CN115308053A - 一种直接测量储层非均质岩石频变纵波速度的装置及方法 - Google Patents

一种直接测量储层非均质岩石频变纵波速度的装置及方法 Download PDF

Info

Publication number
CN115308053A
CN115308053A CN202211058594.2A CN202211058594A CN115308053A CN 115308053 A CN115308053 A CN 115308053A CN 202211058594 A CN202211058594 A CN 202211058594A CN 115308053 A CN115308053 A CN 115308053A
Authority
CN
China
Prior art keywords
rock
strain
longitudinal wave
axial
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211058594.2A
Other languages
English (en)
Other versions
CN115308053B (zh
Inventor
孙超
张策
王尚旭
岳建华
潘冬明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202211058594.2A priority Critical patent/CN115308053B/zh
Publication of CN115308053A publication Critical patent/CN115308053A/zh
Application granted granted Critical
Publication of CN115308053B publication Critical patent/CN115308053B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0005Repeated or cyclic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0252Monoaxial, i.e. the forces being applied along a single axis of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0658Indicating or recording means; Sensing means using acoustic or ultrasonic detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0232Glass, ceramics, concrete or stone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Abstract

本发明提供一种直接测量储层非均质岩石频变纵波速度的装置及方法,包括胡克腔、测量工具、压力控制单元;包括以下步骤:S1、测量岩石样品的质量和密度,将其放入胡克腔内;S2、沿样品轴向加载周期震荡应力;S3、加载周期震荡围压:初始围压频率、振幅Λ0及相位Φ0与轴向加载应力相同;S4、测量应变:测量样品全局轴向和径向应变;S5、加载纵波应力条件:步骤S4记录岩石侧面的径向应变,不为0的时候,以锁相环算法锁定径向岩石径向应变的振幅和相位,修改周期震荡围压的振幅Λ0及相位Φ0,直到所测径向应变为0时,锁定振幅和相位,记录轴向应变;S6、计算纵波模量。本发明可以实现如下效果:直接测量地震频带非均质岩石纵波模量。

Description

一种直接测量储层非均质岩石频变纵波速度的装置及方法
技术领域
本发明属于储层测量技术领域,具体涉及一种直接测量储层非均质岩石频变纵波速度的装置及方法。
背景技术
在实验室中模拟储层条件,开展针对储层岩石纵波速度测量是非常重要中的方法。其中较为经典的是超声波测量,也称为“行波法”测量,其测量频率大约在1MHz,远大于地震波频率,因此,当存在频散效应时,行波法测量结果无法约束解释地震勘探数据。为此,近些年研究人员开展了地震频段实验室弹性模量测量,现有的测量技术包括共振棒法、差分声学共振谱(DARS)法和应力-应变法。
共振棒方法是将岩石样品制成棒状,并通过压电、静态或者电磁力进行激发,使其以扭转、拉伸或弯曲共振模式中一种方式震动,从而获得应变。该方法的优点是通过改变样本的长度,应用于相当广泛但不连续的频率范围内的测量,缺点是样本必须足够长才能进行较低的频测量。因此,在宽频率范围内对单个岩石样品进行连续测量既困难又低效;差分声学共振谱(DARS)方法类似于共振棒技术的方法,它的测量原理是测量因引入小物体而扰动的腔体谐振频率的偏移。差分声学共振谱(DARS)方法用于估计不同样品的压缩率和密度,尤其是不规则形状的样品。然而,该方法中使用的频率点来自测量***的共振,因此会限制可用频率的数量。这两种方法都是利用设备的共振模式来获取测量结果,从而避免了共振对力学测量的不利影响。尽管如此,这两种方法的测量频率十分离散,遗漏了许多连续频率范围测量才能获得的有效信息;除了上述两种方法外,应力-应变法是通过记录加载应力的幅值和相位,以及其诱发的轴向和径向应变来获得岩石样品的杨氏模量和泊松比。
上述测量原理表明,使用传统方法进行测量的前提是岩石样品均匀,从而获得的杨氏模量和泊松比可以用于计算纵波模量,进而计算纵波速度。然而,实际情况是岩石样品多为非均匀,如岩石中含有流体,裂缝等。利用杨氏模量和泊松比计算所得的纵波模量并不准确。因此,研发能够在储层条件下,准确可靠测量非均质岩石纵波速度的方法是十分必要的。
发明内容
基于现有技术存在的不足,本发明旨在提供一种直接测量储层非均质岩石频变纵波速度的装置及方法,该方法可有效克服传统方法中对非均质岩石测量存在的局部效应。
具体技术方案为:
一种直接测量储层非均质岩石频变纵波速度的装置,包括胡克腔、测量工具、压力控制单元;
胡克腔,包括三轴压力釜,三轴压力釜内壁设有水浴加热管,水浴加热管与水浴主控连接;三轴压力釜上设有液压缸活塞和LVDT应变计;液压缸活塞用于对三轴压力釜内加载轴压;LVDT应变计用于记录液压缸活塞顶部轴压下降的距离;
测量工具,包括上卡头、下卡头;岩石样品位于上卡头、下卡头之间;轴向涡轮应变计安装在岩石样品两端,分别与上卡头、下卡头连接在一起;径向涡轮应变计安装在岩石样品的侧面;
下卡头底部安装于三轴压力釜内嵌的铝制定位卡槽;上卡头、下卡头内均设有压电震源;
上卡头、下卡头内均设有纵波超声探头、横波超生探头;
上卡头、下卡头内均设有内嵌流体管道;
内嵌流体管道、三轴压力釜内腔、液压缸活塞分别与液压泵连接;
压力控制单元,包括液压泵和循环围压储油罐;
LVDT应变计、径向涡轮应变计、轴向涡轮应变计、半导体应变计、纵波超声探头、横波超生探头分别与24位高精度采集卡连接,24位高精度采集卡、液压泵、压电震源与主控电脑连接。
一种直接测量储层非均质岩石频变纵波速度的方法,包括以下步骤:
S1、从储层钻取直径50mm,高100mm的非均质岩石样品,测量岩石的质量和密度,将其放入胡克腔内。
S2、沿样品轴向加载周期震荡应力,其振幅为Λ0,相位为Φ0,在高频情况下振幅衰减不超过10%,应力振幅约为1MPa左右,岩石应变不高于10-6,频率振荡范围为1-100Hz。
S3、加载周期震荡围压:给岩石样品加载周期震荡围压。
围压加载***由压力控制单元、液压泵、循环围压储油罐、半导体应变计、内嵌流体管道组成。压力控制单元负责精准控制液压泵,可精准控制孔压和围压。半导体应变计内置于胡克腔中,反馈当前压力值给压力控制单元。初始围压频率、振幅Λ0及相位Φ0与轴向加载应力相同。
S4、测量应变:测量样品全局轴向和径向应变。测量所用径向涡轮应变计、轴向涡轮应变计须具备测量10-6量级应变的能力。本发明在样品轴向和径向安装涡轮应变计记录岩石的轴向应变和径向应变。纵波超声探头、横波超生探头内嵌于上卡头、下卡头中,用于验证低频测量结果。
S5、加载纵波应力条件:步骤S4记录岩石侧面的径向应变,其值通常不为0,以锁相环算法锁定径向岩石径向应变的振幅和相位,将结果反馈给步骤S3所示压控***,修改周期震荡围压的振幅Λ0及相位Φ0,直到步骤S4所测径向应变为0时,锁定液压泵的振幅和相位。记录轴向应变。
S6、计算纵波模量:利用轴向应力及应变计算纵波模量:
Figure BDA0003825787200000031
其中F是轴向加载应力的振幅,
Figure BDA0003825787200000032
是岩石样品的轴向应变;利用纵波模量和密度,计算纵波速度
Figure BDA0003825787200000033
岩石样品的纵波衰减可如下计算:
Figure BDA0003825787200000034
其中,
Figure BDA0003825787200000035
是岩石样品的纵波衰减,
Figure BDA0003825787200000036
Figure BDA0003825787200000037
分别是应力和轴向应变的相位。
相比于现有实验设备、技术及方法,本发明所述方法可以实现如下效果:直接测量地震频带非均质岩石纵波模量。为说明发明效果,从两个方面进行阐述:
(1)在测量原理方面,传统设备为保证测量10-6量级的应变,通常使用半导体应变片对均匀岩石样品的轴向和径向应变测量,在获得杨氏模量和泊松比后,计算纵波模量。使用这种方法的前提条件是样品均匀。但是,对于非均匀岩石,如岩石中存在流体或裂缝,上述假设不在成立,非均质性对横向应变和纵向应变的测量结果均产生巨大影响,应变片测量应变的局部效应不可避免。此外,非均质性会对泊松比产生巨大影响,基于其所计算的纵波模量会继承误差。本发明针对传统方法中存在的两个缺点,提出:①全局应变测量,避免局部影响,尤其是横向动态应变的影响;②加载纵波模量边界条件,直接测量纵波模量,其不仅充分考虑了非均质性的影响,同时减少了利用其他测量结果换算带来的误差。
(2)在测量结果方面,本发明较传统测量结果精度更高。
附图说明
图1是本发明装置结构示意图;
图2是本发明的测试流程示意图;
图3是本发明实施案例纵波边界条件加载效果图;浅色为加载纵波边界条件后的径向应变,深色为轴向应变;
图4为本发明实施案例测量结果与传统测量结果对比图。
具体实施方式
为使本发明的目的,技术方案和优点表述更加清楚,下面依据解决方案,呈现实施例,如附图2所示,对本发明的具体实施方式做出清楚完整的说明。
如图1所示,一种直接测量储层非均质岩石频变纵波速度的装置,包括胡克腔、测量工具、压力控制单元;
胡克腔,包括三轴压力釜1,三轴压力釜1内壁设有水浴加热管5,水浴加热管5与水浴主控14连接;三轴压力釜1上设有液压缸活塞2和LVDT应变计13;液压缸活塞2用于对三轴压力釜1内加载轴压;LVDT应变计13用于记录液压缸活塞2顶部轴压下降的距离;
测量工具,包括上卡头4、下卡头17;岩石样品7位于上卡头4、下卡头17之间;轴向涡轮应变计16安装在岩石样品7两端,分别与上卡头4、下卡头17连接在一起;径向涡轮应变计6安装在岩石样品7的侧面;
下卡头17底部安装于三轴压力釜1内嵌的铝制定位卡槽;上卡头4、下卡头17内均设有压电震源3;
上卡头4、下卡头17内均设有纵波超声探头9、横波超生探头18;
上卡头4、下卡头17内均设有内嵌流体管道;
内嵌流体管道、三轴压力釜1内腔、液压缸活塞2分别与液压泵10连接;
压力控制单元,包括液压泵10和循环围压储油罐15;
LVDT应变计13、径向涡轮应变计6、轴向涡轮应变计16、半导体应变计8、纵波超声探头9、横波超生探头18分别与24位高精度采集卡11连接,24位高精度采集卡11、液压泵10、压电震源3与主控电脑12连接。
测量方法为:
S1、钻取直径为50毫米,长度为100毫米的岩石样品7,至于胡克腔内。
图2中岩石样品7,置于胡克腔内,该胡克腔由三轴压力釜1、液压缸活塞2和LVDT应变计13组成,内部直径为180mm,高为260mm。其中液压缸活塞2用于加载轴压,压力范围为0-200MPa兆帕。LVDT应变计13有效测量精度在0.1mm左右,负责记录顶部轴压下降的距离。
S2、加载周期震荡轴向应力。由图2中压电震源3完成,其直径是56毫米,高度36mm,震动频率范围为0.01-100Hz,振幅为0.1MPa。
S3、测试样品加载周期震荡围压。由液压泵10即Quizix精密双泵和循环围压储油罐15组成的压力控制单元加载周期震荡压力,初始压力振幅是0.1MPa,频率为0.5Hz,相位是0。主控电脑12负责控制压力。
S4、测量页岩样品的轴向应变和径向应变,测量工具包括:上卡头4,径向涡轮应变计6,岩石样品7,半导体应变计8,纵波超声探头9,轴向涡轮应变计16,下卡头17,横波超生探头18;
上卡头4,由不锈钢材料制成,上部直径为56毫米,下部直径为50毫米,高47毫米,内嵌流体管道和纵横波超生探头;径向涡轮应变计6用于测量全局径向应变,测量精度在0.01微米左右;半导体应变计8,长3.8毫米,应变计因子为130.8,属于传统测量方法;纵波超声探头9,镶嵌在上卡头4、下卡头17中,激发频率为1MHz;轴向涡轮应变计16用于测量轴向应变计,测量检测精度在0.01微米左右;下卡头17,材料为航空铝,下部内嵌P/S波探头,底部嵌入于三轴压力釜1内嵌的铝制定位卡槽中;
S5、加载纵波边界条件。轴向和径向连续应变由径向涡轮应变计6、轴向涡轮应变计16和24位高精度采集卡11采集,采集结果输入到主控电脑12,由Labview编写的锁相环算法进行锁定,得到修正后的振幅和相位,运行步骤S3,直到步骤S4中的径向应变为0,输出应变如图3所示。浅色信号为径向应变结果。
S6/应力和轴向应变计算纵波模量,结果如图4所示,本发明的测量结果和传统方法的测量结果。对于干燥页岩样品而言,其刚度系数C33的频散很弱。本发明的测量结果(图4,实心点)与超声频带的测量结果(图4,方块)一致,与预设理论一致,而传统方法的测量结果(空心圆圈)低于超声测量结果,与预设理论值存在误差可以看到,本发明的测量结果与超声结果更加一致。

Claims (5)

1.一种直接测量储层非均质岩石频变纵波速度的装置,其特征在于,包括胡克腔、测量工具、压力控制单元;
胡克腔,包括三轴压力釜(1),三轴压力釜(1)内壁设有水浴加热管(5),水浴加热管(5)与水浴主控(14)连接;三轴压力釜(1)上设有液压缸活塞(2)和LVDT应变计(13);液压缸活塞(2)用于对三轴压力釜(1)内加载轴压;LVDT应变计(13)用于记录液压缸活塞(2)顶部轴压下降的距离;
测量工具,包括上卡头(4)、下卡头(17);岩石样品(7)位于上卡头(4)、下卡头(17)之间;轴向涡轮应变计(16)安装在岩石样品(7)两端,分别与上卡头(4)、下卡头(17)连接在一起;径向涡轮应变计(6)安装在岩石样品(7)的侧面;
下卡头(17)底部安装于三轴压力釜(1)内嵌的铝制定位卡槽;上卡头(4)、下卡头(17)内均设有压电震源(3);
上卡头(4)、下卡头(17)内均设有纵波超声探头(9)、横波超生探头(18);
上卡头(4)、下卡头(17)内均设有内嵌流体管道;
内嵌流体管道、三轴压力釜(1)内腔、液压缸活塞(2)分别与液压泵(10)连接;
半导体应变计(8)设在三轴压力釜(1)中;
压力控制单元,包括液压泵(10)和循环围压储油罐(15);
LVDT应变计(13)、径向涡轮应变计(6)、轴向涡轮应变计(16)、半导体应变计(8)、纵波超声探头(9)、横波超生探头(18)分别与24位高精度采集卡(11)连接,24位高精度采集卡(11)、液压泵(10)、压电震源(3)与主控电脑(12)连接。
2.一种直接测量储层非均质岩石频变纵波速度的方法,其特征在于,包括以下步骤:
S1、从储层钻取非均质的岩石样品,测量岩石样品的质量和密度,将其放入胡克腔内;
S2、沿样品轴向加载周期震荡应力;
S3、加载周期震荡围压:给岩石样品加载周期震荡围压;
精准控制孔压和围压;初始围压频率、振幅Λ0及相位Φ0与轴向加载应力相同;
S4、测量应变:测量样品全局轴向和径向应变;
S5、加载纵波应力条件:步骤S4记录岩石侧面的径向应变,不为0的时候,以锁相环算法锁定径向岩石径向应变的振幅和相位,修改周期震荡围压的振幅Λ0及相位Φ0,直到所测径向应变为0时,锁定振幅和相位,记录轴向应变;
S6、计算纵波模量。
3.根据权利要求2所述的一种直接测量储层非均质岩石频变纵波速度的方法,其特征在于,S1中岩石样品尺寸为直径50mm,高100mm。
4.根据权利要求2所述的一种直接测量储层非均质岩石频变纵波速度的方法,其特征在于,S2中沿样品轴向加载周期震荡应力,其振幅为Λ0,相位为Φ0,在高频情况下振幅衰减不超过10%,应力振幅为1MPa左右,岩石应变不高于10-6,频率振荡范围为1-100Hz。
5.根据权利要求2所述的一种直接测量储层非均质岩石频变纵波速度的方法,其特征在于,S6中具体包括:
利用轴向应力及应变计算纵波模量:
Figure FDA0003825787190000021
其中F是轴向加载应力的振幅,
Figure FDA0003825787190000022
是岩石样品的轴向应变;利用纵波模量和密度,计算纵波速度
Figure FDA0003825787190000023
岩石样品的纵波衰减可如下计算:
Figure FDA0003825787190000024
其中,
Figure FDA0003825787190000025
是岩石样品的纵波衰减,
Figure FDA0003825787190000026
Figure FDA0003825787190000027
分别是应力和轴向应变的相位。
CN202211058594.2A 2022-08-31 2022-08-31 一种直接测量储层非均质岩石频变纵波速度的装置及方法 Active CN115308053B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211058594.2A CN115308053B (zh) 2022-08-31 2022-08-31 一种直接测量储层非均质岩石频变纵波速度的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211058594.2A CN115308053B (zh) 2022-08-31 2022-08-31 一种直接测量储层非均质岩石频变纵波速度的装置及方法

Publications (2)

Publication Number Publication Date
CN115308053A true CN115308053A (zh) 2022-11-08
CN115308053B CN115308053B (zh) 2023-05-12

Family

ID=83864745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211058594.2A Active CN115308053B (zh) 2022-08-31 2022-08-31 一种直接测量储层非均质岩石频变纵波速度的装置及方法

Country Status (1)

Country Link
CN (1) CN115308053B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116379767A (zh) * 2022-12-26 2023-07-04 无锡海古德新技术有限公司 一种立体热压震荡烧结炉

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278389A (zh) * 2013-04-28 2013-09-04 北京大学 一种岩石动、静态弹性参数同步测量的方法
CN103412336A (zh) * 2013-07-22 2013-11-27 中国石油天然气股份有限公司 一种非均质油藏中岩石***的纵波速度预测方法
CN107748116A (zh) * 2017-11-16 2018-03-02 中国矿业大学(北京) 一种高温高压条件下软岩石的密度及纵横波速度测试***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278389A (zh) * 2013-04-28 2013-09-04 北京大学 一种岩石动、静态弹性参数同步测量的方法
CN103412336A (zh) * 2013-07-22 2013-11-27 中国石油天然气股份有限公司 一种非均质油藏中岩石***的纵波速度预测方法
CN107748116A (zh) * 2017-11-16 2018-03-02 中国矿业大学(北京) 一种高温高压条件下软岩石的密度及纵横波速度测试***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
未晛 等: "含流体砂岩地震波频散实验研究" *
李雷豪 等: "基于纵横波模量两项反射系数近似方程的叠前地震反演" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116379767A (zh) * 2022-12-26 2023-07-04 无锡海古德新技术有限公司 一种立体热压震荡烧结炉
CN116379767B (zh) * 2022-12-26 2023-10-10 无锡海古德新技术有限公司 一种立体热压振荡烧结炉

Also Published As

Publication number Publication date
CN115308053B (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
Dudley et al. ISRM suggested method for uniaxial-strain compressibility testing for reservoir geomechanics
NO20181151A1 (no) System for å måle stress i nedihulls rørdeler
CN111337408B (zh) 一种利用低场核磁共振设备测试岩石裂缝孔隙度的方法
Mikhaltsevitch et al. A low-frequency laboratory apparatus for measuring elastic and anelastic properties of rocks
CN115308053B (zh) 一种直接测量储层非均质岩石频变纵波速度的装置及方法
US4813278A (en) Method of determining three-dimensional tectonic stresses
Lozovyi et al. Velocity dispersion in rocks: A laboratory technique for direct measurement of P-wave modulus at seismic frequencies
US4821577A (en) Modified ring test
CN104515812B (zh) 一种针对变截面构件体内微裂纹的非经典非线性检测方法
CN205353018U (zh) 一种利用超声波探测岩石各向异性的简易实验装置
Ibraim et al. New local system of measurement of axial strains for triaxial apparatus using LVDT
Abdolghafurian et al. Experimental comparative investigation of dynamic and static properties of reservoir rocks
Mikhaltsevitch et al. An experimental study of low-frequency wave dispersion and attenuation in water saturated sandstone
BAI et al. Investigation on the propagation characteristic of shale ultrasonic in the stress loading procedure
Hampton et al. A new dynamic indentation tool for rapid mechanical properties profiling and mapping
Indraratna et al. Triaxial equipment for measuring the permeability and strength of intact and fractured rocks
Mikhaltsevitch et al. A low-frequency apparatus for characterizing the mechanical properties of rocks
L’Esperance et al. Small-scale, high-precision and high-accuracy determination of Poisson’s ratios in cohesive marine sediments
Nikolenko et al. Effect of Discontinuities on Elastic Wave Velocities in High-Stress Rock Samples: Experimental Research Using Ultrasonic Interferometry
Agrawal et al. Effects of cyclic fracturing on acoustic events and breakdown pressure
Fjær et al. Mechanical properties and stress data from laboratory analysis
Shikhova et al. Variations in ultrasonic signal spectra for triaxial testing of rock samples
Mikhaltsevitch et al. Low-frequency measurements of the mechanical parameters of sandstone with low permeability
Oshkin Method of thermally stimulated acoustic emission to assess changes in the deformed state of rocks under quasi-static loading
Dessouki et al. An Investigation into the Effects of Wall Thickness in Thick-Walled Cylinder Tests on Near Cavity Deformations for Wellbore Stability Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant