CN115430424A - 一种耐高温抗烧结的负载型铜纳米催化剂及其制备和应用 - Google Patents

一种耐高温抗烧结的负载型铜纳米催化剂及其制备和应用 Download PDF

Info

Publication number
CN115430424A
CN115430424A CN202110609132.4A CN202110609132A CN115430424A CN 115430424 A CN115430424 A CN 115430424A CN 202110609132 A CN202110609132 A CN 202110609132A CN 115430424 A CN115430424 A CN 115430424A
Authority
CN
China
Prior art keywords
catalyst
copper
carrier
resistant
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110609132.4A
Other languages
English (en)
Inventor
俞佳枫
孙剑
张继新
孙兴涛
佟鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN202110609132.4A priority Critical patent/CN115430424A/zh
Publication of CN115430424A publication Critical patent/CN115430424A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种耐高温抗烧结的负载型铜纳米催化剂及其制备和应用,以铜为主活性组分,以含有可还原氧化物的材料为载体,可添加或不添加助剂,采用磁控溅射法一步制备获得,可应用于中高温条件下的CO、CO2或含羰基的有机化合物的加氢反应。本发明催化剂的有益效果主要体现在:磁控溅射法制备的催化剂在还原处理过程中,金属与载体界面处产生无定型隔离物质,将铜颗粒锚定在载体上,有效抑制中高温反应过程中铜纳米颗粒的烧结长大,显著提高了铜催化剂的高温热稳定性,利于开拓铜基催化剂在高温应用的新领域,具有极好的应用前景。

Description

一种耐高温抗烧结的负载型铜纳米催化剂及其制备和应用
技术领域
本发明涉及到一种纳米催化材料及其应用的技术领域,具体的涉及一种耐高温抗烧结的负载型铜纳米催化剂及其在CO、CO2或含羰基的有机化合物的加氢反应中的应用。
背景技术
Cu基催化剂因其廉价易得且性能优异而被广泛应用于加氢、重整、脱硝等一系列重要化工反应中(如中国专利CN200510046138.6、CN201611098884.4、CN94115531.5)不仅活性高,稳定性好,而且成本低,最适用于工业化应用。但由于金属Cu的塔曼温度较低,在高温下Cu纳米颗粒极易烧结长大而引起催化剂失活,导致Cu基催化剂几乎无法在高于300℃的温度下长期使用。尤其在含水的反应中,Cu纳米颗粒极易烧结长大,从而失去活性,导致催化剂寿命差,难以应用在高温反应中。如在600℃的逆水气变换反应中,传统的CuZnAl催化剂的活性在15小时内下降了70%,改性后的Cu/β-Mo2C催化剂的活性在40小时内下降了25%(ACS Catal.2017,7,912-918),失活十分严重,无法大规模应用。为了维持较高的活性,现有技术通常增加金属铜的用量,用来补充因铜颗粒烧结聚集而失去的活性位,传统的CuZnAl催化剂中,Cu的质量分数高达60-80%。长久以来,Cu基催化剂较差的热稳定性极大阻碍了其发展,提高Cu基催化剂的热稳定性,拓展其在中高温区域的应用,在实际工业生产中具有重要意义。
本发明中的铜基催化剂可由磁控溅射法一步制备得到,所制备的负载型铜基催化剂在还原处理过程中,金属与载体界面处产生无定型隔离物质,将铜颗粒锚定在载体上,有效抑制中高温反应过程中铜纳米颗粒的烧结长大。与现有技术相比,可以有效抑制中高温反应中铜纳米颗粒的烧结长大,提高铜的分散度,减少了金属铜的用量,显著提高铜催化剂的高温热稳定性。该催化剂组成结构简单,制备过程易实现过程控制,具有极好的应用前景。
发明内容
本发明所要解决的技术问题是,现有铜基催化剂的热稳定性差,铜纳米颗粒在中高温反应条件下容易发生烧结聚集,从而引起催化剂失活的问题。本发明提供一种简单、成本低廉、使用便捷的铜基催化剂,在含有可还原氧化物的载体材料上采用磁控溅射法一步负载铜纳米颗粒,无需后续焙烧处理,简化设备和流程。所制备的负载型铜基催化剂在还原处理过程中,金属与载体界面处产生无定型隔离物质,将铜颗粒锚定在载体上,有效抑制中高温反应过程中铜纳米颗粒的烧结长大,显著提高铜催化剂的热稳定性。
本发明中耐高温抗烧结的负载型铜纳米催化剂以金属铜为主活性组分,质量分数为0.01-30%。载体可为含有Fe、Ti、Mn、Mo、In、V、W、Ce、Zr等中的一种或两种以上的可还原氧化物材料,其他组分可为氧化硅、氧化铝、分子筛、多孔碳等材料,其中可还原氧化物的质量含量为20-100%。氧化物载体中可添加或不添加助剂,助剂可为Na、K、Mg、Ca、Ba、La、Zn等,助剂的质量含量为1-50%。
催化剂采用磁控溅射法一步制备获得,无需后续焙烧处理。
可应用于中高温条件下的CO、CO2或含羰基的有机化合物的加氢反应。所述含羰基的有机化合物指含有一个或两个羰基的有机物,如乙酸、乙酸甲酯、草酸二甲酯等中的一种或两种以上。
本发明中的负载型铜纳米催化剂使用前需进行还原处理,还原介质为氢气、CO等中的一种或两种以上的还原气体,温度为200-600℃,优选300-500℃,压力为0.1-2MPa。加氢反应条件为:H2和反应物的摩尔比为1-300,优选1-80,反应温度300-1000℃,优选300-800℃,反应压力0.1-10.0MPa,优选0.1-5MPa。
本发明催化剂的有益效果主要体现在:磁控溅射法制备的负载型铜基催化剂在还原处理过程中,金属与载体界面处产生无定型隔离物质,将铜颗粒锚定在载体上,有效抑制中高温反应过程中铜纳米颗粒的烧结长大,提高铜的分散度,减少了金属铜的用量,显著提高铜催化剂的高温热稳定性,利于开拓铜基催化剂在高温应用的新领域,具有极好的应用前景。
本发明的优势在于:*1)本发明中铜经过磁控溅射法中高能Ar离子轰击,改变了金属铜的电子结构,增加了铜原子核对最外层电子的束缚能力,促进载体向金属转移电子,从而促进金属与载体界面处产生无定型的隔离物质,将铜颗粒锚定在载体上;*2)本发明中铜催化剂可在较高温度下使用,金属与载体界面处产生的无定型隔离物质可阻止铜纳米颗粒的迁移,抑制其烧结长大,提高了铜基催化剂的使用寿命;*3)与传统的蒸氨法、溶胶凝胶法、浸渍法、共沉淀等湿法不同,本发明中磁控溅射属于干法,制备过程无溶剂,所制备的铜催化剂无需高温焙烧即可一步获得,新鲜催化剂中的铜为金属态的铜纳米颗粒,简化工艺流程,节省能耗和时间,降低成本;*4)本发明抑制铜颗粒聚集长大,可有效维持金属铜活性位的高分散,从而减少金属铜的用量;*5)本发明催化剂的制备方法受环境和人为因素影响小,制备过程简单,无污染物排放。
附图说明
图1为对比例1浸渍法和实施例1磁控溅射法制备的Cu/TiO2催化剂在600℃下CO2加氢反应中的稳定性评价。
图2为对比例1中浸渍法制备的Cu/TiO2催化剂经过500℃还原(a)和600℃高温反应50小时后(b)的透射电镜照片和颗粒尺寸分布(c)。
图3为实施例2磁控溅射法制备的Cu/MnO2催化剂在600℃下CO2加氢反应中的稳定性评价。
图4实施例3、4、5中磁控溅射法中不同功率下制备的Cu/LaTiO2-XW催化剂在600℃下CO2加氢反应中的稳定性评价,X代表溅射功率。
图5为实施例6磁控溅射法制备的Cu/LaTiO2-450W催化剂在600℃下CO2加氢反应中的稳定性评价。
图6为实施例6中Cu/LaTiO2-450W催化剂经过500℃还原(a)和600℃高温反应500小时后(b)的透射电镜照片和颗粒尺寸分布。
图7为实施例6磁控溅射法制备的Cu/LaTiO2-450W催化剂在800℃下CO2加氢反应中的稳定性评价。
具体实施方式
本发明技术细节由下述实施例加以详尽描述。需要说明的是所举的实施例,其作用只是进一步说明本发明的技术特征,而不是限定本发明。
实施例1
采用滚筒型磁控溅射装置制备催化剂,滚筒为内部带有圆柱形空腔的圆筒,圆柱形空腔直径35cm,滚筒轴向平行于水平面放置在磁控溅射仪内,溅射靶头置于滚筒内部正上方(顶部),滚筒被密封在磁控溅射仪腔体内;将5g商用TiO2(P25)载体粉末(20-40nm)造粒制成约30μm颗粒(约占滚筒容积的0.1%)置于滚筒内的下部,安装铜靶材(质量纯度为99.9%)表面朝下正对载体粉末,筒内抽真空至压力达到9.9*10-5Pa,滚筒中通入高纯Ar气,流量为30ml/min,维持筒内压力为2.0Pa,将Ar离子发生器功率调至450W,筒转速加至3.0rpm,使Ar离子轰击铜靶材产生的纳米金属铜粒子均匀沉积在载体表面,溅射30min;
溅射结束后,筒内通入体积含量1%O2/Ar混合气至压力达到常压。打开磁控溅射仪内腔,收集催化剂粉末,经检测,得到Cu的质量负载量为19%的Cu/TiO2催化剂,Cu颗粒粒径分布在1-6nm之间,平均粒径3.1nm,记为SP-Cu/TiO2
实施例2
采用滚筒型磁控溅射装置制备催化剂,滚筒为内部带有圆柱形空腔的圆筒,圆柱形空腔直径35cm,滚筒轴向平行于水平面放置在磁控溅射仪内,溅射靶头置于滚筒内部正上方,滚筒被密封在磁控溅射仪腔体内;将5g商用的MnO2载体粉末(30-50nm)造粒制成约30μm颗粒(约占滚筒容积的0.1%)置于滚筒下部,安装铜靶材(纯度为99.9%)表面朝下正对载体粉末,筒内抽真空至压力达到9.9*10-5Pa,滚筒中通入高纯Ar气,流量为30ml/min,维持筒内压力为2.0Pa,将Ar离子发生器功率调至100W,筒转速加至3.0rpm,使Ar离子轰击铜靶材产生的纳米金属铜粒子均匀沉积在载体表面,溅射120min;
溅射结束后,筒内通入体积含量1%O2/Ar混合气至压力达到常压。打开磁控溅射仪内腔,收集催化剂粉末,经检测,得到Cu的质量负载量为16%的Cu/MnO2催化剂,Cu颗粒粒径分布在1-5nm之间,平均粒径2.5nm,记为SP-Cu/MnO2
实施例3
采用滚筒型磁控溅射装置制备催化剂,滚筒为内部带有圆柱形空腔的圆筒,圆柱形空腔直径35cm,滚筒轴向平行于水平面放置在磁控溅射仪内,溅射靶头置于滚筒内部正上方,滚筒被密封在磁控溅射仪腔体内;将5g的5%La掺杂的TiO2载体粉末(20-40nm)造粒制成约30μm颗粒(约占滚筒容积的0.1%)置于滚筒下部,安装铜靶材(纯度为99.9%)表面朝下正对载体粉末,筒内抽真空至压力达到9.9*10-5Pa,滚筒中通入高纯Ar气,流量为30ml/min,维持筒内压力为2.0Pa,将Ar离子发生器功率调至100W,筒转速加至3.0rpm,使Ar离子轰击铜靶材产生的纳米金属铜粒子均匀沉积在载体表面,溅射120min;
实施例4
催化剂制备方法同实施例3,溅射功率200W,溅射时间80min。
实施例5
催化剂制备方法同实施例3,溅射功率300W,溅射时间60min。
实施例6
催化剂制备方法同实施例3,溅射功率450W,溅射时间30min。
经检测,得到Cu的质量负载量为10-20%的一系列Cu/LaTiO2催化剂,Cu颗粒粒径分布在1-6nm之间,平均粒径3nm左右,记为SP-Cu/LaTiO2-XW。其中X代表所使用的功率,详见下表1:
溅射功率 标记为 Cu质量含量%
实施例3 100W SP-Cu/LaTiO<sub>2</sub>-100W 19.7
实施例4 200W SP-Cu/LaTiO<sub>2</sub>-200W 17.9
实施例5 300W SP-Cu/LaTiO<sub>2</sub>-300W 11.9
实施例6 450W SP-Cu/LaTiO<sub>2</sub>-450W 18.8
对比例1
浸渍法Cu/TiO2催化剂的制备:称量0.532g Cu*NO3)2·6H2O于3mL去离子水中,等体积浸渍于1g商用TiO2载体(P25)上,搅拌均匀后把烧杯放置在80℃水浴中4h后室温静置过夜,将固体移入坩埚中,放入烘箱于120℃干燥10h,把干燥后的固体放入马弗炉中,300℃焙烧4h。经测定,得到Cu的质量分数为13%的催化剂,Cu颗粒粒径分布在1-4nm之间,平均粒径2.0nm,记为IM-Cu/TiO2
对比例2
反应器中装填0.1g对比例1所制备的IM-Cu/TiO2催化剂,在纯氢气气氛中500℃还原处理1小时,压力为0.1MPa;通入反应原料,H2和CO2摩尔比为2,反应温度为600℃,压力为0.1MPa,空速为15000ml·gcat -1·h-1。如图1所示CO2的初始反应速率为2.6mmolCO2/m2 Cu·h,50小时后降为0.86mmolCO2/m2 Cu·h,50小时下降百分比为66.9%。如图2所示50小时反应后Cu颗粒尺寸由2.0nm长大至4.5nm,Cu纳米颗粒发生了烧结长大现象。
实施例7
反应器中装填0.1g实施例1所制备的SP-Cu/TiO2催化剂,在纯氢气气氛中500℃还原处理1小时,压力为0.1MPa;通入反应原料,H2和CO2摩尔比为2,反应温度为600℃,压力为0.1MPa,空速为15000ml·gcat -1·h-1。如图1所示CO2的初始反应速率为4.1mmolCO2/m2 Cu·h,50小时后降为2.9mmolCO2/m2 Cu·h,50小时下降百分比为29.3%。
与对比例1比较,催化剂稳定性有明显提升。
实施例8
反应器中装填0.1g实施例2所制备的SP-Cu/MnO2催化剂,在纯氢气气氛中500℃还原处理1小时,压力为0.1MPa;通入反应原料,H2和CO2摩尔比为2,反应温度为600℃,压力为0.1MPa,空速为15000ml·gcat -1·h-1。如图3所示CO2的初始反应速率为6.3mmolCO2/m2 Cu·h,8小时后升至11.0mmolCO2/m2 Cu·h,后缓慢下降,50小时后降为8.0mmolCO2/m2 Cu·h,340小时后降为4.0mmolCO2/m2 Cu·h。
与对比例1比较,催化剂稳定性有明显提升,显著延缓了催化剂的失活。
实施例9
反应器中装填0.1g实施例3-5中采用不同功率制备的SP-Cu/LaTiO2-XW催化剂,在纯氢气气氛中500℃还原处理1小时,压力为0.1MPa;通入反应原料,H2和CO2摩尔比为2,反应温度为600℃,压力为0.1MPa,空速为15000ml·gcat -1·h-1。如图4所示为不同反应时间下CO2的转化率相对于初始转化率的百分比,即催化剂活性下降百分比。可见,不同功率制备的催化剂的稳定性均高于对比例1中浸渍法制备的催化剂,且随着磁控溅射功率增加,催化剂的稳定性显著增加,说明溅射功率可以改变界面处隔离物质的包覆程度,不同程度下抑制铜纳米颗粒的烧结长大,提高了催化剂的稳定性。
实施例10
反应器中装填0.1g实施例6制备的SP-Cu/LaTiO2催化剂,在纯氢气气氛中500℃还原处理1小时,压力为0.1MPa;通入反应原料,H2和CO2摩尔比为2,反应温度为600℃,压力为0.1MPa,空速为15000ml·gcat -1·h-1。如图5所示CO2的初始反应速率为2.3mmolCO2/m2 Cu·h,100小时后升高至3.3mmolCO2/m2 Cu·h,并在后续反应中保持稳定。如图6所示500小时反应后Cu颗粒尺寸由原来2.8nm下降至1.5nm。
与对比例1比较,催化剂的热稳定性显著升高,由于金属与载体界面处产生隔离物质,铜纳米颗粒被锚定在载体上,在600℃的高温下稳定运行超过500小时未见失活。
实施例11
反应器中装填0.1g实施例6所制备的SP-Cu/LaTiO2催化剂,在纯氢气气氛中500℃还原处理1小时,压力为0.1MPa;通入反应原料,H2和CO2摩尔比为2,反应温度为800℃,压力为0.1MPa,空速为15000ml·gcat -1·h-1。如图7所示CO2的初始反应速率为23.5mmolCO2/m2 Cu·h,反应过程中持续保持稳定,100小时后反应速率为24.1mmolCO2/m2 Cu·h,未见失活现象发生。
由上述实施例结果可以看出本发明的负载型铜基催化剂具有极高的抗烧结的热稳定性,在水蒸气存在条件下仍能长时间稳定运行,Cu纳米颗粒高温长时间应用后未见烧结长大。采用不同氧化物作为载体可实现对锚定程度进行调控,从而根据不同反应需求进行调变。同样条件下,采用其他方法均不能达到此效果。本发明催化剂的有益效果主要体现在:磁控溅射法制备的催化剂在还原处理过程中,金属与载体界面处产生无定型隔离物质,将铜颗粒锚定在载体上,有效抑制中高温反应过程中铜纳米颗粒的烧结长大,在600-800℃逆水气变换反应中长期稳定运行,显著提高了铜催化剂的高温热稳定性,利于开拓铜基催化剂在高温应用的新领域,具有极好的应用前景。

Claims (9)

1.一种耐高温抗烧结的负载型铜纳米催化剂的制备方法,其特征在于,采用磁控溅射法一步制备获得,包括以下步骤:
(1)采用滚筒型磁控溅射装置制备催化剂,滚筒为内部带有圆柱形空腔的圆筒,圆柱形空腔直径20-80cm,优选30-50cm,滚筒轴向平行于水平面放置在磁控溅射仪内,溅射靶头至于滚筒内部载体粉末的正上方或顶部,载体粉末置于滚筒内部的底部,载体粉末粒度(或粒径)为0.01-1000μm,优选0.5-200μm,金属铜靶材表面朝下正对载体粉末,滚筒被密封在磁控溅射仪腔体内;
(2)磁控溅射仪腔体抽真空至压力达到9.0*10-4Pa以下,优选9.9*10-6–8.0*10-4Pa,滚筒中通入含Ar气的气体,其中Ar气的体积浓度为50-100%(优选80-100%),其余为N2或He等惰性气体中的一种或二种,流量为5-50ml/min,优选10-30ml/min,维持筒内压力为1.0-10.0Pa,优选2.0-5.0Pa;
(3)将等离子体发生器溅射功率调至100-450W,筒转速加至1-10rpm,优选3-5rpm,Ar离子轰击铜靶材(铜的质量纯度为98%以上,优选99.9%以上),所产生的纳米金属铜粒子均匀沉积在载体表面;溅射时间为10-360min,优选30-240min;
(4)溅射结束后,筒内通入O2/Ar混合气至压力达到常压,混合气中O2体积浓度为0.5-5%,优选1-3%;打开磁控溅射仪,收集催化剂粉末。
2.根据权利要求1所述的制备方法,其特征在于:滚筒内部载体粉末的装填量为滚筒内部容积的0.01-20%,优选0.1-5%。
3.一种权利要求1或2所述的制备方法制备获得的耐高温抗烧结的负载型铜纳米催化剂,其特征在于:该催化剂以铜为主活性组分,于催化剂中的质量分数为0.01-30%,优选5-20%;
以含有可还原氧化物的材料为载体,载体中添加有或不添加有助剂。
4.根据权利要求3所述的耐高温抗烧结的负载型铜纳米催化剂,其特征在于:载体可为含有Fe、Ti、Mn、Mo、In、V、W、Ce、Zr等中的一种或两种以上的可还原氧化物材料,其中还可添加有或不添加其他组分,其他组分可为氧化硅、氧化铝、分子筛、多孔碳等材料中的一种或两种以上,其中可还原氧化物的质量含量为20-100%,优选50-100%。
5.根据权利要求3或4所述的耐高温抗烧结的负载型铜纳米催化剂,其特征在于:氧化物载体中可添加或不添加助剂,助剂可为Na、K、Mg、Ca、Ba、La、Zn等中的一种或两种以上的氧化物,载体中助剂的质量含量为载体的1-50%,优选5-30%。
6.一种权利要求3-5任一所述的耐高温抗烧结的负载型铜纳米催化剂的应用,其可应用于中高温(300-1000℃,优选300-800℃)条件下的CO、CO2或含羰基的有机化合物中的一种或两种以上反应物的加氢反应。
7.根据权利要求6所述的耐高温抗烧结的负载型铜纳米催化剂的应用,其特征在于:可应用于中高温(300-1000℃,优选300-800℃)条件下的CO、CO2或含羰基的有机化合物中的一种或两种以上反应物的加氢反应,具有优异的热稳定性,所述含羰基的有机化合物指含有一个或两个以上羰基的有机物,如乙酸、乙酸甲酯、草酸二甲酯等中的一种或两种以上。
8.根据权利要求6或7所述的耐高温抗烧结的负载型铜纳米催化剂的应用,其特征在于:催化剂使用前需进行还原处理,还原介质为氢气、CO等中的一种或两种以上的还原气体,温度为200-600℃,优选300-500℃,压力为0.1-2MPa,优选0.1-0.5MPa。
9.根据权利要求6或7或8所述的耐高温抗烧结的负载型铜纳米催化剂的应用,其特征在于:加氢反应条件为:H2和反应物的摩尔比为1-300,优选1-80,反应温度300-1000℃,优选300-800℃,反应压力0.1-10.0MPa,优选0.1-5MPa。
CN202110609132.4A 2021-06-01 2021-06-01 一种耐高温抗烧结的负载型铜纳米催化剂及其制备和应用 Pending CN115430424A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110609132.4A CN115430424A (zh) 2021-06-01 2021-06-01 一种耐高温抗烧结的负载型铜纳米催化剂及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110609132.4A CN115430424A (zh) 2021-06-01 2021-06-01 一种耐高温抗烧结的负载型铜纳米催化剂及其制备和应用

Publications (1)

Publication Number Publication Date
CN115430424A true CN115430424A (zh) 2022-12-06

Family

ID=84271839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110609132.4A Pending CN115430424A (zh) 2021-06-01 2021-06-01 一种耐高温抗烧结的负载型铜纳米催化剂及其制备和应用

Country Status (1)

Country Link
CN (1) CN115430424A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030180461A1 (en) * 2002-03-25 2003-09-25 Industrial Technology Research Institute Process of direct growth of carbon nanotubes on a substrate at low temperature
CN101880214A (zh) * 2010-06-08 2010-11-10 大连理工大学 一种非热等离子体与过渡金属协同催化co2加氢的方法
CN108144610A (zh) * 2016-12-04 2018-06-12 中国科学院大连化学物理研究所 火焰喷射裂解法制备的铜基加氢催化剂及其制备和应用
CN110871071A (zh) * 2018-09-04 2020-03-10 中国科学院大连化学物理研究所 用于制备乙醇酸甲酯的铜基催化剂及其制备和应用
CN111036199A (zh) * 2018-10-11 2020-04-21 中国科学院大连化学物理研究所 金红石型氧化钛担载的催化剂在二氧化碳加氢反应中的应用
CN111054271A (zh) * 2018-10-17 2020-04-24 中国石油化工股份有限公司 低剂耗的硝基苯加氢制苯胺反应装置及反应方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030180461A1 (en) * 2002-03-25 2003-09-25 Industrial Technology Research Institute Process of direct growth of carbon nanotubes on a substrate at low temperature
CN101880214A (zh) * 2010-06-08 2010-11-10 大连理工大学 一种非热等离子体与过渡金属协同催化co2加氢的方法
CN108144610A (zh) * 2016-12-04 2018-06-12 中国科学院大连化学物理研究所 火焰喷射裂解法制备的铜基加氢催化剂及其制备和应用
CN110871071A (zh) * 2018-09-04 2020-03-10 中国科学院大连化学物理研究所 用于制备乙醇酸甲酯的铜基催化剂及其制备和应用
CN111036199A (zh) * 2018-10-11 2020-04-21 中国科学院大连化学物理研究所 金红石型氧化钛担载的催化剂在二氧化碳加氢反应中的应用
CN111054271A (zh) * 2018-10-17 2020-04-24 中国石油化工股份有限公司 低剂耗的硝基苯加氢制苯胺反应装置及反应方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘花蓉: "纳米铜颗粒的研究现状", 《广州化工》, vol. 44, no. 16, pages 37 - 38 *

Similar Documents

Publication Publication Date Title
US7566440B2 (en) Metal oxide catalysts
CN108355668B (zh) 一种甲烷化催化剂及其制备方法和应用
CN113699554B (zh) 一种稀土金属和过渡金属共掺杂碳基材料的制备方法及其应用
CN114768859B (zh) 适用于甲烷干重整的镍硅催化剂及其制备方法
CN111697244A (zh) 一种富氮多孔碳包覆纳米Co3O4的氧还原催化剂及其制法
CN113713796B (zh) 一种Ni-NiO/C-TiO2核壳结构纳米棒状材料光催化剂的制备方法
CN114345385A (zh) 一种石墨型氮化碳负载单原子钴催化剂及其制备方法和应用
CN114733520A (zh) 负载型纳米金催化剂的制备方法与应用
CN113206264B (zh) 一种结构有序铂基金属间纳米晶及其中低温制备与应用
CN113663671A (zh) 一种三元金属催化剂及其制备方法与应用
CN110548507A (zh) 一种碳负载纳米银催化剂的制备方法
CN115430424A (zh) 一种耐高温抗烧结的负载型铜纳米催化剂及其制备和应用
CN115608375B (zh) 一种氨硼烷水解析氢用催化剂及其制备方法
CN115845885B (zh) 一种CdS/WC1-x@C复合光催化剂及其制备方法和应用
CN113457722B (zh) 一种甲烷二氧化碳干重整催化剂及其制备方法和应用
CN115155554B (zh) 一种纳米中空介孔碳球负载铂纳米颗粒催化剂及制备方法
CN113559836A (zh) 一种高效负载型双金属催化剂及制备方法和应用
CN111167435B (zh) 一种钼基二氧化钛纳米阵列催化剂及其制备方法和应用
CN113231641B (zh) 一种炭黑负载高度有序的PtCo金属间化合物及其合成方法以及应用
CN114797932B (zh) 一种双金属3d独特蜂窝状还原二氧化碳催化剂及其制备方法和应用
CN114797816B (zh) 一种过渡金属替代Al骨架的多羟基纳米三氧化二铝的制备方法
CN116371451B (zh) 一种适用于甲烷干重整的铈掺杂镍基催化剂及其制备方法
CN114411191B (zh) 一种高分散氧化石墨烯负载型钌催化剂的制备方法
CN113502504B (zh) 一种NiSn/TiO2@ZnFe2O4电催化剂及其制备方法
CN117276563B (zh) 金属单原子掺杂氮化物-炭复合气凝胶电催化剂制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination