CN115410925B - 一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法 - Google Patents

一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法 Download PDF

Info

Publication number
CN115410925B
CN115410925B CN202211155745.6A CN202211155745A CN115410925B CN 115410925 B CN115410925 B CN 115410925B CN 202211155745 A CN202211155745 A CN 202211155745A CN 115410925 B CN115410925 B CN 115410925B
Authority
CN
China
Prior art keywords
aluminum
ceramic substrate
aluminum nitride
coated
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211155745.6A
Other languages
English (en)
Other versions
CN115410925A (zh
Inventor
欧阳鹏
贺贤汉
王斌
武威
刘洋
张进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Fulehua Semiconductor Technology Co ltd
Original Assignee
Jiangsu Fulehua Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Fulehua Semiconductor Technology Co ltd filed Critical Jiangsu Fulehua Semiconductor Technology Co ltd
Priority to CN202211155745.6A priority Critical patent/CN115410925B/zh
Priority to PCT/CN2022/126137 priority patent/WO2024060342A1/zh
Publication of CN115410925A publication Critical patent/CN115410925A/zh
Application granted granted Critical
Publication of CN115410925B publication Critical patent/CN115410925B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明提供了一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,本发明中,在氮化铝覆铝陶瓷基板表面溅射镀铜并进行真空扩散烧结,在铝表面层引入微量铜元素,形成均匀的铜铝固溶体硬化层,再对其进行表面进行化学镀镍处理在表面形成均匀镀镍层,处理后的氮化铝覆铝封装衬板在热循环前后的粗糙度对比相差不大,通过本方法,降低了镀层表面应力集中和镀层开裂情况,提高了氮化铝覆铝封装衬板在极端条件下的耐热循环可靠性。

Description

一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法
技术领域
本发明涉及半导体技术领域,具体为一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法。
背景技术
随着IGBT电力电子器件快速发展,电力电子器件技术正朝着高电压、大电流、大功率密度、高速方面的方向发展;氮化铝覆铝陶瓷基板(DBA)作为IGBT的封装基板,同时拥有优良的耐热循环性能、优秀的界面键合可靠性、高热导率、高绝缘强度,备受第三代SiC半导体器件青睐。
在器件耐热循环性能测试过程中,铝具有较低的屈服强度,晶粒通过塑性变形可以吸收部分损伤保护陶瓷,使得铝与氮化铝陶瓷键合界面相较铜与氮化铝陶瓷界面拥有更高的耐热循环可靠性,但随着耐热循环次数增加,其表面粗糙度激增,进而导致DBA基板表面镀Ni层容易出现水波纹、毛刺甚至开裂;实际应用环境下,表面镀层可靠性失效也将可能导致器件的失效,因此亟待开发一种提高氮化铝覆铝封装衬板耐热循环可靠性的方法,进而降低或解决在器件耐热循环的可靠性问题。
发明内容
本发明的目的在于提供一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,以解决上述背景技术中提出的问题。
为了解决上述技术问题,本发明提供如下技术方案:
一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,具体包括以下步骤:
(1)表面溅射镀铜:取氮化铝覆铝陶瓷基板进行表面清洗,然后镀铜,得到纳米级铜层的氮化铝覆铝陶瓷基板,镀铜层厚度为80~120nm;
(2)扩散退火:取步骤(1)中纳米级铜层氮化铝覆铝陶瓷基板进行真空烧结,470~540℃下保温2~3h,随炉冷却至22~25℃;
(3)表面镀镍:取步骤(2)中处理后的氮化铝覆铝陶瓷基板,二次浸锌后浸入化学镀镍液进行表面镀镍,镀镍层厚度为3.5~7μm。
进一步地,步骤(1)中,氮化铝覆铝陶瓷基板表面铝层厚度为0.2~0.6mm。
进一步地,步骤(1)中,镀铜工艺为表面溅射镀铜工艺,工作参数为:功率5KW,Ar流量30Sccm,溅射压力0.4Pa下溅射10min。
进一步地,步骤(1)中,表面清洗步骤为:
A.配置10~20%氢氧化钠水溶液,取氮化铝覆铝陶瓷基板浸入碱洗3~5min,取出用纯水洗净;
B.配置10~20%硝酸水溶液,取步骤A中氮化铝覆铝陶瓷基板浸入酸洗90~100s,取出用纯水洗净,80~120℃下烘干,备用。
进一步地,步骤(3)中,二次浸锌步骤为:取NaOH、ZnO配置浸锌液,NaOH质量分数为10%,ZnO质量分数为1.6%,其余为纯水,取步骤(2)中处理后的氮化铝覆铝陶瓷基板浸入,浸锌时间为40~45s,取出洗净;浸入30%硝酸水溶液中二次酸洗90~100s,取出洗净;置于浸锌液中二次浸锌30~35s,取出用纯水洗净,备用。
进一步地,步骤(2)中,扩散退火升温速度为1~3℃/min,退火后铝表面维氏硬度为27~35HV1。
进一步地,步骤(3)中,表面镀镍工艺条件为80~85℃下化学镀20~60min。
进一步地,步骤(3)中,化学镀镍液为化学镀镍药液为NiSO4·7H2O:25g/L,NaH2PO2·H2O:36g/L,Na3C6H5O7·2H2O:12g/l,其余为纯水;其中化学镀镍液的pH值为4.5~5.6。
与现有技术相比,本发明首先在氮化铝覆铝陶瓷基板表面通过表面溅射镀铜处理及真空扩散烧结处理,在铝表面层引入微量铜元素,形成均匀的铜铝固溶体硬化层,表面为银白色,铝表面维氏硬度为27~35HV1,接着再进行表面镀镍处理,得到最终氮化铝覆铝封装衬板;
本发明所达到的有益效果是:本发明中,在DBA表面铝层硬化具有梯度变化特征,DBA基板内层靠近AlN陶瓷铝面的仍然具有Al的韧性,使得产品拥有键合区高可靠性的同时,其表面镀层耐热可靠性显著提升。预防了热循环测试过程中基板表面粗糙度的激增,降低了镀层水波纹、开裂等现象,进一步提高了氮化铝覆铝基板耐热循环可靠性。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明的流程示意图;
图2为热循环测试前(左图)和热循环测试后(右图)实施例1封装衬板样品表面3D形貌扫描图;
图3为热循环测试前(左图)和热循环测试后(右图)对比例1封装衬板样品表面3D形貌扫描图;
图4为实施例1在-55℃/150℃下热循环100次后表面粗糙度折线图;
图5为对比例1在-55℃/150℃下热循环100次后表面粗糙度折线图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
实施例1
(1)配置质量百分比为10%的氢氧化钠水溶液,取氮化铝覆铝陶瓷基板产品完全浸入氢氧化钠溶液,碱洗3min后取出用纯水洗净;
(2)配置10%%硝酸水溶液,取步骤(1)中氮化铝覆铝陶瓷基板完全浸入硝酸溶液,酸洗90s后取出用纯水洗净,80℃下烘干,备用;
(3)表面溅射镀铜:取步骤(2)洗净的氮化铝覆铝陶瓷基板,氮化铝覆铝陶瓷基板表面溅射镀铜,在功率5KW,Ar流量30Sccm,溅射压力0.4Pa下溅射10min,镀铜层厚度为80nm,电镀完成得到铝面具有纳米级铜层的氮化铝覆铝陶瓷基板;
(4)扩散退火:取步骤(3)中氮化铝覆铝陶瓷基板进行真空烧结,470℃下扩散退火2h,扩散退火升温速度为1℃/min,退火完成后随炉冷却至22℃,保温2h,在氮化铝覆铝陶瓷基板表面形成铜铝固溶体硬化层,铝层厚度为0.2mm;
(5)配置浸锌液:浸锌液包含10%NaOH、1.6%ZnO,其余为纯水,取步骤(4)中氮化铝覆铝陶瓷基板完全浸入浸锌液,浸锌时间为40s,取出洗净,浸入30%硝酸水溶液二次酸洗90s,再次取出用纯水洗净,置于浸锌液中二次浸锌30s,取出用纯水洗净,备用;
(6)表面镀镍:取步骤(5)中洗净的氮化铝覆铝陶瓷基板,采用化学镀工艺,在氮化铝覆铝陶瓷基板表面镀镍,化学镀镍液组成成分为25g/L的NiSO4·7H2O、36g/L的NaH2PO2·H2O、12g/L的Na3C6H5O7·2H2O,其余为纯水;控制pH值为4.5,镀镍反应条件为80℃下化学镀20min,镀镍层厚度为3.5μm,镀镍完成后用纯水洗净表面,得到氮化铝覆铝封装衬板。
实施例2
(1)配置质量百分比为13%的氢氧化钠水溶液,取氮化铝覆铝陶瓷基板产品完全浸入氢氧化钠溶液,碱洗4min后取出用纯水洗净;
(2)配置13%%硝酸水溶液,取步骤(1)中氮化铝覆铝陶瓷基板完全浸入硝酸溶液,酸洗93s后取出用纯水洗净,90℃下烘干,备用;
(3)表面溅射镀铜:取步骤(2)洗净的氮化铝覆铝陶瓷基板,氮化铝覆铝陶瓷基板表面溅射镀铜,在功率5KW,Ar流量30Sccm,溅射压力0.4Pa下溅射10min,镀铜层厚度为95nm,电镀完成得到铝面具有纳米级铜层的氮化铝覆铝陶瓷基板;
(4)扩散退火:取步骤(3)中氮化铝覆铝陶瓷基板进行真空烧结,490℃下扩散退火2.5h,扩散退火升温速度为2℃/min,退火完成后随炉冷却至23℃,保温2.5h,在氮化铝覆铝陶瓷基板表面形成铜铝固溶体硬化层,铝层厚度为0.3mm;
(5)配置浸锌液:浸锌液包含10%NaOH、1.6%ZnO,其余为纯水,取步骤(4)中氮化铝覆铝陶瓷基板完全浸入浸锌液,浸锌时间为42s,取出洗净,浸入30%硝酸水溶液二次酸洗93s,再次取出用纯水洗净,置于浸锌液中二次浸锌32s,取出用纯水洗净,备用;
(6)表面镀镍:取步骤(5)中洗净的氮化铝覆铝陶瓷基板,采用化学镀工艺,在氮化铝覆铝陶瓷基板表面镀镍,化学镀镍液组成成分为25g/L的NiSO4·7H2O、36g/L的NaH2PO2·H2O、12g/L的Na3C6H5O7·2H2O,其余为纯水;控制pH值为4.8,镀镍反应条件为82℃下化学镀35min,镀镍层厚度为5μm,镀镍完成后用纯水洗净表面,得到氮化铝覆铝封装衬板。
实施例3
(1)配置质量百分比为18%的氢氧化钠水溶液,取氮化铝覆铝陶瓷基板产品完全浸入氢氧化钠溶液,碱洗4min后取出用纯水洗净;
(2)配置18%%硝酸水溶液,取步骤(1)中氮化铝覆铝陶瓷基板完全浸入硝酸溶液,酸洗97s后取出用纯水洗净,100℃下烘干,备用;
(3)表面溅射镀铜:取步骤(2)洗净的氮化铝覆铝陶瓷基板,氮化铝覆铝陶瓷基板表面溅射镀铜,在功率5KW,Ar流量30Sccm,溅射压力0.4Pa下溅射10min,镀铜层厚度为105nm,电镀完成得到铝面具有纳米级铜层的氮化铝覆铝陶瓷基板;
(4)扩散退火:取步骤(3)中氮化铝覆铝陶瓷基板进行真空烧结,510℃下扩散退火2.5h,扩散退火升温速度为2℃/min,退火完成后随炉冷却至24℃,保温2.5h,在氮化铝覆铝陶瓷基板表面形成铜铝固溶体硬化层,铝层厚度为0.4mm;
(5)配置浸锌液:浸锌液包含10%NaOH、1.6%ZnO,其余为纯水,取步骤(4)中氮化铝覆铝陶瓷基板完全浸入浸锌液,浸锌时间为44s,取出洗净,浸入30%硝酸水溶液二次酸洗97s,再次取出用纯水洗净,置于浸锌液中二次浸锌34s,取出用纯水洗净,备用;
(6)表面镀镍:取步骤(5)中洗净的氮化铝覆铝陶瓷基板,采用化学镀工艺,在氮化铝覆铝陶瓷基板表面镀镍,化学镀镍液组成成分为25g/L的NiSO4·7H2O、36g/L的NaH2PO2·H2O、12g/L的Na3C6H5O7·2H2O,其余为纯水;控制pH值为5.2,镀镍反应条件为85℃下化学镀45min,镀镍层厚度为6μm,镀镍完成后用纯水洗净表面,得到氮化铝覆铝封装衬板。
实施例4
(1)配置质量百分比为20%的氢氧化钠水溶液,取氮化铝覆铝陶瓷基板产品完全浸入氢氧化钠溶液,碱洗5min后取出用纯水洗净;
(2)配置20%%硝酸水溶液,取步骤(1)中氮化铝覆铝陶瓷基板完全浸入硝酸溶液,酸洗100s后取出用纯水洗净,120℃下烘干,备用;
(3)表面溅射镀铜:取步骤(2)洗净的氮化铝覆铝陶瓷基板,氮化铝覆铝陶瓷基板表面溅射镀铜,在功率5KW,Ar流量30Sccm,溅射压力0.4Pa下溅射10min,镀铜层厚度为120nm,电镀完成得到铝面具有纳米级铜层的氮化铝覆铝陶瓷基板;
(4)扩散退火:取步骤(3)中氮化铝覆铝陶瓷基板进行真空烧结,540℃下扩散退火3h,扩散退火升温速度为3℃/min,退火完成后随炉冷却至25℃,保温3h,在氮化铝覆铝陶瓷基板表面形成铜铝固溶体硬化层,铝层厚度为0.6mm;
(5)配置浸锌液:浸锌液包含10%NaOH、1.6%ZnO,其余为纯水,取步骤(4)中氮化铝覆铝陶瓷基板完全浸入浸锌液,浸锌时间为45s,取出洗净,浸入30%硝酸水溶液二次酸洗100s,再次取出用纯水洗净,置于浸锌液中二次浸锌35s,取出用纯水洗净,备用;
(6)表面镀镍:取步骤(5)中洗净的氮化铝覆铝陶瓷基板,采用化学镀工艺,在氮化铝覆铝陶瓷基板表面镀镍,化学镀镍液组成成分为25g/L的NiSO4·7H2O、36g/L的NaH2PO2·H2O、12g/L的Na3C6H5O7·2H2O,其余为纯水;控制pH值为5.6,镀镍反应条件为85℃下化学镀60min,镀镍层厚度为7μm,镀镍完成后用纯水洗净表面,得到氮化铝覆铝封装衬板。
对比例1
对比例1以实施例1为对照组,变更参数为仅在氮化铝覆铝陶瓷基板表面镀镍。
(1)配置质量百分比为10%的氢氧化钠水溶液,取氮化铝覆铝陶瓷基板产品完全浸入氢氧化钠溶液,碱洗3min后取出用纯水洗净;
(2)配置10%%硝酸水溶液,取步骤(1)中氮化铝覆铝陶瓷基板完全浸入硝酸溶液,酸洗90s后取出用纯水洗净,80℃下烘干;
(3)配置浸锌液:浸锌液包含10%NaOH、1.6%ZnO,其余为纯水,取步骤(2)中氮化铝覆铝陶瓷基板完全浸入浸锌液,浸锌时间为40s,取出洗净,浸入30%硝酸水溶液二次酸洗90s,再次取出用纯水洗净,置于浸锌液中二次浸锌30s,取出用纯水洗净,备用;
(4)表面镀镍:取步骤(3)中洗净的氮化铝覆铝陶瓷基板,采用化学镀工艺,在氮化铝覆铝陶瓷基板表面镀镍,化学镀镍液组成成分为25g/L的NiSO4·7H2O、36g/L的NaH2PO2·H2O、12g/L的Na3C6H5O7·2H2O,其余为纯水;控制pH值为4.5,镀镍反应条件为80℃下化学镀20min,镀镍层厚度为3.5μm,镀镍完成后用纯水洗净表面,得到氮化铝覆铝封装衬板。
对比例2
对比例2以对比例1为对照组,变更参数为改变氮化铝覆铝陶瓷基板表面镀镍层厚度。
(1)配置质量百分比为10%的氢氧化钠水溶液,取氮化铝覆铝陶瓷基板产品完全浸入氢氧化钠溶液,碱洗3min后取出用纯水洗净;
(2)配置10%%硝酸水溶液,取步骤(1)中氮化铝覆铝陶瓷基板完全浸入硝酸溶液,酸洗90s后取出用纯水洗净,80℃下烘干;
(3)配置浸锌液:浸锌液包含10%NaOH、1.6%ZnO,其余为纯水,取步骤(2)中氮化铝覆铝陶瓷基板完全浸入浸锌液,浸锌时间为40s,取出洗净,浸入30%硝酸水溶液二次酸洗90s,再次取出用纯水洗净,置于浸锌液中二次浸锌30s,取出用纯水洗净,备用;
(4)表面镀镍:取步骤(3)中洗净的氮化铝覆铝陶瓷基板,采用化学镀工艺,在氮化铝覆铝陶瓷基板表面镀镍,化学镀镍液组成成分为25g/L的NiSO4·7H2O、36g/L的NaH2PO2·H2O、12g/L的Na3C6H5O7·2H2O,其余为纯水;控制pH值为4.5,镀镍反应条件为80℃下化学镀30min,镀镍层厚度为4.7μm,镀镍完成后用纯水洗净表面,得到氮化铝覆铝封装衬板。
实验
(1)取实施例1~3步骤(4)中氮化铝覆铝陶瓷基板,对比例1~2中氮化铝覆铝封装衬板,使用维氏硬度测试仪测量覆层表面硬度并计算平均值;
(2)取实施例1~3、对比例1~2中氮化铝覆铝封装衬板,使用表面粗糙度仪测量表面粗糙度并计算平均值,然后将实施例1~3、对比例1~2中氮化铝覆铝封装衬板进行-55~150℃热循环测试,测试完成后再次测量其表面粗糙度并计算平均值。
实验(1)~(2)测试结果如下表1所示:
表1:覆铝陶瓷基板表面性能测试
表面硬度(HV2) 热循环前粗糙度均值 热循环后粗糙度均值
实施例1 27.2 0.35 0.42
实施例2 29.5 0.34 0.43
实施例3 28.3 0.35 0.41
实施例4 29.6 0.34 0.40
对比例1 20.2 0.33 0.76
对比例2 21.4 0.32 0.74
可得,实施例1~4的表面粗糙Ra经热循环后增加约20%,对比例1~2中,样品经热循环后表面粗糙度Ra增加约130%;经热循环100次后轮廓度仪3D形貌表征所示,对比例1~2样品表面凹凸起伏度大,实施例1~4样品表面无明显凹凸起伏较为平滑;目视检查镀层均无开裂情况。
综上,在氮化铝覆铝陶瓷基板表面通过溅射镀铜及真空扩散烧结,在铝表面层引入微量铜元素,形成表层硬化层,然后再对其进行表面镀镍处理,降低了极端情况下器件工作时因高温导致的粗糙度激增、镀层开裂、引发器件失效的风险,进一步提高了氮化铝覆铝封装衬板的耐热循环可靠性。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,其特征在于:具体操作步骤如下:
(1)表面溅射镀铜:取氮化铝覆铝陶瓷基板进行表面清洗,然后镀铜,得到纳米级铜层的氮化铝覆铝陶瓷基板,镀铜层厚度为80~120nm;镀铜工艺为表面溅射镀铜工艺,工作参数为:功率5KW,Ar流量30Sccm,溅射压力0.4Pa下溅射10min;
(2)扩散退火:取步骤(1)中纳米级铜层氮化铝覆铝陶瓷基板进行真空烧结,470~540℃下保温2~3h,随炉冷却至22~25℃;扩散退火升温速度为1~3℃/min;退火后铝层表面维氏硬度为27~35HV1;
(3)表面镀镍:取步骤(2)中处理后的氮化铝覆铝陶瓷基板,二次浸锌后浸入化学镀镍液进行表面镀镍,镀镍层厚度为3.5~7μm;表面镀镍工艺条件为80~85℃下化学镀20~60min。
2.根据权利要求1所述的一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,其特征在于:步骤(1)中,氮化铝覆铝陶瓷基板表面铝层厚度为0.2~0.6mm。
3.根据权利要求1所述的一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,其特征在于:步骤(1)中,表面清洗步骤为:
A.配置10~20%氢氧化钠水溶液,取氮化铝覆铝陶瓷基板浸入碱洗3~5min,取出用纯水洗净;
B.配置10~20%硝酸水溶液,取步骤A中氮化铝覆铝陶瓷基板浸入酸洗90~100s,取出用纯水洗净,80~120℃下烘干,备用。
4.根据权利要求1所述的一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,其特征在于:步骤(3)中,二次浸锌步骤为:取NaOH、ZnO配置浸锌液,NaOH质量分数为10%,ZnO质量分数为1.6%,其余为纯水,取步骤(2)中处理后的氮化铝覆铝陶瓷基板浸入,浸锌时间为40~45s,取出纯水洗净;浸入30%硝酸水溶液中二次酸洗90~100s,取出纯水洗净;置于浸锌液中二次浸锌30~35s,取出用纯水洗净,备用。
5.根据权利要求1所述的一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,其特征在于:步骤(3)中,化学镀镍液组成成分为25g/L的NiSO4·7H2O、36g/L的NaH2PO2·H2O、12g/L的Na3C6H5O7·2H2O,其余为纯水;其中化学镀镍液pH值为4.5~5.6。
CN202211155745.6A 2022-09-22 2022-09-22 一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法 Active CN115410925B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211155745.6A CN115410925B (zh) 2022-09-22 2022-09-22 一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法
PCT/CN2022/126137 WO2024060342A1 (zh) 2022-09-22 2022-10-19 一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211155745.6A CN115410925B (zh) 2022-09-22 2022-09-22 一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法

Publications (2)

Publication Number Publication Date
CN115410925A CN115410925A (zh) 2022-11-29
CN115410925B true CN115410925B (zh) 2023-08-11

Family

ID=84166272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211155745.6A Active CN115410925B (zh) 2022-09-22 2022-09-22 一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法

Country Status (2)

Country Link
CN (1) CN115410925B (zh)
WO (1) WO2024060342A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115595535B (zh) * 2022-12-14 2024-02-09 江苏富乐华半导体科技股份有限公司 一种提高氮化铝覆铝陶瓷基板耐热循环可靠性的方法
CN116429817A (zh) * 2023-05-05 2023-07-14 江苏富乐华半导体科技股份有限公司 一种氮化铝覆铝陶瓷衬板热循环测试装置及方法
CN117161323B (zh) * 2023-09-07 2024-01-30 江苏富乐华半导体科技股份有限公司 一种衬板生产用成型模具及其成型方法
CN117756555A (zh) * 2023-12-22 2024-03-26 江苏富乐华半导体科技股份有限公司 一种高可靠性氮化铝覆铝基板的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301866A (ja) * 1988-01-29 1989-12-06 Tokin Corp 窒化アルミニウム表面に金属層を形成する方法
JP2005347767A (ja) * 2005-07-19 2005-12-15 Toshiba Corp セラミックス回路基板の製造方法
KR101660520B1 (ko) * 2015-04-08 2016-09-29 한국생산기술연구원 구리 및 니켈의 연속 무전해 도금방법 및 이를 이용하여 제조된 도금층
CN112410742A (zh) * 2020-10-30 2021-02-26 东莞市烽元科技有限公司 一种在Al2O3陶瓷基体表面磁控溅射镀纳米级铜膜的方法
CN113501725A (zh) * 2021-07-21 2021-10-15 江苏富乐德半导体科技有限公司 一种覆铝陶瓷绝缘衬板的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528638B1 (ko) * 2003-07-30 2005-11-15 한국생산기술연구원 마그네슘 합금에 대한 니켈 도금 방법
CN105937026A (zh) * 2016-06-25 2016-09-14 安徽柒柒塑业有限公司 一种铝合金化学镀镍的工艺
CN108265281A (zh) * 2018-02-11 2018-07-10 长春通行智能科技有限公司 一种铝合金复合材料及其制备方法
CN111364030A (zh) * 2020-04-07 2020-07-03 上海交通大学 一种改善铝基底化学镀NiP镀层平整性的前处理方法
CN112752414A (zh) * 2020-11-24 2021-05-04 贵研铂业股份有限公司 一种复合层氮化铝陶瓷电路板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301866A (ja) * 1988-01-29 1989-12-06 Tokin Corp 窒化アルミニウム表面に金属層を形成する方法
JP2005347767A (ja) * 2005-07-19 2005-12-15 Toshiba Corp セラミックス回路基板の製造方法
KR101660520B1 (ko) * 2015-04-08 2016-09-29 한국생산기술연구원 구리 및 니켈의 연속 무전해 도금방법 및 이를 이용하여 제조된 도금층
CN112410742A (zh) * 2020-10-30 2021-02-26 东莞市烽元科技有限公司 一种在Al2O3陶瓷基体表面磁控溅射镀纳米级铜膜的方法
CN113501725A (zh) * 2021-07-21 2021-10-15 江苏富乐德半导体科技有限公司 一种覆铝陶瓷绝缘衬板的制备方法

Also Published As

Publication number Publication date
WO2024060342A1 (zh) 2024-03-28
CN115410925A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
CN115410925B (zh) 一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法
CN108588690B (zh) 一种金刚石-铝复合材料的化学镀镍方法
CN105887149B (zh) 一种金属化陶瓷电镀方法
CN104004967A (zh) 一种金属模具的制造方法
CN113501725B (zh) 一种覆铝陶瓷绝缘衬板的制备方法
CN103590002A (zh) 一种镍基高温合金Al-Cr涂层的制备方法
CN109336646A (zh) 一种覆铜氮化铝陶瓷基板的制造方法
TW200923129A (en) Method of coating metallic material
CN112376098A (zh) 一种钼铜合金表面电镀的方法
CN107304479A (zh) 一种高硅铝合金的镀覆方法
CN102392279B (zh) 一种陶瓷金属化层的电镀镍方法
CN113512742A (zh) 一种高温合金表面的预处理方法和一种高温合金表面电沉积的方法
CN117165942A (zh) 一种金刚石/铜复合材料镀覆工艺
CN115595535A (zh) 一种提高氮化铝覆铝陶瓷基板耐热循环可靠性的方法
CN109400206A (zh) 一种陶瓷表面金属化的方法
CN106757236A (zh) 提高不锈钢表面钯膜层耐腐蚀性能的方法及钯膜层
CN102367583A (zh) 一种钼制零件的镀镍工艺
CN118206398A (zh) 一种具有表面强化的氮化铝覆铝陶瓷基板制备方法
JPS61187261A (ja) 半導体用リ−ドフレ−ムとその製造方法
CN105132975B (zh) 一种提高铝硅组件镀覆镍金层结合力的方法
CN107287580A (zh) 一种铝基复合材料的化学镀镍方法
CN110116246A (zh) 一种Al2O3陶瓷与无氧铜钎焊的方法
KR102201500B1 (ko) 세라믹 하우징 및 세라믹 기재의 도금 방법
CN117646214B (zh) 一种直接覆铝陶瓷基板蚀刻清洗方法
CN117702214A (zh) 一种陶瓷基板种子层表面直接镀铜工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant