CN115332385A - 基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器及其制备方法 - Google Patents

基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器及其制备方法 Download PDF

Info

Publication number
CN115332385A
CN115332385A CN202210858802.0A CN202210858802A CN115332385A CN 115332385 A CN115332385 A CN 115332385A CN 202210858802 A CN202210858802 A CN 202210858802A CN 115332385 A CN115332385 A CN 115332385A
Authority
CN
China
Prior art keywords
epitaxial silicon
layer
isolation layer
graphene film
macroscopically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210858802.0A
Other languages
English (en)
Inventor
徐杨
李宗文
曹小雪
张致翔
田丰
柴健
俞滨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202210858802.0A priority Critical patent/CN115332385A/zh
Publication of CN115332385A publication Critical patent/CN115332385A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器及其制备方法,主要解决现有雪崩光电探测器暗电流大、增益小、雪崩阈值电压过高等问题,并提出了一种分离吸收层和倍增层的低雪崩阈值电压新型红外光电探测器。该光电探测器以宏观组装石墨烯作为红外光吸收层,以外延硅层作为载流子倍增层,通过吸收倍增层的分离有效抑制噪声电流倍增,实现微弱光信号的灵敏探测;在较大的反向偏压下,光生载流子越过势垒与耗尽区内硅晶格发生碰撞电离,激发出指数型倍增的载流子贡献到光电流中,实现一个很大的内部增益;本发明光电探测器可以探测红外光谱,解决传统肖特基势垒探测器对红外光探测响应低的问题,利于通信波段信息的传递。

Description

基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测 器及其制备方法
技术领域
本发明涉及一种基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器及其制备方法,属于光电探测技术领域。
背景技术
红外光电探测器具有穿透能力强、作用距离远、抗干扰性好、可全天候、全天时工作等优点在军用和民用领域都得到了极为广泛的应用。而且在军事需求的牵引和相关技术发展的推动下,作为高新技术的红外探测技术在未来的应用将更加广泛,地位更加重要。雪崩光电探测器由于内部具备雪崩增益,灵敏度高、响应快、体积小、成本低、易于集成,可低温工作,在高速调制和弱光信号探测领域展现突出优势。传统硅基探测器件因其带隙缺陷不能很好应用到红外光谱探测,因此需要寻找可与硅基兼容的窄带隙材料提高整个器件的探测性能。
石墨烯作为单原子层状二维材料中的代表之一,因其具有零带隙、超高载流子迁移率、费米能级易于调控、容易形成热载流子等特点而受到广泛关注和研究,有望将其应用到宽光谱吸收、超快速响应、高比探测率的新型红外探测领域中。单层石墨烯被认为是一种新兴的室温宽光谱光检测材料,它与半导体的范德华接触优化了异质结界面,抑制了暗电流和器件噪声。尽管零带隙结构的单层石墨烯具有宽光谱吸收的优势,但仅有2.3%的光吸收是非常弱的,由此限制了石墨烯光电探测器的量子转换效率。众所周知,石墨烯的光吸收与其层数存在直接关系,意味着在一定范围内石墨烯越厚,其红外光谱吸光性能更强。因此选用宏观组装多层石墨烯作为红外光电探测器的光吸收层是必要的。
综上,具有快速响应、高灵敏度和通信波长上大增益的高性能雪崩光电探测器,不仅取决于是否有厚而高质量的石墨烯薄膜作为光吸收层,而且还取决于在石墨烯/硅界面上实现低缺陷密度。因此,器件的暗电流是一个非常关键的参数,它影响器件的噪声,而大噪声会干扰雪崩探测器件对弱光的灵敏探测,而石墨烯作为光吸收层,硅作为光生载流子倍增层的肖特基结很好地抑制了热载流子的倍增,从而使器件性能得到提高,提升了红外光谱探测精度和灵敏度。
发明内容
本发明的目的在于针对现有雪崩光电探测器件的不足,提供了一种基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器,制备工艺简单,成本低廉,器件响应度高,探测率和内部增益大,响应速度快,光电转化效率高,易于集成。
本发明的目的是通过以下技术方案来实现的:
根据本说明书的第一方面,提供一种基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器,包括:底部电极、n型重掺硅衬底、外延硅层、介质隔离层、介质隔离层窗口、顶部电极和宏观组装石墨烯薄膜;其中,所述n型重掺硅衬底的下表面覆盖底部电极,上表面生长外延硅层;所述外延硅层的上表面生长介质隔离层,在介质隔离层的上表面沉积顶部电极,在顶部电极内开有介质隔离层窗口贯穿至外延硅层的上表面,使介质隔离层成凹形结构,且介质隔离层窗口的边界小于顶部电极的边界;在顶部电极和外延硅层的上表面覆盖宏观组装石墨烯薄膜。
进一步地,所述的底部电极是金属电极,金属材料为金、银、铜、铝、铂、镍铬合金和镓铟合金;所述的顶部电极是金属薄膜电极,厚度为10~100nm,金属材料为金、铝、铂、钛金合金、铬金合金和氧化铟锡。
进一步地,所述的n型重掺硅衬底的掺杂浓度为1018~1020cm-3,电阻率在0.001~0.01Ω·cm之间,厚度为50~800μm。
进一步地,所述的外延硅层材质是本征硅或者轻掺n型硅,所述轻掺n型硅的掺杂浓度为1010~1017cm-3,电阻率在1~5kΩ·cm之间,厚度为0.1~10μm。
进一步地,所述的介质隔离层材料是二氧化硅、氮化硅、氮化硼、氮氧化硅、氧化铝、金红石型二氧化钛,厚度为10~500nm。
进一步地,所述的介质隔离层窗口形状为圆形、方形,面积为10μm2~4mm2
进一步地,所述的宏观组装石墨烯薄膜可以通过机械剥离、化学气相沉积法或者抽滤烧结法制备,其厚度为5~60nm。
进一步地,所述的宏观组装石墨烯薄膜可以经过加工处理呈现微纳结构,微纳结构包括纳米条带、纳米栅、纳米凹形,增强对红外光的吸收转化,提高量子转换效率。
进一步地,宏观组装石墨烯薄膜/外延硅层结构中,所述宏观组装石墨烯薄膜作为红外光吸收层,所述外延硅层作为载流子倍增层,红外探测波段为1.1~16μm。
根据本说明书的第二方面,提供一种上述基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器的制备方法,该方法包括以下步骤:
(1)对n型重掺硅衬底进行表面清洗处理,依次将其放入丙酮,异丙醇,去离子水溶液中进行超声清洗,取出氮气吹干;
(2)在清洗过后的n型重掺硅衬底的上表面通过气相外延生长一层外延硅层,其他生长方法还包括:液相外延、固相外延或分子束外延;
(3)在外延硅层的上表面通过等离子体增强化学气相沉积法生长介质隔离层,其他生长方法还包括:高温热氧化法、磁控溅射,介质隔离层的厚度为10~500nm;
(4)在介质隔离层的表面光刻出顶部电极图案,然后通过磁控溅射先后沉积厚度为5~10nm的钛粘附层和40~60nm的金电极;
(5)对顶部电极形状内的介质隔离层光刻出介质隔离层窗口图案,然后用由水、HF和NH4F组成的缓冲氧化物刻蚀液刻蚀掉隔离介质形成凹形结构,介质隔离层窗口内特定区域的外延硅层暴露出来;
(6)采用抽滤法在AAO纳米氧化铝模板上制备氧化还原石墨烯薄膜,并经过高温烧结后形成宏观组装石墨烯薄膜,温度为1000~3000℃;
(7)在介质隔离层、顶部电极和外延硅层的上表面覆盖宏观组装石墨烯薄膜;其中,宏观组装石墨烯薄膜的转移方法为:在顶部电极和外延硅层的上表面位置处滴一滴乙醇:去离子水=1:5(体积比)的混合液,然后用镊子撕取小块宏观组装石墨烯薄膜,将其平整铺在混合液球滴上,然后用小通量氩气将混合液吹走,使宏观组装石墨烯薄膜平整的铺在介质隔离层、顶部电极和外延硅层之上,与其紧密接触;
(8)对介质隔离层上的多余宏观组装石墨烯薄膜进行刻蚀,仅留下顶部电极和外延硅层上表面接触的宏观组装石墨烯薄膜;其中刻蚀方法为:采用光刻胶保护住顶部电极和外延硅层上表面接触的宏观组装石墨烯薄膜,然后通过电感耦合等离子光谱发生仪对介质隔离层上的宏观组装石墨烯薄膜进行等离子体刻蚀,去除顶部电极以外的多余宏观组装石墨烯薄膜;
(9)对整个宏观组装石墨烯/外延硅垂直结构进行高温退火,消除宏观组装石墨烯薄膜与外延硅层界面的缺陷态,使宏观组装石墨烯薄膜与顶部电极和外延硅层更好地紧密接触;退火条件:温度400~500℃,时间5~10min;
(10)在n型重掺硅衬底的底部通过电子束蒸发覆盖金电极,与n型重掺硅衬底形成良好的欧姆接触。
本发明具有以下有益效果:
1.因为石墨烯是一种零带隙的超薄二维材料,所以它具有宽光谱吸收的光学特性,对紫外-可见-红外宽光谱任一波长的光均有良好的吸收作用,这是石墨烯薄膜用于光电探测的一大优势;而且可以通过增加石墨烯的厚度来增强它的吸收强度,在红外波谱将单层石墨烯2.3%的吸收扩大到宏观组装石墨烯45%以上的吸收,大大提高了光吸收度,从而提高了宏观组装石墨烯/外延硅光电探测器件的光电转化效率。
2.基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器实现了光吸收层与载流子倍增层的分离,因为硅的禁带宽度为1.12eV,所以对应光吸收截止波长在1.1μm附近,对于大于1.1μm的红外光谱,宏观组装石墨烯在整个红外雪崩光电探测器件中起到光吸收层的作用,而外延硅片作为载流子倍增层,解决了光吸收层与倍增层为同一区域引起的热载流子雪崩倍增的问题,大大提高了弱光信号的灵敏探测。
3.宏观组装石墨烯与外延硅形成肖特基结,具有整流效应,不仅降低了雪崩光电探测器的噪声电流,而且加快了光生电子-空穴对的分离且抑制了二者复合,提高了在红外光波谱的量子效率。
4.外延硅层在外加大的反向偏压的作用下,耗尽区变宽,载流子倍增发生区域也加宽,内建电场也会增强,大大提高了雪崩倍增的效率,也降低了雪崩开启电压。
5.选用n型重掺硅作为衬底,一方面解决半导体与金属欧姆接触的问题,可以与背部电极形成一个良好的欧姆接触;另一方面加快了载流子的迁移率,提高雪崩光电探测器件的响应速度。
6.本发明基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器以硅为基本材料,成本低,而且制备工艺简单,易与现有的半导体标准工艺相兼容。
附图说明
图1为本发明基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器的结构示意图,图中底部电极1、n型重掺硅衬底2、外延硅层3、介质隔离层4、介质隔离层窗口5、顶部电极6、宏观组装石墨烯薄膜7;
图2为本发明基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器的雪崩倍增机理图,宏观组装石墨烯薄膜吸收红外光子将其转化成电子-空穴对,并在内建电场的作用下分离,电子越过势垒在外延硅层发生碰撞电子并呈指数型倍增,贡献到整个电路中;
图3为本发明中实施例所制备的红外雪崩光电探测器在不同温度暗环境下的雪崩倍增现象呈现正温度系数;
图4为本发明中实施例所制备的红外雪崩光电探测器室温工作在0~-25V偏压,波长1550nm、光功率密度0.11W/mm2的红外光在光开与光关下器件的光学响应曲线及其内部增益随反向偏压变化的曲线图。
具体实施方式
本发明提供的一种基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器的工作原理如下:
如图2所示,宏观组装石墨烯与外延硅层接触形成肖特基结,内建电场由硅基指向石墨烯。当波长大于1.1μm的红外光照射到宏观组装石墨烯上时,由于硅的禁带宽度是1.12eV,截止波长小于1.1μm,所以宏观组装石墨烯在光吸收中占据主导,在宏观组装石墨烯中吸收光子并产生电子-空穴对。在内建电场的作用下,电子-空穴对发生分离,电子越过势垒到达外延硅的导带上。并且在大的反向偏压作用下,耗尽区增宽,内建电场强度增大,光生电子获得更大能量,从而具有高动能,与耗尽区内硅晶格附近的电子发生碰撞电离,激发新的自由电子,电子继续发生碰撞电离,继而产生指数型倍增的自由电子,最终空穴流向宏观组装石墨烯并被顶部电极收集,电子流向n型重掺硅衬底并被底部电极收集,贡献到光生电流中。
下面结合附图和实施例对本发明作进一步的说明。
如图1所示,本实施例提供的基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器,包括:底部电极1、n型重掺硅衬底2、外延硅层3、介质隔离层4、介质隔离层窗口5、顶部电极6、宏观组装石墨烯薄膜7;其中,所述的n型重掺硅衬底2的下表面覆盖底部电极1,上表面生长一层外延硅层3;外延硅层3的上表面生长介质隔离层4,在介质隔离层4的上表面沉积顶部电极6,在顶部电极6内开有介质隔离层窗口5,使二氧化硅隔离层4成凹形结构,特定区域的外延硅层3表面暴露出来,而且介质隔离层窗口5的边界小于顶部电极6的边界;在顶部电极6和外延硅层3的上表面覆盖宏观组装石墨烯薄膜7。
在其他一些实施例中:底部电极1是金属电极,金属材料为金、银、铜、铝、铂、镍铬合金和镓铟合金。顶部电极6是金属薄膜电极,厚度为10~100nm,金属材料为金、铝、铂、钛金合金、铬金合金和氧化铟锡。n型重掺硅衬底2的掺杂浓度为1018~1020cm-3,可选用1019cm-3,电阻率在0.001~0.01Ω·cm之间,厚度为50~800μm。外延硅层3材质是本征硅或者轻掺n型硅,轻掺n型硅的掺杂浓度为1010~1017cm-3,电阻率在1~5kΩ·cm之间,厚度为0.1~10μm。介质隔离层4材料是二氧化硅、氮化硅、氮化硼、氮氧化硅、氧化铝、金红石型二氧化钛,厚度为10~500nm。介质隔离层5形状为圆形、方形,面积为10μm2~4mm2。宏观组装石墨烯薄膜7通过机械剥离、化学气相沉积法或者抽滤烧结法制备,其厚度为5~60nm。宏观组装石墨烯薄膜7可以经过加工处理呈现微纳结构,微纳结构包括纳米条带、纳米栅、纳米凹形等,增强对红外光的吸收转化,提高量子转换效率。
本发明还提供上述基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器的制备方法实施例,包括以下步骤:
(1)对n型重掺硅衬底2进行表面清洗处理,依次将其放入丙酮,异丙醇,去离子水溶液中进行超声清洗5min,取出氮气吹干;
(2)在清洗后的n型重掺硅衬底2的上表面通过气相外延生长一层外延硅层3,采用前驱体SiCl4和H2,SiCl4摩尔分数为0.1,H2流量为1L/min,沉积温度1270℃,生长速率1μm/min;
(3)在外延硅层3的上表面通过等离子体增强化学气相沉积法生长二氧化硅隔离层4,其厚度为300nm,控制前驱气体及通量:SiH4(40sccm)和N2O(120sccm),生长温度350℃,沉积功率100W,沉积速率1nm/s;
(4)在二氧化硅隔离层4的表面光刻出顶部电极图案,然后通过磁控溅射先后沉积厚度为10nm的钛粘附层和60nm的金电极,溅射功率分别是100W和200W,溅射速率分别为100nm/min和1nm/s;
(5)对顶部电极6形状内的二氧化硅隔离层4光刻出二氧化硅窗口5图案,在升温台上105℃后烘5min,然后用由水、HF和NH4F组成的缓冲氧化物刻蚀液刻蚀掉二氧化硅形成凹形结构,二氧化硅窗口5内特定区域的外延硅层3暴露出来,其中体积比H2O:NH4F:HF=10:6:3,刻蚀速率约为100nm/min;
(6)将氧化石墨烯粉末加入去离子水中超声振荡1h,取上层清液,采用抽滤法在AAO纳米氧化铝模板上制备氧化还原石墨烯薄膜,并经过2000℃高温烧结后形成宏观组装石墨烯薄膜7;
(7)在二氧化硅隔离层4、顶部电极6和外延硅层3的上表面覆盖宏观组装石墨烯薄膜7;其中,宏观组装石墨烯薄膜7的转移方法为:在顶部电极6和外延硅层3的上表面位置处滴一滴乙醇和去离子水的混合液,配比为体积比1:5,然后用镊子撕取小块宏观组装石墨烯薄膜7,将其平整铺在混合液球滴上,然后用小通量氩气将混合液吹走,使宏观组装石墨烯薄膜7平整的铺在二氧化硅隔离层4、顶部电极6和外延硅层3之上,与其紧密接触;
(8)对二氧化硅隔离层4上的多余宏观组装石墨烯薄膜进行刻蚀,仅留下顶部电极6和外延硅层3上表面接触的宏观组装石墨烯薄膜7;其中刻蚀方法为:采用光刻胶保护住顶部电极6和外延硅层3上表面接触的宏观组装石墨烯薄膜7,然后通过电感耦合等离子光谱发生仪对二氧化硅隔离层4上的宏观组装石墨烯薄膜进行等离子体刻蚀,去除顶部电极6以外的多余宏观组装石墨烯薄膜,刻蚀功率70W,刻蚀时间200s;
(9)对整个宏观组装石墨烯/外延硅垂直结构进行高温退火,消除宏观组装石墨烯7与外延硅片3界面的缺陷态,使宏观组装石墨烯薄膜7与顶部电极6和外延硅层3更好地紧密接触;退火条件:温度450℃,时间5min;
(10)在n型重掺硅衬底2的底部通过电子束蒸发覆盖金底部电极1,厚度为10nm,与n型重掺硅衬底2形成良好的欧姆接触。
对上述基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器施加大的反向偏压,宏观组装石墨烯薄膜7中产生的光生电子在外延硅层3中产生雪崩倍增效应,实现内部增益。其中,源表外加电压的负极连接在器件的底部电极1上,正极连接到器件的顶部电极6上。
本实施例所制备的基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器工作在280-350K温度的暗环境下,雪崩阈值电压随温度变化曲线如图3所示。从图中可以看出,随着温度的升高,雪崩阈值电压越大。这是因为:温度升高,外延硅层本身激发现象就会加强,而那些没有被本征激发变成自由电子的价电子也会在晶格中自发振动,这些价电子的振动也就导致了所需空间的增大,而雪崩击穿占主导的载流子是少子,它在耗尽区中的运动是需要有一个能量积累的过程,只要能量足够大了就会发生雪崩现象,而这个积累过程是需要一个加速度以及一个距离;现在这些价电子由于它们的空间变大了,所以少子在能量还没有达到可以破坏共价键之前,在加速的过程中就容易撞到这些价电子,但是能量又不够,不能把价电子撞出晶格外,所以在这种情况下就不能发生雪崩,只有通过增加电场的强度,获得更大的加速度,以更短的距离才能获得更大能量的方式去形成雪崩倍增,所以雪崩现象的温度系数是正的。
本实施例所制备的基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器在0~-25V偏压下,暗环境和1550nm红外光照射下的暗电流和光电流以及内部增益随反向偏压变化曲线如图4所示。其中源表外加电压的负极连接在器件的底部电极1上,正极连接到器件的顶部电极6上。从图4可以看出,所制备的雪崩器件在暗环境下电流很小;而当波长为1550nm、光功率密度为0.11W/mm2的红外光照射时差生明显的光电流变化。在器件工作在-25V时,光学响应为2.51mA/W,内部增益为~9000,证明了基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器具有很好的光电探测性能。
以上所述仅是本发明的优选实施方式,虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何的简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (10)

1.一种基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器,其特征在于,包括:底部电极(1)、n型重掺硅衬底(2)、外延硅层(3)、介质隔离层(4)、介质隔离层窗口(5)、顶部电极(6)和宏观组装石墨烯薄膜(7);其中,所述n型重掺硅衬底(2)的下表面覆盖底部电极(1),上表面生长外延硅层(3);所述外延硅层(3)的上表面生长介质隔离层(4),在介质隔离层(4)的上表面沉积顶部电极(6),在顶部电极(6)内开有介质隔离层窗口(5)贯穿至外延硅层(3)的上表面,使介质隔离层(4)成凹形结构,且介质隔离层窗口(5)的边界小于顶部电极(6)的边界;在顶部电极(6)和外延硅层(3)的上表面覆盖宏观组装石墨烯薄膜(7)。
2.根据权利要求1所述的一种基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器,其特征在于,所述的底部电极(1)是金属电极,金属材料为金、银、铜、铝、铂、镍铬合金和镓铟合金;所述的顶部电极(6)是金属薄膜电极,厚度为10~100nm,金属材料为金、铝、铂、钛金合金、铬金合金和氧化铟锡。
3.根据权利要求1所述的一种基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器,其特征在于,所述的n型重掺硅衬底(2)的掺杂浓度为1018~1020cm-3,电阻率在0.001~0.01Ω·cm之间,厚度为50~800μm。
4.根据权利要求1所述的一种基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器,其特征在于,所述的外延硅层(3)材质是本征硅或者轻掺n型硅,所述轻掺n型硅的掺杂浓度为1010~1017cm-3,电阻率在1~5kΩ·cm之间,厚度为0.1~10μm。
5.根据权利要求1所述的一种基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器,其特征在于,所述的介质隔离层(4)材料为二氧化硅、氮化硅、氮化硼、氮氧化硅、氧化铝、金红石型二氧化钛,厚度为10~500nm。
6.根据权利要求1所述的一种基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器,其特征在于,所述的介质隔离层窗口(5)形状为圆形、方形,面积为10μm2~4mm2
7.根据权利要求1所述的一种基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器,其特征在于,所述的宏观组装石墨烯薄膜(7)通过机械剥离、化学气相沉积法或者抽滤烧结法制备,其厚度为5~60nm。
8.根据权利要求1所述的一种基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器,其特征在于,所述的宏观组装石墨烯薄膜(7)经过加工处理呈现微纳结构,微纳结构包括纳米条带、纳米栅、纳米凹形,增强对红外光的吸收转化,提高量子转换效率。
9.根据权利要求1所述的一种基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器,其特征在于,宏观组装石墨烯薄膜/外延硅层结构中,所述宏观组装石墨烯薄膜(7)作为红外光吸收层,所述外延硅层(3)作为载流子倍增层,红外探测波段为1.1~16μm。
10.一种制备如权利要求1-9中任一项所述的基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器的方法,其特征在于,包括以下步骤:
(1)对n型重掺硅衬底(2)进行表面清洗处理,依次将其放入丙酮,异丙醇,去离子水溶液中进行超声清洗,取出氮气吹干;
(2)在清洗过后的n型重掺硅衬底(2)的上表面生长一层外延硅层(3);
(3)在外延硅层(3)的上表面生长介质隔离层(4),介质隔离层(4)的厚度为10~500nm;
(4)在介质隔离层(4)的表面光刻出顶部电极(6)图案,然后通过磁控溅射先后沉积厚度为5~10nm的钛粘附层和40~60nm的金电极;
(5)对顶部电极(6)形状内的介质隔离层(4)光刻出介质隔离层窗口(5)图案,然后用缓冲氧化物刻蚀液刻蚀掉隔离介质形成凹形结构,介质隔离层窗口(5)内特定区域的外延硅层(3)暴露出来;
(6)采用抽滤法在AAO纳米氧化铝模板上制备氧化还原石墨烯薄膜,并经过高温烧结后形成宏观组装石墨烯薄膜(7);
(7)在介质隔离层(4)、顶部电极(6)和外延硅层(3)的上表面覆盖宏观组装石墨烯薄膜(7);宏观组装石墨烯薄膜(7)的转移方法为:在顶部电极(6)和外延硅层(3)的上表面位置处滴一滴乙醇和去离子水混合液,然后用镊子撕取小块宏观组装石墨烯薄膜(7),将其平整铺在混合液球滴上,然后用氩气将混合液吹走,使宏观组装石墨烯薄膜(7)平整的铺在介质隔离层(4)、顶部电极(6)和外延硅层(3)之上,与其紧密接触;
(8)对介质隔离层(4)上的多余宏观组装石墨烯薄膜(7)进行刻蚀,仅留下顶部电极(6)和外延硅层(3)上表面接触的宏观组装石墨烯薄膜(7);刻蚀方法为:采用光刻胶保护住顶部电极(6)和外延硅层(3)上表面接触的宏观组装石墨烯薄膜(7),然后通过电感耦合等离子光谱发生仪对介质隔离层(4)上的宏观组装石墨烯薄膜(7)进行等离子体刻蚀,去除顶部电极以外的多余宏观组装石墨烯薄膜(7);
(9)对整个宏观组装石墨烯/外延硅垂直结构进行高温退火,消除宏观组装石墨烯薄膜(7)与外延硅层(3)界面的缺陷态,使宏观组装石墨烯薄膜(7)与顶部电极(6)和外延硅层(3)更好地紧密接触;退火条件:温度400~500℃,时间5~10min;
(10)在n型重掺硅衬底(2)的底部通过电子束蒸发覆盖金电极,与n型重掺硅衬底(2)形成良好的欧姆接触。
CN202210858802.0A 2022-07-20 2022-07-20 基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器及其制备方法 Pending CN115332385A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210858802.0A CN115332385A (zh) 2022-07-20 2022-07-20 基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210858802.0A CN115332385A (zh) 2022-07-20 2022-07-20 基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN115332385A true CN115332385A (zh) 2022-11-11

Family

ID=83916831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210858802.0A Pending CN115332385A (zh) 2022-07-20 2022-07-20 基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN115332385A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116190191A (zh) * 2023-04-26 2023-05-30 北京心灵方舟科技发展有限公司 一种近红外敏感硅光电倍增管及其制作工艺方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116190191A (zh) * 2023-04-26 2023-05-30 北京心灵方舟科技发展有限公司 一种近红外敏感硅光电倍增管及其制作工艺方法

Similar Documents

Publication Publication Date Title
Luo et al. A graphene/single GaAs nanowire Schottky junction photovoltaic device
Xu et al. Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity
CN107452823B (zh) 一种微米线阵列光探测器及其制备方法
CN109461790B (zh) 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法
CN102214705B (zh) AlGaN极化紫外光电探测器及其制作方法
CN100438083C (zh) δ掺杂4H-SiC PIN结构紫外光电探测器及其制备方法
CN104393093B (zh) 应用石墨烯的高探测率氮化镓基肖特基型紫外探测器
CN106169516A (zh) 一种基于石墨烯的硅基紫外光电探测器及其制备方法
CN111682088A (zh) 一种基于范德华异质结的隧穿型光电探测器及其制备方法
EP2726404B1 (en) Method and apparatus for converting photon energy to electrical energy
Xie et al. p-CdTe nanoribbon/n-silicon nanowires array heterojunctions: photovoltaic devices and zero-power photodetectors
CN104157720A (zh) 一种混合结构的石墨烯硅基雪崩光电探测器及制备方法
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
CN110660882A (zh) 一种新型栅控PIN结构GaN紫外探测器及其制备方法
CN114220878A (zh) 一种具有载流子传输层的Ga2O3/GaN日盲紫外探测器及其制备方法
CN111106204B (zh) 基于ⅲ-ⅴ族半导体高电子迁移率晶体管的日盲紫外探测器及制作方法
CN115332385A (zh) 基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器及其制备方法
CN114267747A (zh) 具有金属栅结构的Ga2O3/AlGaN/GaN日盲紫外探测器及其制备方法
CN108878575B (zh) 一种基于硅/氟化石墨烯的双工作模式宽波段光电探测器及其制备方法
CN110676272A (zh) 一种半导体紫外光电探测器
CN109698250A (zh) 栅极调控AlGaN基金属-半导体-金属紫外探测器及制备方法
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
CN112018210B (zh) 极化增强窄带AlGaNp-i-n型紫外探测器及其制备方法
CN110350045B (zh) PbS量子点Si-APD红外探测器及其制备方法
CN115000244B (zh) 一种高性能自驱动GaN纳米线紫外探测器的制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination