CN115373423A - 一种用于商业卫星的编队捕获方法 - Google Patents

一种用于商业卫星的编队捕获方法 Download PDF

Info

Publication number
CN115373423A
CN115373423A CN202211141394.3A CN202211141394A CN115373423A CN 115373423 A CN115373423 A CN 115373423A CN 202211141394 A CN202211141394 A CN 202211141394A CN 115373423 A CN115373423 A CN 115373423A
Authority
CN
China
Prior art keywords
formation
satellite
changing
formula
orbit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211141394.3A
Other languages
English (en)
Inventor
范林东
赵明煊
刘东宸
戴路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chang Guang Satellite Technology Co Ltd
Original Assignee
Chang Guang Satellite Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chang Guang Satellite Technology Co Ltd filed Critical Chang Guang Satellite Technology Co Ltd
Priority to CN202211141394.3A priority Critical patent/CN115373423A/zh
Publication of CN115373423A publication Critical patent/CN115373423A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种用于商业卫星的编队捕获方法涉及卫星编队技术领域,解决了现有亟需一种利用卫星本身的受摄运动机制,且只消耗较低的燃料就可实现编队捕获方法的问题,步骤为:根据编队卫星的轨道倾角i的大小选择通过改变i或是改变a实现Ws的改变;当选择通过改变i实现Ws的改变时,计算编队卫星的倾角改变量
Figure DDA0003853738270000011
根据
Figure DDA0003853738270000012
计算速度增量大小;当选择通过改变a实现Ws的改变时,计算编队卫星轨道半长轴改变量
Figure DDA0003853738270000013
根据
Figure DDA0003853738270000014
计算速度增量大小。本发明可以大幅降低编队捕获的燃料需求,适用于有燃料成本限制的商业卫星;该方法捕获过程采用冲量控制方式,易于工程化实现;该方法控制批次少,仅需在漂移时间段的前后沿实施即可。

Description

一种用于商业卫星的编队捕获方法
技术领域
本发明涉及卫星编队技术领域,具体涉及一种用于商业卫星的编队捕获方法。
背景技术
随着商业卫星的快速发展,卫星编队也逐渐提上日程,由于卫星编队可以在若干颗卫星之间形成稳定精确的基线,因此在光学立体成像、合成孔径雷达成像、目标精确定位等方面具有较高的应用价值。但是对于商业卫星,一方面为了节省运载发射成本,一般采用多星入轨的方式,因此需要依靠自身的控制能力实现编队捕获;另一方面商业卫星从制造成本的角度出发,燃料携带有限,轨道控制能力较弱。
卫星编队的概念自提出来起,编队捕获就是一个首要解决的问题。
在编队捕获问题的解决上,国内外很多学者都是在相对运动动力学方程的基础上,将编队捕获问题转化为最优控制问题,即已知状态方程和初始值,通过设计经典或者先进控制律,使设定的性能指标最优,实现状态参数的转移,而性能指标往往是燃料最优(特殊情况下需要时间最优)。以半径为10km圆编队为例,上述方法需要的速度增量达到几百~几千米每秒,显然对于商业卫星而言是无法承载这么巨大的燃料需求的。另外也有一种方法是将编队参数转化为卫星的轨道六根数参数,通过经典N冲量控制方法,调整编队卫星的轨道根数,实现编队捕获,这种方式具有较高的工程应用价值,根据相关研究表明,采用该方法半径为10km的圆编队速度增量需求约为10m/s。
事实上,以上方法均是在经典运动方程的框架下,忽略了卫星的空间摄动力,实现编队的直接捕获。
因此在卫星编队领域,亟需一种利用卫星本身的受摄运动机制,且只消耗较低的燃料就可实现编队捕获的方法。
发明内容
为了解决上述问题,本发明提供一种用于商业卫星的编队捕获方法。
本发明为解决技术问题所采用的技术方案如下:
一种用于商业卫星的编队捕获方法,包括:
根据编队卫星的轨道倾角i的大小选择通过改变i或是改变a实现Ws的改变,当i∈[(90-β)°,(90+γ)°]时,通过改变i实现Ws的改变,否则,通过改变a实现Ws的改变,β和γ均为正数,a表示编队卫星轨道半长轴,Ws表示编队卫星轨道面和基准卫星轨道面间的基线长度;
当选择通过改变i实现Ws的改变时,计算编队卫星的倾角改变量
Figure BDA0003853738250000021
根据
Figure BDA0003853738250000022
计算速度增量大小;当选择通过改变a实现Ws的改变时,计算编队卫星轨道半长轴改变量
Figure BDA0003853738250000024
根据
Figure BDA0003853738250000023
计算速度增量大小。
本发明的有益效果是:
本发明的一种用于商业卫星的编队捕获方法提出了一种根据卫星轨道面间的受摄运动原理,通过改变倾角或者半长轴从而改变卫星轨道面在惯性空间中的进动速度,使得编队卫星在升交点赤经上形成稳定的差异,进而实现卫星编队捕获。该方法可以大幅降低编队捕获的燃料需求,因此适用于有燃料成本限制的商业卫星;该方法捕获过程采用冲量控制方式,易于工程化实现;该方法控制批次少,仅需在漂移时间段的前后沿实施即可。
附图说明
图1为本发明的一种用于商业卫星的编队捕获方法的流程图。
图2为本发明的一种用于商业卫星的编队捕获方法的部分参数示意图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
实施例一
本实施例提供一种用于商业卫星的编队捕获方法,用以解决在现有编队捕获问题的解决上均忽略了卫星的空间摄动力且消耗燃料较高的问题。
首先,根据现有的编队运动学理论可以知道,卫星形成编队一方面是要在偏心率上做微调,这样编队卫星可以绕着基准卫星在轨道面内实现椭圆运动,另一方面要在升交点赤经或者轨道倾角上与基准卫星形成差异,从而在编队卫星轨道面外形成单摆运动。对于偏心率的调整,根据高斯摄动方程,只需施加较小的冲量就可以实现较大的空间基线;但对于升交点赤经及轨道倾角的调整,需要施加较大的冲量才能获得同等空间基线,而且一般应用中调整升交点赤经居多,很少调整轨道倾角,因为若调整轨道倾角,编队卫星在低纬度区域的空间基线最小,不适合低纬度的观测。本实施例以及下述其他实施例中均创造性的利用卫星轨道升交点赤经的受摄运动,实现了消耗较少的燃料实现编队捕获。
本实施例的一种用于商业卫星的编队捕获方法,包括如下步骤:
根据编队卫星的轨道倾角i的大小选择通过改变i或是改变a实现Ws的改变,当i∈[(90-β)°,(90+γ)°]时,通过改变i实现Ws的改变,否则,通过改变a实现Ws的改变,β和γ均为正数,a表示编队卫星的轨道半长轴,Ws表示编队卫星轨道面和基准卫星轨道面间的基线长度;
当选择通过改变i实现Ws的改变时,计算编队卫星的倾角改变量
Figure BDA0003853738250000032
根据
Figure BDA0003853738250000033
计算速度增量大小;当选择通过改变a实现Ws的改变时,计算编队卫星轨道半长轴改变量
Figure BDA0003853738250000034
根据
Figure BDA0003853738250000035
计算速度增量大小。
实施例二
本实施例提供一种用于商业卫星的编队捕获方法,如图1,包括:
根据编队卫星的轨道倾角i的大小选择通过改变i或是改变a实现Ws的改变,当i∈[(90-β)°,(90+γ)°]时,通过改变i实现Ws的改变,否则,通过改变a实现Ws的改变,β和γ均为正数,a表示编队卫星的轨道半长轴,Ws表示编队卫星轨道面和基准卫星轨道面间的基线长度;
当选择通过改变编队卫星的轨道倾角i实现Ws的改变时,根据编队要求的Ws、利用公式(1)计算编队卫星轨道面和基准卫星轨道面的升交点赤经差ΔΩ,
Figure BDA0003853738250000031
根据ΔΩ,利用公式(15)计算编队卫星的倾角改变量
Figure BDA0003853738250000036
Figure BDA0003853738250000041
根据
Figure BDA00038537382500000410
公式(4.2)计算编队卫星的速度增量大小,
Figure BDA0003853738250000042
其中,μ为地球常数,J2为地球扁率摄动二阶系数,Re为地球平均半径,e为偏心率,n为编队卫星轨道角速度,u为纬度辐角,Δva为编队卫星轨道迹向速度增量。
通过改变编队卫星的轨道半长轴a实现Ws的改变能够实现离散的Ws,当选择通过改变a实现Ws的改变时,根据公式(13)或公式(14)计算离散的Ws的离散单元D,
Figure BDA0003853738250000043
Figure BDA0003853738250000044
根据公式(9)、D和编队要求的Ws计算编队卫星轨道半长轴改变量
Figure BDA0003853738250000045
Figure BDA0003853738250000046
其中,
Figure BDA0003853738250000047
N表示编队卫星绕地球做圆周运动的整圈圈数,N为正整数,所述N的值通过D和编队要求的Ws确定,所述N等于编队要求的Ws除以D的值进行向上取整;t表示通过改变a实现Ws的改变的时间,即时间成本。
根据
Figure BDA0003853738250000048
利用公式(4.1)计算速度增量Δva
Figure BDA0003853738250000049
其中,Δva为编队卫星轨道迹向速度增量。
在实现Ws改变所需时间t的前和后(开始时刻和结束时刻),各提供一次速度增量,也就是根据速度增量提供冲量(即脉冲),实现编队卫星升交点赤经的改变,也就是实现Ws的改变。
实施例三
一种用于商业卫星的编队捕获方法,包括如下步骤:
步骤一、将轨道面间基线长度转化为升交点赤经差。
根据现有的编队运动学理论可知,要在偏心率上做微调,编队卫星可以绕着基准卫星在编队卫星轨道面内实现椭圆运动。如图2所示,图2示意的是未编队时,基准卫星的轨道倾角等于编队卫星的轨道倾角i,轨道倾角简称倾角,基准卫星的轨道半长轴等于编队卫星的轨道半长轴a,编队卫星轨道面和基准卫星轨道面间的基线长度为Ws。根据球面直角三角形的余弦公式可得编队卫星轨道面和基准卫星轨道面的升交点赤经差ΔΩ:
Figure BDA0003853738250000051
步骤二,根据编队卫星的轨道倾角的大小选择控制参数
根据航天器轨道理论中地球扁率对卫星轨道升交点赤经的影响,根据步骤一得到的升交点赤经差,得到卫星轨道升交点赤经的进动角速度
Figure BDA0003853738250000052
为:
Figure BDA0003853738250000053
上式中,f(a,i)表示变量为a和i的函数,Re为地球平均半径,μ为地球常数,且μ=398600.4418km3/s,J2为地球扁率摄动二阶系数,i为编队的轨道倾角,e为偏心率,对(2)式求偏导可得:
Figure BDA0003853738250000054
根据高斯型受摄运动方程可知,在编队卫星星下点轨迹为圆轨道(偏心率e≈0)的情况下,a和i满足如下公式:
Figure BDA0003853738250000055
Figure BDA0003853738250000056
其中,n为编队卫星轨道角速度,u为纬度辐角,Δva为编队卫星轨道迹向速度增量,Δva可以改变编队卫星轨道半长轴a,Δvi为编队卫星轨道法向速度增量,Δvi用于改变编队卫星的倾角i,从(4.1)式和(4.2)式中也可以看出,改变倾角i需要在纬度辐角为0°或180°的位置实施,即编队卫星的升降交点位置。
根据(3)式,当公式(3)满足公式(5)的条件时,改变编队卫星轨道半长轴a或改变编队卫星轨道倾角i得到相同的
Figure BDA0003853738250000061
Figure BDA0003853738250000062
将(4.1)式和(4.2)式代入(5)式可得:
Figure BDA0003853738250000063
公式(6)表明,当编队卫星倾角i∈[81.87°,98.13°]时,改变编队卫星倾角i的速度增量最小,则选择通过改变倾角实现Ws的改变,当编队卫星倾角i不在这个区间时,改变编队卫星轨道半长轴a的速度增量最小,则选择通过改变a实现Ws的改变。
因此,可根据编队卫星轨道倾角大小选择控制参数,控制参数包括轨道半长轴和轨道倾角,即根据编队卫星轨道倾角大小选择改变a或是改变i。
对于改变半长轴的情况,进行如下详述:
由于改变半长轴会导致编队卫星与基准卫星在飞行方向上逐渐拉开相位,显然,背离了卫星编队的基本条件(编队卫星与基准卫星的半长轴要保持一致),因此,必须想办法让编队卫星重新回到基准卫星附近,考虑卫星绕地球做圆周运动,因此,可通过扣圈来保障编队卫星回到基准卫星附近,扣圈的含义为卫星绕地球做圆周运动至少达到了一次完整的圆周运动,扣圈N次表示卫星绕地球做N次圆周运动,即N圈,N为正整数,N表示编队卫星绕地球做圆周运动的整圈圈数。
编队卫星的轨道角速度公式为:
Figure BDA0003853738250000064
当编队卫星轨道半长轴上施加了编队卫星轨道半长轴改变量
Figure BDA0003853738250000071
的变化量后,编队卫星完成N次扣圈(N次扣圈即绕地球圆周运动N圈)的时间t需满足:
Figure BDA0003853738250000072
t表示实现改变Ws的时间,在此具体指通过改变a实现Ws的改变的时间。
对(8)式线性化处理可得:
Figure BDA0003853738250000073
其中,
Figure BDA0003853738250000074
当编队卫星N次扣圈完成后,需要恢复半长轴,这样编队卫星的升交点赤经进动角速度也与基准卫星的升交点赤经进动角速度一致,形成稳定的升交点赤经差ΔΩ。
Figure BDA0003853738250000075
考虑编队卫星星下点轨迹为圆轨道的情况,并对(10)式线性化处理可得:
Figure BDA0003853738250000076
将(9)式代入(11)式:
Figure BDA0003853738250000077
由于N为整数,因此(12)式表明,采用改变编队卫星轨道半长轴的方式实现编队捕获只能实现改变到离散的轨道面间基线长度Ws,且离散单元D为:
Figure BDA0003853738250000078
考虑一般编队轨道面间基线长度Ws远小于轨道半长轴a,上式可化简为:
Figure BDA0003853738250000079
同时,(9)式给出了轨道面间调整的时间成本和燃料成本。
对于改变倾角的情况,进行如下详述::
不同于改变半长轴a,改变倾角i的情况比较简单,不会造成卫星在飞行方向上漂移。改变倾角i只需施加两次冲量即可,利用编队卫星的倾角改变量
Figure BDA0003853738250000081
使得编队卫星与基准卫星形成升交点赤经差ΔΩ。
Figure BDA0003853738250000082
t表示实现改变Ws的时间,在此具体指通过改变i实现Ws的改变的时间。
步骤三,利用两次脉冲控制实现编队卫星升交点赤经的改变
根据步骤二,可以解得半长轴或倾角的控制量以及时间成本t,只需根据(4.1)式和(4.2)式,在t时间段的开始时刻和结束时刻各施加一次速度增量即可完成编队卫星升交点赤经的改变,根据速度增量实现编队卫星升交点赤经的改变,也就是实现Ws的改变。
步骤四,调整其它编队参数实现编队捕获
最后,再对编队卫星的卫星轨道面内参数(主要是偏心率)进行调整即可完成编队捕获。根据(4.1)式和(4.2)式可知,轨道面内参数调整的燃料消耗相对较小,例如,1m/s的速度增量即可获得2km的面内基线长度。
利用本发明的一种用于商业卫星的编队捕获方法进行了两个应用案例的计算与仿真,具体过程及实施结果如下:
应用案例一:90天内完成535km高度的太阳同步卫星的编队捕获,编队构型为圆编队,编队半径为10km;
首先,根据步骤一,求解升交点赤经差,根据圆编队理论可知,编队要求的轨道面间基线长度Ws
Figure BDA0003853738250000083
根据公式(1)换算出ΔΩ=1.26×10-3rad。
根据步骤二所述,由于535km高度的太阳同步轨道标称倾角为97.54°,改变倾角的速度增量较小,因此,选择通过改变倾角实现轨道面间基线;
通过公式(15)计算90天内形成该升交点赤经差需要的倾角差
Figure BDA0003853738250000084
根据步骤三所述,利用公式(4.2)求解90天时间段前后的两次的速度增量大小为0.82m/s。
根据步骤四所述,调整轨道面内参数,根据圆编队理论(即基于C-W方程得到的圆编队相对运动方程)轨道面内椭圆长轴为10km,因此,调整偏心率的两次速度增量为2.5m/s。
通过上述分析,总的速度增量需求为6.64m/s。
应用案例二:90天完成500km高度35°低倾角的卫星编队捕获,捕获构型为Pendulum摆式编队,基线长度在50km附近;
根据步骤一、二、三所述,该倾角下的编队捕获适宜采用改变半长轴的方式实现,但是,改变半长轴的方式只适合离散的轨道面基线长度。且离散单元根据(14)式可以计算出D为66km,因此轨道面间的基线长度只能取66km的整数倍。同时根据(9)式可知,其时间成本为
Figure BDA0003853738250000091
由于编队要求的基线长度约为50km,因此选择扣圈次数为N=1,则半长轴控制量
Figure BDA0003853738250000092
根据步骤三所述,利用公式(4.1)求解出90天时间段前后两次的速度增量大小为1.85m/s。
由于Pendulum摆式编队无须调整偏心率参数,因此,步骤四可不用计算。
通过上述分析,总的速度增量需求为3.7m/s。
通过上述两个案例分析可以发现,采用该方法进行编队捕获,速度增量的需求远远低于现有方法,适用于商业卫星。

Claims (7)

1.一种用于商业卫星的编队捕获方法,其特征在于,包括:
根据编队卫星的轨道倾角i的大小选择通过改变i或是改变a实现Ws的改变,当i∈[(90-β)°,(90+γ)°]时,通过改变i实现Ws的改变,否则,通过改变a实现Ws的改变,β和γ均为正数,a表示编队卫星轨道半长轴,Ws表示编队卫星轨道面和基准卫星轨道面间的基线长度;
当选择通过改变i实现Ws的改变时,计算编队卫星的倾角改变量
Figure FDA0003853738240000018
根据
Figure FDA0003853738240000019
计算速度增量大小;当选择通过改变a实现Ws的改变时,计算编队卫星轨道半长轴改变量
Figure FDA00038537382400000110
根据
Figure FDA00038537382400000111
计算速度增量大小。
2.如权利要求1所述的一种用于商业卫星的编队捕获方法,其特征在于,当选择通过改变i实现Ws的改变时,根据编队要求的Ws、利用公式(1)计算编队卫星轨道面和基准卫星轨道面的升交点赤经差ΔΩ,
Figure FDA0003853738240000011
根据ΔΩ,利用公式(15)计算编队卫星的倾角改变量
Figure FDA0003853738240000012
Figure FDA0003853738240000013
根据
Figure FDA0003853738240000014
利用公式(4.2)计算速度增量Δvi
Figure FDA0003853738240000015
其中,μ为地球常数,J2为地球扁率摄动二阶系数,Re为地球平均半径,e为偏心率,n为编队卫星轨道角速度,u为纬度辐角,Δvi为编队卫星轨道法向速度增量,t为实现改变Ws的时间。
3.如权利要求2所述的一种用于商业卫星的编队捕获方法,其特征在于,
通过改变a实现Ws的改变能够实现离散的Ws,当选择通过改变a实现Ws的改变时,根据公式(13)或公式(14)计算离散的Ws的离散单元D,
Figure FDA0003853738240000016
Figure FDA0003853738240000017
根据公式(9)、D和编队要求的Ws计算
Figure FDA0003853738240000021
Figure FDA0003853738240000022
其中,
Figure FDA0003853738240000023
N表示编队卫星绕地球做圆周运动的整圈圈数,N为正整数,所述N的值通过D和编队要求的Ws确定;
根据
Figure FDA0003853738240000024
利用公式(4.1)计算速度增量Δva
Figure FDA0003853738240000025
其中,Δva为编队卫星轨道迹向速度增量。
4.如权利要求3所述的一种用于商业卫星的编队捕获方法,其特征在于,所述N等于编队要求的Ws除以D的值进行向上取整。
5.如权利要求1所述的一种用于商业卫星的编队捕获方法,其特征在于,所述方法还包括调整偏心率的步骤。
6.如权利要求1所述的一种用于商业卫星的编队捕获方法,其特征在于,所述β=γ=8.13°。
7.如权利要求1所述的一种用于商业卫星的编队捕获方法,其特征在于,确定所述β和γ的过程为:
根据球面直角三角形的余弦公式得到升交点赤经差ΔΩ获得卫星轨道升交点赤经的进动角速度
Figure FDA0003853738240000026
Figure FDA0003853738240000027
Figure FDA0003853738240000028
其中,f(a,i)表示变量为a和i的函数,Re表示地球平均半径,μ表示地球常数,J2为地球扁率摄动二阶系数,e表示偏心率;
对公式(2)式求偏导可得:
Figure FDA0003853738240000029
根据高斯型受摄运动方程可知,在编队卫星星下点轨迹为圆轨道的情况下,a和i满足如下公式:
Figure FDA0003853738240000031
Figure FDA0003853738240000032
其中,n为编队卫星轨道角速度,u为纬度辐角,Δva为编队卫星轨道迹向速度增量,Δva用于改变编队卫星轨道半长轴a,Δvi为编队卫星轨道法向速度增量,Δvi用于改变编队卫星的倾角i,根据公式(4.2)可知,改变倾角i需要在纬度辐角为0°或180°的位置实施;
当公式(3)满足公式(5)的条件时,改变a或改变i能够得到相同的
Figure FDA0003853738240000033
Figure FDA0003853738240000034
将(4.1)(4.2)式代入(5)式可得:
Figure FDA0003853738240000035
根据公式(6)确定β和γ。
CN202211141394.3A 2022-09-20 2022-09-20 一种用于商业卫星的编队捕获方法 Pending CN115373423A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211141394.3A CN115373423A (zh) 2022-09-20 2022-09-20 一种用于商业卫星的编队捕获方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211141394.3A CN115373423A (zh) 2022-09-20 2022-09-20 一种用于商业卫星的编队捕获方法

Publications (1)

Publication Number Publication Date
CN115373423A true CN115373423A (zh) 2022-11-22

Family

ID=84070903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211141394.3A Pending CN115373423A (zh) 2022-09-20 2022-09-20 一种用于商业卫星的编队捕获方法

Country Status (1)

Country Link
CN (1) CN115373423A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117270557A (zh) * 2023-09-14 2023-12-22 中国西安卫星测控中心 倾角和半长轴联合偏置的最优卫星编队控制方法
CN117478207A (zh) * 2023-12-25 2024-01-30 广东世炬网络科技有限公司 星地链路通信方法、装置、设备、存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1199697A (zh) * 1996-12-31 1998-11-25 航空发动机的结构和研究公司 利用来自月球的引力帮助将卫星发射的***和方法
RU2583507C1 (ru) * 2015-02-05 2016-05-10 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Способ одновременного выведения группы спутников на некомпланарные орбиты (варианты)
CN107589756A (zh) * 2017-09-12 2018-01-16 北京理工大学 一种奔月卫星编队初始化方法
CN108438255A (zh) * 2018-03-14 2018-08-24 上海航天控制技术研究所 一种工程约束条件下卫星绕飞编队构形初始化方法
CN110096069A (zh) * 2019-04-25 2019-08-06 南京航空航天大学 基于nsgaⅱ超幅宽成像卫星编队构型的优化方法
CN113934233A (zh) * 2021-11-19 2022-01-14 中国西安卫星测控中心 卫星编队控制的推力器标定方法
CN114063645A (zh) * 2021-11-12 2022-02-18 中国西安卫星测控中心 基于偏心率倾角矢量的倾斜绕飞保持控制效果评估方法
US20220063843A1 (en) * 2020-08-27 2022-03-03 Space Engineering University Method for maintaining walker constellation formation and terminal device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1199697A (zh) * 1996-12-31 1998-11-25 航空发动机的结构和研究公司 利用来自月球的引力帮助将卫星发射的***和方法
RU2583507C1 (ru) * 2015-02-05 2016-05-10 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Способ одновременного выведения группы спутников на некомпланарные орбиты (варианты)
CN107589756A (zh) * 2017-09-12 2018-01-16 北京理工大学 一种奔月卫星编队初始化方法
CN108438255A (zh) * 2018-03-14 2018-08-24 上海航天控制技术研究所 一种工程约束条件下卫星绕飞编队构形初始化方法
CN110096069A (zh) * 2019-04-25 2019-08-06 南京航空航天大学 基于nsgaⅱ超幅宽成像卫星编队构型的优化方法
US20220063843A1 (en) * 2020-08-27 2022-03-03 Space Engineering University Method for maintaining walker constellation formation and terminal device
CN114063645A (zh) * 2021-11-12 2022-02-18 中国西安卫星测控中心 基于偏心率倾角矢量的倾斜绕飞保持控制效果评估方法
CN113934233A (zh) * 2021-11-19 2022-01-14 中国西安卫星测控中心 卫星编队控制的推力器标定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴会英;陈宏宇;余勇;赵灵峰;: "远距离轨道接近及绕飞控制技术研究", 中国空间科学技术, no. 01, 25 February 2010 (2010-02-25) *
黄美丽向开恒;: "编队飞行卫星群相对轨道摄动运动分析", 中国空间科学技术, no. 03, 25 June 2006 (2006-06-25) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117270557A (zh) * 2023-09-14 2023-12-22 中国西安卫星测控中心 倾角和半长轴联合偏置的最优卫星编队控制方法
CN117270557B (zh) * 2023-09-14 2024-05-03 中国西安卫星测控中心 倾角和半长轴联合偏置的最优卫星编队控制方法
CN117478207A (zh) * 2023-12-25 2024-01-30 广东世炬网络科技有限公司 星地链路通信方法、装置、设备、存储介质
CN117478207B (zh) * 2023-12-25 2024-04-02 广东世炬网络科技有限公司 星地链路通信方法、装置、设备、存储介质

Similar Documents

Publication Publication Date Title
CN109240322B (zh) 一种面向对地超幅宽成像的卫星编队实现方法
CN115373423A (zh) 一种用于商业卫星的编队捕获方法
CN104142686B (zh) 一种卫星自主编队飞行控制方法
CN100565105C (zh) 一种星载tdiccd相机积分时间计算及调整方法
CN102424116B (zh) 一种静止轨道卫星变轨策略优化方法
CN106595674A (zh) 基于星敏感器和星间链路的heo卫星编队飞行自主导航方法
CN107589756B (zh) 一种奔月卫星编队初始化方法
CN105631095A (zh) 一种等间隔发射的多约束地月转移轨道簇搜索方法
CN108100307A (zh) 一种用于复杂约束下低能量小天体精确探测轨道转移方法
CN109911249A (zh) 低推重比飞行器的星际转移有限推力入轨迭代制导方法
CN103076607A (zh) 一种基于sar卫星姿态控制实现滑动聚束模式的方法
CN112629543A (zh) 一种大椭圆轨道及小倾角圆轨道的轨道规划方法
CN106679653A (zh) 一种基于星敏感器和星间链路的heo卫星群相对测量方法
CN110632935A (zh) 一种编队卫星绕飞自主控制方法
CN114889849A (zh) 一种航天器多约束飞越最优速度的估计方法
CN103148856A (zh) 一种基于自适应尺度变化的借力飞行探测器自主天文导航方法
CN108082538B (zh) 一种考虑始末约束的多体***低能量捕获轨道方法
CN109606739A (zh) 一种探测器地月转移轨道修正方法及装置
CN111367305B (zh) 一种高轨光压作用下导引伴飞稳定性控制方法及***
CN117649077A (zh) 一种地球同步轨道目标成像卫星重点详查任务规划方法
CN113093246A (zh) 地面多目标点成像快速判定及任务参数计算方法
Fiedler et al. Close formation flight of passive receiving micro-satellites
Wang et al. Adaptive algorithm to determine the coverage belt for agile satellite with attitude maneuvers
Somov et al. Attitude & orbit digital and pulse-width control of large-scale communication spacecraft
CN114684389A (zh) 考虑再入约束的月地转移窗口及精确转移轨道确定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination