CN115433883A - 一种具有析出相强化效应的高强韧亚稳多组分合金及其制备方法 - Google Patents

一种具有析出相强化效应的高强韧亚稳多组分合金及其制备方法 Download PDF

Info

Publication number
CN115433883A
CN115433883A CN202211004036.8A CN202211004036A CN115433883A CN 115433883 A CN115433883 A CN 115433883A CN 202211004036 A CN202211004036 A CN 202211004036A CN 115433883 A CN115433883 A CN 115433883A
Authority
CN
China
Prior art keywords
toughness
alloy
metastable
strengthening effect
component alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211004036.8A
Other languages
English (en)
Other versions
CN115433883B (zh
Inventor
李志明
杨乾坤
严定舜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202211004036.8A priority Critical patent/CN115433883B/zh
Publication of CN115433883A publication Critical patent/CN115433883A/zh
Application granted granted Critical
Publication of CN115433883B publication Critical patent/CN115433883B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种具有析出相强化效应的高强韧亚稳多组分合金及其制备方法,按照原子百分比计包括下述组分,Fe 48~51%,Mn 27~32%,Co 9~11%,Cr 9~11%,Nb 0.1~0.3%,V 0.1~1.0%,C 0.1~1.0%,N 0.1~1.0%;且Fe、Mn、Co、Cr的原子百分含量之和≥97%;Nb、V、C、N的原子百分含量之和≤3%。本发明制备的多组分合金均匀化后形成均匀的奥氏体组织,经冷轧和退火后可以析出纳米级碳氮化物,显著提高合金的屈服强度和抗拉强度;同时,合金保持良好的延伸率和可加工性,可应用于多种高性能结构部件。

Description

一种具有析出相强化效应的高强韧亚稳多组分合金及其制备 方法
技术领域
本发明属于金属材料技术领域,具体涉及到一种具有析出相强化效应的高强韧亚稳多组分合金及其制备方法。
背景技术
强度和韧性是结构材料的重要指标,高强韧材料不仅可以增加设备的安全性,还可以减轻重量、降低能耗、保护环境等,因此开发高强韧结构材料具有重大意义。
近年来,为了开发高强韧合金,研究人员开发出了具有较好强韧性能的多组分高熵合金,其中综合性能比较好的具有面心立方结构的等原子比FeMnCoCrNi多组分高熵合金[引用材料学报:F.Otto,A.
Figure BDA0003806143530000011
C.Somsen,H.Bei,G.Eggeler,E.P.George,ActaMaterialia 61(2013)5743–5755]是该类合金的典型代表,但是其较为单一的变形机制限制了该类合金力学性能的进一步提高,难以应用于对性能要求更高的结构部件。随着研究的深入,人们又开发出了具有相变诱导塑性(TRIP)效应的非等原子比亚稳多组分合金,该类合金在等原子比FeMnCoCrNi多组分高熵合金的基础上,引入了相变强韧化机制,使得该合金具有更高的强塑性搭配[引用自然杂志:Z.Li,K.G.Pradeep,Y.Deng,D.Raabe,C.C.Tasan,Nature 534(2016)227–230]。但该种合金也存在明显的不足之处,即屈服强度较低,其在变形过程中过早的发生塑性变形限制了其在实际结构部件中的应用。因此,具有更高强韧性能的合金有待进一步开发。
发明内容
本部分的目的在于概述本发明的实施例的一些方面以及简要介绍一些较佳实施例。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。
鉴于上述和/或现有技术中存在的问题,提出了本发明。
本发明的其中一个目的是提供一种具有析出相强化效应的高强韧亚稳多组分合金,使合金同时具有纳米析出强化和TRIP效应,可以显著提高合金材料的强韧性能,使其可应用于对力学性能要求更高的结构件中。
为解决上述技术问题,本发明提供了如下技术方案:一种具有析出相强化效应的高强韧亚稳多组分合金,按照原子百分比计包括下述组分,Fe 48~51%,Mn 27~32%,Co9~11%,Cr 9~11%,Nb 0.1~0.3%,V 0.1~1.0%,C 0.1~1.0%,N 0.1~1.0%;且Fe、Mn、Co、Cr的原子百分含量之和≥97%;Nb、V、C、N的原子百分含量之和≤3%;
所述合金具有如下特性之一:
(i)屈服强度550~1300MPa;
(ii)抗拉强度850~1500MPa;
(iii)断后延伸率15~65%。
本发明的另一个目的是提供如上述所述的具有析出相强化效应的高强韧亚稳多组分合金的制备方法,包括,
按权利要求1所述的合金各组分原子配比配取各组分,在真空或惰性气体保护条件下熔炼,浇铸成铸坯,铸坯经热轧、均匀化、冷轧、退火处理后,得到具有析出相强化效应的高强韧亚稳多组分合金。
作为本发明具有析出相强化效应的高强韧亚稳多组分合金的制备方法的一种优选方案,其中:合金各组分原料采用纯元素或中间合金,纯度≥99.0%,杜绝因原料纯度较低引入夹杂等,损害合金综合性能的弊端。
作为本发明具有析出相强化效应的高强韧亚稳多组分合金的制备方法的一种优选方案,其中:所述熔炼包括采用感应炉、电弧炉或悬浮炉熔炼,温度为1450~2200℃,保温0.01~1小时;合金反复熔炼不小于1次,以保证合金成分熔炼均匀。
作为本发明具有析出相强化效应的高强韧亚稳多组分合金的制备方法的一种优选方案,其中:所述熔炼,维持炉内真空度在1~0.0001帕或维持炉内惰性气体压力在0.000001~100兆帕。
作为本发明具有析出相强化效应的高强韧亚稳多组分合金的制备方法的一种优选方案,其中:所述热轧,采用多道次热轧,热轧温度为800~1250℃,单道次轧下量≤25%,总轧下量为30~90%。
作为本发明具有析出相强化效应的高强韧亚稳多组分合金的制备方法的一种优选方案,其中:所述均匀化,均匀化处理温度为1100~1300℃,均温时间30~600min。
作为本发明具有析出相强化效应的高强韧亚稳多组分合金的制备方法的一种优选方案,其中:所述均匀化处理在真空或者保护气氛下进行,保护气氛选自氩气、氮气或氦气中的一种。
作为本发明具有析出相强化效应的高强韧亚稳多组分合金的制备方法的一种优选方案,其中:所述冷轧,采用多道次冷轧,道次轧下量≤25%,总轧下量为40~90%。
作为本发明具有析出相强化效应的高强韧亚稳多组分合金的制备方法的一种优选方案,其中:所述退火,退火温度为600~1000℃,保温时间5~300min。
作为本发明具有析出相强化效应的高强韧亚稳多组分合金的制备方法的一种优选方案,其中:所述退火在真空或者保护气氛下进行,保护气氛选自氩气、氮气或氦气中的一种。
与现有技术相比,本发明具有如下有益效果:
本发明制备的多组分合金均匀化后形成均匀的奥氏体组织,经冷轧和退火后可以析出纳米级碳氮化物,显著提高合金的屈服强度和抗拉强度;同时,合金保持良好的延伸率和可加工性,可应用于多种高性能结构部件。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为本发明实施例1提供的高强韧亚稳多组分合金材料的XRD图谱;
图2为本发明实施例1提供的高强韧亚稳多组分合金材料的扫描电子背散射形貌图;
图3为本发明实施例1提供的高强韧亚稳多组分合金材料的扫描透射组织照片;
图4为本发明实施例1提供的高强韧亚稳多组分合金材料拉伸变形后的扫描透射组织照片;
图5为本发明实施例1提供的高强韧亚稳多组分合金材料的应力应变曲线;
图6为本发明实施例2提供的高强韧亚稳多组分合金材料的XRD图谱;
图7为本发明实施例2提供的高强韧亚稳多组分合金材料的扫描电子背散射形貌图;
图8为本发明实施例2提供的高强韧亚稳多组分合金材料的应力应变曲线;
图9为本发明实施例3提供的高强韧亚稳多组分合金材料的XRD图谱;
图10为本发明实施例3提供的高强韧亚稳多组分合金材料的扫描电子背散射形貌图;
图11为本发明实施例3提供的高强韧亚稳多组分合金材料的应力应变曲线;
图12为本发明实施例4提供的高强韧亚稳多组分合金材料的扫描电子背散射形貌图;
图13为本发明实施例4提供的高强韧亚稳多组分合金材料的应力应变曲线;
图14为本发明实施例5提供的高强韧亚稳多组分合金材料的XRD图谱、扫描电子背散射形貌图和应力应变曲线;
图15为对比例1中合金材料的应力应变曲线。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书实施例对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
实施例1
(1)按照化学式Fe49Mn29.4Co9.8Cr9.8V0.8Nb0.2N0.8C0.2(原子百分数)进行配料,原料使用各纯元素对应的块体,纯度大于99.9%,碳和氮采用FeC合金和CrN合金,纯度大于99.9%;
(2)将配好的原料置于铜坩埚内采用电弧炉熔炼,先向坩埚内通入高纯氩气进行洗气,再抽低真空至5帕以下,然后抽高真空至5×10-3帕以下,最后通入5兆帕的高纯氩气作为保护气体,熔炼温度为1600℃,保温10min,反复熔炼4次得到熔炼的合金锭;
(3)将合金锭进行多道次热轧处理,热轧温度为900℃,单次轧下量为10%,总轧下量为50%;
(4)将热轧后的合金块体进行高温均匀化处理,在真空下进行(真空度为10-2Pa),温度为1200℃,均匀化处理时间为2小时,然后水淬;
(5)将高温均匀化后的合金块体进行多道次室温轧制,单道次轧下量为10%,总轧下量为70%;
(6)将冷轧后的合金板材进行退火处理,在真空下进行(真空度为10-2Pa),退火温度为900℃,退火时间为10min,得到具有析出强化效应的高强韧亚稳多组分合金材料。
对得到的高强韧亚稳多组分合金材料进行形貌观测,如图1~4所示。图1为高强韧亚稳多组分合金材料的XRD图谱,图2为高强韧亚稳多组分合金材料的扫描电子背散射形貌图,图3为高强韧亚稳多组分合金材料的扫描透射组织照片,图4为高强韧亚稳多组分合金材料拉伸变形后的扫描透射组织照片。
由图1可见,所得具有析出强化效应的高强韧亚稳多组分合金材料具有单一面心立方结构的奥氏体组织,由图2可见,退火后合金晶粒均匀,由于析出相比较细小,而扫描电镜的分辨率有限,所以结合扫描透射照片,由图3可见,在奥氏体晶粒内部弥散分布有大量纳米析出相。由图4可见,变形后合金中出现了很多片层马氏体,说明在变形过程中发生了TRIP效应。
对得到的高强韧亚稳多组分合金材料进行力学性能测试。实施例1得到的高强韧亚稳多组分合金材料的应力应变曲线如图5所示。
由图5可见,该实施例所得具有析出强化效应的高强韧亚稳多组分合金材料的屈服强度约为587MPa,抗拉强度约为891MPa,断后延伸率约为64%。
实施例2
(1)按照化学式Fe49Mn29.4Co9.8Cr9.8V0.8Nb0.2N0.8C0.2(原子百分数)进行配料,原料使用各纯元素对应的块体,纯度大于99.9%,碳和氮采用FeC合金和CrN合金,纯度大于99.9%;
(2)将配好的原料置于铜坩埚内采用电弧炉熔炼,先向坩埚内通入高纯氩气进行洗气,再抽低真空至5帕以下,然后抽高真空至5×10-3帕以下,最后通入5兆帕的高纯氩气作为保护气体,熔炼温度为1600℃,保温5min,反复熔炼5次得到熔炼的合金锭;
(3)将熔炼的合金锭进行多道次热轧处理,热轧温度为950℃,单次轧下量为10%,总轧下量为50%;
(4)将热轧后的合金块体进行高温均匀化处理,在真空下进行(真空度为10-2Pa),温度为1200℃,均匀化处理时间为3小时,然后水淬;
(5)将冷轧后的合金板材进行退火处理,在真空下进行(真空度为10-2Pa),将高温均匀化后的合金块体进行多道次室温冷轧,单道次轧下量为20%,总轧下量为70%;
(6)将冷轧后的合金板材在真空下进行退火处理(真空度为10-2Pa),退火温度为800℃,退火时间为30min。得到具有析出强化效应的高强韧亚稳多组分合金材料。
对得到的高强韧亚稳多组分合金材料进行形貌观测,如图6、7所示。图6为高强韧亚稳多组分合金材料的XRD图谱,图7为高强韧亚稳多组分合金材料的扫描电子背散射形貌图。
由图6可见,所得具有析出强化效应的高强韧亚稳多组分合金材料具有单一面心立方结构的奥氏体组织,由图7可见,退火后合金含有未再结晶区域。
对得到的高强韧亚稳多组分合金材料进行力学性能测试。实施例2得到的高强韧亚稳多组分合金材料的应力应变曲线如图8所示。
图8可见,该实施例所得具有析出强化效应的高强韧亚稳多组分合金材料的屈服强度约为587MPa,抗拉强度约为891MPa,断后延伸率约为64%。
实施例3
(1)按照化学式Fe49Mn29.4Co9.8Cr9.8V0.8Nb0.2N0.8C0.2(原子百分数)进行配料,原料使用各纯元素对应的块体,纯度大于99.9%,碳和氮采用FeC合金和CrN合金,纯度大于99.9%;
(2)将配好的原料置于铜坩埚内采用电弧炉熔炼,先向坩埚内通入高纯氩气进行洗气,再抽低真空至5帕以下,然后抽高真空至5×10-3帕以下,最后通入5兆帕的高纯氩气作为保护气体,熔炼温度为1700℃,保温3min,在真空条件下进行熔炼,反复熔炼3次得到熔炼的合金锭;
(3)将熔炼的合金锭进行多道次热轧处理,热轧温度为1000℃,单次轧下量为15%,总轧下量为60%;
(4)将热轧后的合金块体在真空下进行高温均匀化处理(真空度为10-2Pa),温度为1200℃,均匀化处理时间为4小时,然后水淬;
(5)将高温均匀化后的合金块体进行多道次室温轧制,单道次轧下量为15%,总轧下量为60%;
(6)将冷轧后的合金板材在真空下进行退火处理(真空度为10-2Pa),退火温度为800℃,退火时间为10min,得到高强韧亚稳多组分合金材料。
对得到的高强韧亚稳多组分合金材料进行形貌观测,如图9、10所示。图9为高强韧亚稳多组分合金材料的XRD图谱,图10为高强韧亚稳多组分合金材料的扫描电子背散射形貌图。
由图9可见,所得具有析出强化效应的高强韧亚稳多组分合金材料具有单一面心立方结构的奥氏体组织,由图10可见,退火后合金含有16%的未再结晶区域。
对得到的高强韧亚稳多组分合金材料进行力学性能测试。实施例3得到的高强韧亚稳多组分合金材料的应力应变曲线如图11所示。
图11可见,该实施例所得具有析出强化效应的高强韧亚稳多组分合金材料的屈服强度约为850MPa,抗拉强度约为1006MPa,断后延伸率约为52%。
实施例4
(1)按照化学式Fe49Mn29.4Co9.8Cr9.8V0.8Nb0.2N0.8C0.2(原子百分数)进行配料,原料使用各纯元素对应的块体,纯度大于99.9%,碳和氮采用FeC合金和CrN合金,纯度大于99.9%;
(2)将配好的原料置于铜坩埚内采用电弧炉熔炼,先向坩埚内通入高纯氩气进行洗气,再抽低真空至5帕以下,然后抽高真空至5×10-3帕以下,最后通入5兆帕的高纯氩气作为保护气体,熔炼温度为1700℃,保温15min,反复熔炼5次得到熔炼的合金锭;
(3)将合金进行多道次热轧处理,热轧温度为900℃,单次轧下量为10%,总轧下量为50%;
(4)将热轧后的合金块体进行高温均匀化处理,在真空下进行(真空度为10-2Pa),温度为1200℃,均匀化处理时间为2小时,然后水淬;
(5)将高温均匀化后的合金块体进行多道次室温轧制,单道次轧下量为15%,总轧下量为75%;
(6)将冷轧后的合金板材进行退火处理,在真空下进行(真空度为10-2Pa),退火温度为600℃,退火时间为10min,得到具有析出强化效应的高强韧亚稳多组分合金材料。
对得到的高强韧亚稳多组分合金材料进行形貌观测,如图12所示。图12为高强韧亚稳多组分合金材料的XRD图谱。
图12可见,合金组织内部含有大量位错和剪切带。
对得到的高强韧亚稳多组分合金材料进行力学性能测试。实施例4得到的高强韧亚稳多组分合金材料的应力应变曲线如图13所示。
由图13可见,该实施例所得具有析出强化效应的高强韧亚稳多组分合金材料的屈服强度约为1300MPa,抗拉强度约为1488MPa,断后延伸率约为19%。
实施例5
(1)分别按照化学式Fe49Mn29.4Co9.8Cr9.8VC、Fe49Mn29.4Co9.8Cr9.8VN、Fe49.8Mn29.88Co9.96Cr9.96Nb0.2C0.2(原子百分数)进行配料,原料使用各纯元素对应的块体,纯度大于99.9%,碳和氮采用FeC合金和CrN合金,纯度大于99.9%;
(2)将配好的原料置于铜坩埚内采用电弧炉熔炼,先向坩埚内通入高纯氩气进行洗气,再抽低真空至5帕以下,然后抽高真空至5×10-3帕以下,最后通入5兆帕的高纯氩气作为保护气体,熔炼温度为1600℃,保温10min,反复熔炼4次得到熔炼的合金锭;
(3)将合金进行多道次热轧处理,热轧温度为950℃,单次轧下量为10%,总轧下量为50%;
(4)将热轧后的合金块体进行高温均匀化处理,在真空下进行(真空度为10-2Pa),温度为1200℃,均匀化处理时间为4小时,然后水淬;
(5)将高温均匀化后的合金块体进行多道次室温轧制,单道次轧下量为10%,总轧下量为70%;
(6)将冷轧后的合金板材进行退火处理,在真空下进行(真空度为10-2Pa),退火温度为900℃,退火时间为10min,得到亚稳多组分合金材料。
对得到的亚稳多组分合金材料进行性能测试,如图14所示。图14显示的是实施例5这种提供的各多组元合金材料的XRD图谱、扫描电子背散射形貌图和应力应变曲线。
由图14可见,所得多组分合金材料具有单一面心立方结构的奥氏体组织,退火后合金晶粒均匀,结合扫描电子背散射形貌图发现,合金中均含有比较细小的纳米析出相,该三种多组分合金材料的力学性能如表1所示。
表1
Figure BDA0003806143530000091
对比例1
根据材料学报记载[引用材料学报:Z.Li,C.C.Tasan,K.G.Pradeep,D.Raabe,ActaMaterialia 131(2017)323–335],非等原子比多组分亚稳多组分高熵合金Fe50Mn30Co10Cr10经过热轧(900℃,总轧下量50%)、均匀化(1200℃,2h)、冷轧(总轧下量60%)、退火(900℃,3min)后的的屈服强度和抗拉强度分别为340MPa和870MPa,该合金材料的应力应变曲线如图15所示。
比较实施例1、2、3和4与对比例1可知:本发明制备的合金较现有亚稳多组元合金的屈服强度至少提高了245MPa,最多提高了510MPa,抗拉强度至少提高了20MPa,最多提高了136MPa,并且均具有良好的塑性(断裂延伸率均大于50%)。比较实施例1、2、3和4和实施例5可以发现,复合添加Nb、V、C、N的合金性能优于单独添加Nb与C、V与C和V与N的合金性能,在相同或者类似的加工工艺条件下,屈服强度至少提高了79MPa,最多提高了716MPa,抗拉强度至少提高了10MPa,最多提高了660MPa。虽然单独添加Nb与C、V与C或V与N的合金也能实现纳米析出与TRIP效应的协同作用,但是其性能劣于复合添加Nb、V、C、N的合金。
本发明制备的具有析出强化效应的高强韧亚稳多组分合金材料中,在组分匹配方面,具有以下特点:首先,保留了原始高强韧亚稳多组分合金的配比,在保证原高强韧亚稳多组分合金各组分配比不变的前提下掺入微合金元素,保留了原始合金的TRIP效应;其次,掺入微合金元素后的合金在均匀化状态下呈现出单相奥氏体组织,经过退火后析出纳米级碳氮化物。因此,本发明制备的具有析出强化效应的高强韧亚稳多组分合金材料可以同时结合TRIP效应和纳米析出强化,通过纳米析出强化提高材料的屈服强度,同时其TRIP效应保证了材料具有较高的韧性,从而实现高强韧合金。
另外,合金铸坯通过热轧,可有效地消除熔炼铸造时合金中产生的缺陷(如微孔、微裂纹等),提升合金的综合性能;随后进行均匀化处理,可进一步促进合金中各组元均匀分布,通过后续的冷轧和退火,可以均匀析出纳米碳氮化物析出相,本发明通过调整退火处理工艺参数,可控制合金的再结晶状态、晶粒尺寸、析出相尺寸和数量等,从而调整力学性能,在确保合金良好塑性的前提下,提高合金的强度。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种具有析出相强化效应的高强韧亚稳多组分合金,其特征在于:按照原子百分比计包括下述组分,Fe 48~51%,Mn 27~32%,Co 9~11%,Cr 9~11%,Nb 0.1~0.3%,V0.1~1.0%,C 0.1~1.0%,N 0.1~1.0%;且Fe、Mn、Co、Cr的原子百分含量之和≥97%;Nb、V、C、N的原子百分含量之和≤3%。
2.如权利要求1所述的具有析出相强化效应的高强韧亚稳多组分合金的制备方法,其特征在于:包括,
按权利要求1所述的合金各组分原子配比配取各组分,在真空或惰性气体保护条件下熔炼,浇铸成铸坯,铸坯经热轧、均匀化、冷轧、退火处理后,得到具有析出相强化效应的高强韧亚稳多组分合金。
3.如权利要求2所述的具有析出相强化效应的高强韧亚稳多组分合金的制备方法,其特征在于:所述熔炼包括采用感应炉、电弧炉或悬浮炉熔炼,温度为1450~2200℃,保温0.01~1小时。
4.如权利要求2或3所述的具有析出相强化效应的高强韧亚稳多组分合金的制备方法,其特征在于:所述熔炼,维持炉内真空度在1~0.0001帕或维持炉内惰性气体压力在0.000001~100兆帕。
5.如权利要求4所述的具有析出相强化效应的高强韧亚稳多组分合金的制备方法,其特征在于:所述热轧,采用多道次热轧,热轧温度为800~1250℃,单道次轧下量≤25%,总轧下量为30~90%。
6.如权利要求2、3、5中任一项所述的具有析出相强化效应的高强韧亚稳多组分合金的制备方法,其特征在于:所述均匀化,均匀化处理温度为1100~1300℃,均温时间30~600min。
7.如权利要求6所述的具有析出相强化效应的高强韧亚稳多组分合金的制备方法,其特征在于:所述均匀化处理在真空或者保护气氛下进行,保护气氛选自氩气、氮气或氦气中的一种。
8.如权利要求2、3、5、7中任一项所述的具有析出相强化效应的高强韧亚稳多组分合金的制备方法,其特征在于:所述冷轧,采用多道次冷轧,道次轧下量≤25%,总轧下量为40~90%。
9.如权利要求8所述的具有析出相强化效应的高强韧亚稳多组分合金的制备方法,其特征在于:所述退火,退火温度为600~1000℃,保温时间5~300min。
10.如权利要求2、3、5、7、9中任一项所述的具有析出相强化效应的高强韧亚稳多组分合金的制备方法,其特征在于:所述退火在真空或者保护气氛下进行,保护气氛选自氩气、氮气或氦气中的一种。
CN202211004036.8A 2022-08-19 2022-08-19 一种具有析出相强化效应的高强韧亚稳多组分合金及其制备方法 Active CN115433883B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211004036.8A CN115433883B (zh) 2022-08-19 2022-08-19 一种具有析出相强化效应的高强韧亚稳多组分合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211004036.8A CN115433883B (zh) 2022-08-19 2022-08-19 一种具有析出相强化效应的高强韧亚稳多组分合金及其制备方法

Publications (2)

Publication Number Publication Date
CN115433883A true CN115433883A (zh) 2022-12-06
CN115433883B CN115433883B (zh) 2023-06-09

Family

ID=84243878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211004036.8A Active CN115433883B (zh) 2022-08-19 2022-08-19 一种具有析出相强化效应的高强韧亚稳多组分合金及其制备方法

Country Status (1)

Country Link
CN (1) CN115433883B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928876A (zh) * 2009-06-22 2010-12-29 鞍钢股份有限公司 加工性优良的trip/twip高强塑性汽车钢及其制备方法
CN107760963A (zh) * 2017-10-26 2018-03-06 福建工程学院 一种含氮FeCoCrNiMn高熵合金及其制备方法
CN108480615A (zh) * 2018-03-20 2018-09-04 中南大学 一种高熵合金粉末及其制备方法和在3d打印中的应用
CN109252083A (zh) * 2018-11-07 2019-01-22 安阳工学院 一种多相高熵合金及其制备方法
US20190040500A1 (en) * 2017-08-02 2019-02-07 National Tsing Hua University Precipitation strengthened high-entropy superalloy
KR20200040970A (ko) * 2018-10-10 2020-04-21 충남대학교산학협력단 석출경화형 고엔트로피 강 및 그 제조방법
CN111636036A (zh) * 2020-06-12 2020-09-08 中国矿业大学 一种高锰铁合金及其调控亚稳相的强韧化方法
CN112575236A (zh) * 2019-09-27 2021-03-30 沈阳航空航天大学 一种高氮高熵合金及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928876A (zh) * 2009-06-22 2010-12-29 鞍钢股份有限公司 加工性优良的trip/twip高强塑性汽车钢及其制备方法
US20190040500A1 (en) * 2017-08-02 2019-02-07 National Tsing Hua University Precipitation strengthened high-entropy superalloy
CN107760963A (zh) * 2017-10-26 2018-03-06 福建工程学院 一种含氮FeCoCrNiMn高熵合金及其制备方法
CN108480615A (zh) * 2018-03-20 2018-09-04 中南大学 一种高熵合金粉末及其制备方法和在3d打印中的应用
KR20200040970A (ko) * 2018-10-10 2020-04-21 충남대학교산학협력단 석출경화형 고엔트로피 강 및 그 제조방법
CN109252083A (zh) * 2018-11-07 2019-01-22 安阳工学院 一种多相高熵合金及其制备方法
CN112575236A (zh) * 2019-09-27 2021-03-30 沈阳航空航天大学 一种高氮高熵合金及其制备方法
CN111636036A (zh) * 2020-06-12 2020-09-08 中国矿业大学 一种高锰铁合金及其调控亚稳相的强韧化方法

Also Published As

Publication number Publication date
CN115433883B (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
CN113025865B (zh) 一种AlCoCrFeNi系双相组织高熵合金制备方法
WO2023093464A1 (zh) 一种高熵奥氏体不锈钢及其制备方法
CN111826573B (zh) 一种无σ相析出倾向的沉淀强化型高熵合金及其制备方法
CN111809120B (zh) 一种低膨胀合金及其制备方法
CN112322940B (zh) 一种高强韧耐腐蚀的富Ni多组分合金及其制备方法
CN114703429B (zh) 一种Fe-Mn-Al-C系奥氏体轻质钢及其制备方法
CN113430444B (zh) 一种高塑性高强度的高熵合金及其制备方法
CN112195402B (zh) 一种析出强化型高强韧中锰钢板及其制备方法
CN112322957B (zh) 一种耐腐蚀高强韧的富Fe多组分合金及其制备方法
US11851735B2 (en) High-strength and ductile multicomponent precision resistance alloys and fabrication methods thereof
CN112522634B (zh) 一种高强高熵合金及其制备方法
CN112251659A (zh) 一种AlCrFe2Ni2C0.24高熵合金及其制备方法
CN115433883B (zh) 一种具有析出相强化效应的高强韧亚稳多组分合金及其制备方法
CN114086086B (zh) 纳米相碳氮复合颗粒增强型因瓦合金线材及其制备方法
CN114622120B (zh) 一种TRIP辅助AlFeMnCoCr三相异质高熵合金及其制备方法
CN117327991A (zh) 一种具有多级纳米结构强化效应的高强韧低密度钢及其制备方法
CN115537672B (zh) 一种屈服强度大于1000 MPa的低成本奥氏体钢及其温轧制备工艺
CN115821171B (zh) 一种掺杂微量b元素改性的高强高塑多组元合金、其制备方法及用途
TWI760241B (zh) 多性能中熵輕量鋼及其製造方法
CN116377280A (zh) 内部多取向孪晶与析出相共存的铜镍硅合金及其制备方法
CN117737503A (zh) 一种间隙氮强化的超高强塑Ti-Cr-Zr-Al-N钛合金及制备方法
Man et al. The size effect of precipitates on microstructure evolution during high-temperature deformation
CN118186272A (zh) 一种低成本高性能FeMnCrNi基高熵合金及制备方法和应用
CN115323240A (zh) 一种高强韧亚稳态双相FeMnCrCo高熵合金及其制备方法
CN117248130A (zh) 一种快速应***化双屈服亚稳β钛合金的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant