装置。燃烧装置可以与从第2阳极排出路径12分支的分支路径连接,使从第2阳极排出路径12经由分支路径供给的第2阳极废气燃烧。
在上述所有的实施方式和变形例涉及的燃料电池***10的基础上,在SOFC30进行内部改性的情况下,可以将甲烷等烃气作为含氢气体且作为燃料气体使用。该供给源可举出烃气等城市燃气的基础设施等。该情况下,燃料气体通过SOFC30的第2阳极31而进行内部改性,生成氢用于发电。另外,未用于发电的氢作为第2阳极废气被供给到电化学泵40。
在上述所有的实施方式和变形例涉及的燃料电池***10中使用了氧化物离子传导型的SOFC30,但也可以使用质子传导型的SOFC30。该情况下,在质子传导型的SOFC30中,在第2阳极31如下述化学式(8)所示,燃料气体的氢被还原,产生质子和电子,电子在外部电路中流动而发电。质子从第2阳极31通过第2电解质膜33传导至第2阴极32。在第2阴极32如下述化学式(9)所示,质子被氧化物气体的氧氧化,生成水。
第2阳极:2H2→4H++4e- (8)
第2阴极:4H++O2+4e-→2H2O (9)
并且,第2阳极废气从SOFC30的第2阳极31通过第2阳极排出路径12供给到电化学泵40的第1阳极41。在从电源14施加电流的电化学泵40中,从第2阳极废气中分离氢。
另外,在氧化物离子传导型的SOFC30中,由于在第2阳极31中生成水,所以第2阳极废气、以及由此产生的第1阴极废气和燃烧废气含有水分。因此,能够将该冷凝水用于加湿器19。另一方面,在质子传导型的SOFC30中,由于在第2阴极32生成水,所以第2阴极废气以及由此产生的燃烧废气含有水分。因此,能够将该冷凝水用于加湿器19。
在上述所有实施方式和变形例涉及的燃料电池***10的基础上,SOFC30和电化学泵40可以一体形成。该情况下,可以以使SOFC30的第2阳极31与电化学泵40的第1阳极41相互平行的方式,形成由SOFC30的单元和电化学泵40的单元层叠而成的堆。SOFC30被配置为第2阳极31比第2阴极32更接近电化学泵40,电化学泵40被配置为第1阳极41比第1阴极42更接近SOFC30。另外,在图3~12中未图示温度测定器,但在第1实施方式以外的实施方式和变形例中,燃料电池***10可以具备温度测定器30a、40a。
另外,上述所有实施方式只要不相互排斥对方,就可以相互组合。此外,根据上述说明,本公开的许多改良和其他实施方式对于本领域技术人员来说是显而易见的。因此,上述说明应仅被解释为例示,是为了教导本领域技术人员执行本公开的最佳方式而提供的。在不脱离本公开的精神的情况下,可以对其结构和/或功能的详细情况进行实质性变更。
产业可利用性
本公开的燃料电池***,作为能够在提高燃料利用率的同时谋求热损失的降低和小型化的燃料电池***是有用的。
附图标记说明
10:燃料电池***
11:阳极供给路径
12:第2阳极排出路径
13:再循环气体路径
14:电源
15:第1阳极排出路径
16:阴极供给路径
17:阴极排出路径
18:改性器
20:燃烧器
21:第1热交换器
22:第2热交换器
30:SOFC(固体氧化物型燃料电池)
31:第2阳极
32:第2阴极
33:第2电解质膜
40:电化学泵
41:第1阳极
42:第1阴极
43:第1电解质膜
50:隔热构件
51:隔热空间
51a:第1隔热空间
51b:第2隔热空间

Claims (21)

1.一种电化学泵,具有第1阳极、第1阴极和第1电解质膜,从含氢的气体中使所述氢分离,所述第1电解质膜包含具有质子传导性的氧化物。
2.根据权利要求1所述的电化学泵,
所述第1电解质膜包含选自A1Zr1-x1M1x1O3-δ、A2Ce1-x2M2x2O3-δ和A3Zr1-x3-y3Cex3M3y3O3-δ中的至少一者,
A1、A2、A3分别包含选自Ba、Sr、Ca中的至少一种元素,M1、M2和M3分别包含选自Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Y、Sc、In和Lu中的至少一种,
x1满足0<x1<1,
x2满足0<x2<1,
x3满足0<x3<1,
y3满足0<y3<1。
3.根据权利要求2所述的电化学泵,
在所述第1电解质膜中,A1、A2、A3包含Ba。
4.根据权利要求3所述的电化学泵,
所述第1电解质膜包含BaZr1-x1M1x1O3-δ
5.根据权利要求4所述的电化学泵,
在所述第1电解质膜中,M1至少包含Yb。
6.根据权利要求1~5中任一项所述的电化学泵,
至少一部分在400℃以上进行工作。
7.根据权利要求1~6中任一项所述的电化学泵,
连同燃烧器、燃料电池或改性器一起被收纳在隔热构件形成的隔热空间中。
8.一种燃料电池***,具备权利要求1~5中任一项所述的电化学泵、固体氧化物型燃料电池、阳极供给路径、第2阳极排出路径、再循环气体路径、以及电源,
所述固体氧化物型燃料电池具有第2阳极、第2阴极、以及包含固体氧化物系电解质的第2电解质膜,使燃料气体与氧化剂气体反应而发电,
所述阳极供给路径与所述第2阳极连接,将所述燃料气体供给到所述第2阳极,
所述第2阳极排出路径与所述第2阳极和所述第1阳极连接,将从所述第2阳极排出并且含有所述氢的第2阳极废气供给到所述第1阳极,
所述再循环气体路径与所述第1阴极和所述阳极供给路径连接,使含有通过所述电化学泵分离出的所述氢并且从所述第1阴极排出的第1阴极废气返回所述阳极供给路径,
所述电源与所述电化学泵连接,对所述电化学泵供电。
9.根据权利要求8所述的燃料电池***,
所述电化学泵的至少一部分在400℃以上工作。
10.根据权利要求8所述的燃料电池***,
所述固体氧化物型燃料电池的温度T1与所述电化学泵的温度T2的温度差,在T1为600以上且800℃以下所述固体氧化物型燃料电池工作的情况下为200℃以下,在T1为800℃以上且1000℃以下所述电化学泵工作的情况下为400℃以下。
11.根据权利要求10所述的燃料电池***,
所述固体氧化物型燃料电池的温度T1高于所述电化学泵的温度T2。
12.根据权利要求8~11中任一项所述的燃料电池***,
还具备设置在所述阳极供给路径上、将燃料改性而生成所述燃料气体的改性器。
13.根据权利要求8~12中任一项所述的燃料电池***,
还具备将所述固体氧化物型燃料电池和所述电化学泵收纳于隔热空间中的隔热构件,所述固体氧化物型燃料电池和所述电化学泵被收纳于相同的隔热空间中。
14.根据权利要求12所述的燃料电池***,
还具备将所述电化学泵和所述改性器收纳于隔热空间中的隔热构件,所述电化学泵和所述改性器被收纳于相同的隔热空间中。
15.根据权利要求8~12中任一项所述的燃料电池***,
还具备将所述固体氧化物型燃料电池和所述电化学泵收纳于隔热空间中的隔热构件,所述隔热空间具有收纳了所述固体氧化物型燃料电池的第1隔热空间、以及与所述第1隔热空间隔热并且收纳了所述电化学泵的第2隔热空间。
16.根据权利要求12所述的燃料电池***,
还具备将所述改性器和所述电化学泵收纳于隔热空间中的隔热构件,所述隔热空间具有收纳了所述改性器的第1隔热空间、以及与所述第1隔热空间隔热并且收纳了所述电化学泵的第2隔热空间。
17.根据权利要求8~16中任一项所述的燃料电池***,
所述隔热构件将所述再循环气体路径收纳于所述隔热空间中。
18.根据权利要求8~17中任一项所述的燃料电池***,
还具备第1阳极排出路径和燃烧器,
所述第1阳极排出路径与所述第1阳极连接,供从所述第1阳极排出的第1阳极废气流动,
所述燃烧器设置于所述第1阳极排出路径,使所述第1阳极废气燃烧。
19.根据权利要求18所述的燃料电池***,
还具备改性器和第1热交换器,
所述改性器设置在所述阳极供给路径上,将燃料改性而生成所述燃料气体,
所述第1热交换器在从所述第1阳极排出的所述第1阳极废气与向所述改性器供给的所述燃料气体之间进行热交换。
20.根据权利要求8~19中任一项所述的燃料电池***,
具备阴极供给路径、阴极排出路径和第2热交换器,
所述阴极供给路径与所述第2阴极连接,将所述氧化剂气体供给到所述第2阴极,
所述阴极排出路径与所述第2阴极连接,供从所述第2阴极排出的第2阴极废气流动,
所述第2热交换器在向所述第2阴极供给的所述氧化剂气体与从所述第2阴极排出的所述第2阴极废气之间进行热交换。
21.根据权利要求8~19中任一项所述的燃料电池***,
还具备设置在所述阳极供给路径上、将燃料改性而生成所述燃料气体的改性器,
所述再循环气体路径连接到所述改性器与所述第2阳极之间的所述阳极供给路径。
CN202080100436.1A 2020-05-14 2020-11-13 电化学泵和燃料电池*** Pending CN115485889A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020-084983 2020-05-14
JP2020084983 2020-05-14
PCT/JP2020/042356 WO2021229843A1 (ja) 2020-05-14 2020-11-13 電気化学ポンプ及び燃料電池システム

Publications (1)

Publication Number Publication Date
CN115485889A true CN115485889A (zh) 2022-12-16

Family

ID=78525613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080100436.1A Pending CN115485889A (zh) 2020-05-14 2020-11-13 电化学泵和燃料电池***

Country Status (4)

Country Link
US (1) US20230067326A1 (zh)
EP (1) EP4151601A1 (zh)
CN (1) CN115485889A (zh)
WO (1) WO2021229843A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5542333B2 (ja) * 2005-07-25 2014-07-09 ブルーム エナジー コーポレーション 電気化学アノードの排気のリサイクルを行う燃料電池システム
US9190685B2 (en) * 2011-10-27 2015-11-17 Bloom Energy Corporation SOFC system with selective CO2 removal
JP6596856B2 (ja) * 2015-03-18 2019-10-30 富士電機株式会社 改質水蒸発器及び発電装置
JP2020129433A (ja) * 2017-06-15 2020-08-27 住友電気工業株式会社 固体電解質部材、固体酸化物型燃料電池、水電解装置、水素ポンプ及び固体電解質部材の製造方法
JP7300672B2 (ja) * 2018-09-21 2023-06-30 パナソニックIpマネジメント株式会社 燃料電池システムおよびその運転方法

Also Published As

Publication number Publication date
EP4151601A1 (en) 2023-03-22
JPWO2021229843A1 (zh) 2021-11-18
US20230067326A1 (en) 2023-03-02
WO2021229843A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
CN110447136B (zh) 电化学元件
CA2232737C (en) Solid electrolytes as well as fuel cells, hydrogen pumps, oxygen concentration sensors, and steam concentration sensors using the solid electrolytes
US20090208785A1 (en) SOFC electrochemical anode tail gas oxidizer
JP2008135395A (ja) 燃料電池パワープラント及び燃料電池パワープラントを作動させる方法
JPWO2019160036A1 (ja) 燃料電池システム及び複合発電システム並びに燃料電池システムの制御方法
CN111868983B (zh) 燃料电池单电池单元、燃料电池模块及燃料电池装置
WO2008121189A1 (en) Sofc system producing reduced atmospheric carbon dioxide using a molten carbonate carbon dioxide pump
KR102132314B1 (ko) 연료 전지의 온도 분포 제어 시스템, 연료 전지 및 온도 분포 제어 방법
Singhal Solid oxide fuel cells: past, present and future
WO2019189843A1 (ja) 金属支持型燃料電池及び燃料電池モジュール
CN113366149A (zh) 电化学装置及氢生成方法
CN110462109B (zh) 合金部件的制造方法和合金部件
US20060210854A1 (en) Fuel battery
JP6532668B2 (ja) 燃料電池システム
JP3999934B2 (ja) 固体電解質型燃料電池
KR20220034198A (ko) 연료 전지 시스템 및 그 제어 방법
WO2021229843A1 (ja) 電気化学ポンプ及び燃料電池システム
US8409760B2 (en) Method for controlling a water based fuel reformer
JP2004273141A (ja) 燃料電池システム
JP5103754B2 (ja) 燃料電池装置
US20100183929A1 (en) Solid oxide fuel cell system including a water based fuel reformer
JP7013605B1 (ja) 燃料電池システムおよび燃料電池システムの運転方法
JP6556440B2 (ja) 燃料電池システム
WO2021171884A1 (ja) 燃料電池システム及びその制御方法
JP2011014495A (ja) 燃料電池モジュール

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination