CN115266392A - 一种确定软岩内摩擦角的方法 - Google Patents

一种确定软岩内摩擦角的方法 Download PDF

Info

Publication number
CN115266392A
CN115266392A CN202210731352.9A CN202210731352A CN115266392A CN 115266392 A CN115266392 A CN 115266392A CN 202210731352 A CN202210731352 A CN 202210731352A CN 115266392 A CN115266392 A CN 115266392A
Authority
CN
China
Prior art keywords
soft rock
angle
internal friction
sample
fracture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210731352.9A
Other languages
English (en)
Inventor
闫楠
白晓宇
银吉超
张亚妹
许绍帅
杲晓东
唐建忠
张明义
傅健
李伟奇
王东
冯宏斌
于风波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Priority to CN202210731352.9A priority Critical patent/CN115266392A/zh
Publication of CN115266392A publication Critical patent/CN115266392A/zh
Priority to PCT/CN2023/097672 priority patent/WO2023246459A1/zh
Priority to GB2319807.0A priority patent/GB2624982A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0228Low temperature; Cooling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/023Pressure
    • G01N2203/0232High pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明属于岩土工程中软岩抗剪强度参数测试技术领域,涉及一种确定软岩内摩擦角的方法,先选取小直径岩芯管钻取原状软岩,再基于高压低温水合物三轴试验***对原状软岩开展三轴压缩试验,然后进行试样破裂面图像采集,并基于PicPick数字图像处理软件进行特征化处理,获取破裂角,最后根据破裂角与内摩擦角之间的关系式定断内摩擦角;其方法简单,操作方便,无需大量试验,不需读取试验数据及拟合过程,直接获取破裂角,精度更高。

Description

一种确定软岩内摩擦角的方法
技术领域:
本发明属于岩土工程中软岩抗剪强度参数测试技术领域,涉及一种确定软岩内摩擦角的方法。
背景技术:
抗剪强度是指岩土体抵抗外力剪切破坏的极限能力,是评价岩土体力学特性的一个重要指标。根据摩尔-库伦强度理论,抗剪强度可分为摩擦强度和黏聚强度,但是,软岩作为特殊的岩石,其细观结构与工程性质有别于土体及硬质岩体。软岩内部存在黏土矿物与孔隙缺陷,黏土矿物成分与孔隙缺陷对软岩中矿物颗粒骨架间的接触摩擦性质影响较大。骨架颗粒间的摩擦包括动摩擦与静摩擦,二者不是独立发生的,摩擦过程中动摩擦与静摩擦相继发生,这种复杂的摩擦性质宏观表现为摩擦强度,内摩擦角
Figure BDA0003713635690000011
是反映摩擦强度的指标参数。因此,如何合理准确的测得软岩的内摩擦角
Figure BDA0003713635690000012
是关键一环,准确测定内摩擦角
Figure BDA0003713635690000013
有助于分析软岩的强度特性,这是对软岩的理论分析、设计计算、工程应用,以及数值模拟等工作的重要支撑。
目前,获取岩体力学参数的方法有试验法、反演计算法、《工程岩体质量分级标准》法,以及工程类比法等。其中,试验法是获取岩体真实力学参数的主要方法,同时,试验法也是其它方法的基础。室内试验与现场试验相比具有操作简便、耗时短的优点。因此,开展常规三轴压缩试验,根据摩尔-库伦准则,通过莫尔圆包络线得到其抗剪强度参数,是测定内摩擦角
Figure BDA0003713635690000014
的常用渠径,但是根据摩尔-库伦准则处理三轴试验结果,计算内摩擦角
Figure BDA0003713635690000015
的过程也较为繁琐。针对此问题,现有技术CN201510435511.0公开了一种利用射钉测量岩石黏聚力c和内摩擦角
Figure BDA0003713635690000016
的方法,但是,建立射钉贯入量与抗剪强度参数的关系不仅需要开展大量三轴试验,而且软岩存在的不均匀性软弱夹层会影响射钉贯入量,CN201310145434.6公开了一种十字板原位测试获取土体抗剪强度参数的方法,但是这种方法适用于灵敏度高的黏性土,对于强度较高、硬度较大的软岩具有局限性。因此,亟需一种便捷科学的确定软岩内摩擦角
Figure BDA0003713635690000017
的方法。
发明内容:
针对现有技术存在的不足,本发明设计提供了一种便捷科学的确定软岩内摩擦角的方法,先选取小直径岩芯管钻取原状软岩,再基于高压低温水合物三轴试验***对原状软岩开展三轴压缩试验,然后进行试样破裂面图像采集,并基于PicPick数字图像处理软件进行特征化处理,获取破裂角,最后根据破裂角与内摩擦角之间的关系式定断内摩擦角。
为实现上述目的,本发明确定软岩内摩擦角的具体过程为:
(1)钻取原状软岩:选用直径75mm的小直径钻头和直径73mm的岩芯管钻取原状软岩,得到直径50mm的原状软岩,使其符合单轴抗压强度及三轴压缩试验直径的要求。
(2)试样处理:选用美术刻刀对原状软岩一点一点地削刻,并用锐齿钢丝锯条轻轻磨断,不断重复直至原状软岩高度满足标准试样尺寸,并将每一试样进行编号处理;
(3)开展三轴压缩试验:将试样表面套入橡皮膜后将装入高压低温水合物三轴试验***的压力室,开展原状软岩三轴压缩试验,其中同等围压等级做两次平行试验;
(4)破裂面图像采集:三轴压缩试验结束,取出破坏试样,将所有试样平整放置于工作台面,采用数字摄像机垂直于破裂面采集破裂面图像;
(5)特征化处理获取破裂角:采用PicPick数字图像软件处理试样的破裂面图像,将破裂面图像进行特征化处理,获取试样破坏面与大主应力作用面的破裂角αf
(6)计算内摩擦角:根据破裂角αf与内摩擦角
Figure BDA0003713635690000021
的关系式:
Figure BDA0003713635690000022
得到内摩擦角的计算公式:
Figure BDA0003713635690000023
根据式(2)得到软岩的内摩擦角
Figure BDA0003713635690000024
本发明所述高压低温水合物静三轴试验***产自英国GDS公司,型号为ETAS,最大围压32MPa,最大轴向力100kN。
本发明与现有技术相比,其方法简单,操作方便,无需大量试验,而且确定的内摩擦角准确度高,对于软岩而言,莫尔圆包络线测定内摩擦角的方法受制于三轴仪的精度及试验数据的影响,数据读取的误差及数据拟合的离散程度制约着内摩擦角的准确度,而不需读取试验数据及拟合过程,直接获取破裂角,精度更高。
附图说明:
图1为本发明所述的确定软岩内摩擦角的方法具体流程图。
图2为本发明实施例所述泥岩钻取过程图。
图3为本发明实施例所述部分泥岩试样。
图4为本发明实施例所述泥岩三轴压缩试验过程图。
图5为本发明实施例所述泥岩三轴试验应力应变曲线,其中(a)为第一组试样,(b)为第二组试样。
图6为本发明实施例所述试样破裂面采集图像,图中(a)-(h)依次为试样1-1-1、1-1-2、1-1-3、1-1-4、1-2-3、2-1-2、2-1-4、2-2-2、2-2-3。
图7为本发明实施例所述破裂角αf获取过程图,图中(a)-(h)依次为试样1-1-1、1-1-2、1-1-3、1-1-4、1-2-3、2-1-2、2-1-4、2-2-2、2-2-3。
具体实施方式:
下面通过具体实施例并结合附图对本发明作进一步说明。
实施例1:
本实施例确定内摩擦角的具体过程为:
(1)钻取原状泥岩:
由于泥岩极易扰动,制样存在崩解破坏的现象,为避免传统大直径岩芯制作试样带来的扰动,对内摩擦角计算造成误差,因此,选用勘察单位平时很少选用的小直径钻头(75mm),岩芯管直径73mm,取出的原状岩芯直径恰好为50mm,符合单轴抗压强度及三轴压缩试验直径的要求;
(2)试样处理:
考虑到用于普通岩石的截断磨制方法不适用于易扰动的软岩,同时,泥岩硬度较大,用于黏性土制样的削土刀、普通钢丝锯也不适用,因此,选用锋利的美术刻刀一点一点地削刻,用锐齿钢丝锯条轻轻磨断,不断重复直至原状岩芯高度满足标准试样尺寸,并将每一试样进行编号处理,本试验共分为两组,第一组:1-1-1、1-1-2、1-1-3、1-1-4、1-2-1、1-2-2、1-2-3、1-2-4;第二组:2-1-1、2-1-2、2-1-3、2-1-4、2-2-1、2-2-2、2-2-3、2-2-4;每组进行两次平行试验分别对应围压为0.5MPa、1.0MPa、1.5MPa、2.0MPa,结果取较理想的一次;
(3)开展三轴压缩试验:
由于普通岩石三轴仪压力等级较大,泥岩强度较小,未显示稳定读数就已经破坏,精度不足,因此,选用压力等级介于普通岩石三轴仪与土工三轴仪之间的高压低温水合物静三轴试验***,该仪器产自英国GDS公司,型号为ETAS,最大围压32MPa,最大轴向力100kN,在该***上能够进行标准三轴试验、应力路径试验和K0固结试验,满足本实施例的试验要求,同时为避免压力室加压介质液体油的侵入,在试样表面套入橡皮膜,随后将试样装入高压低温水合物三轴试验***压力室,开展原状泥岩三轴压缩试验,因泥岩均质性差,同等围压等级做两次平行试验,采用结果理想的一次,计算内摩擦角度试样最终选取第一组试样1-1-1、1-1-2、1-1-3、1-1-4、1-2-3与第二组试样2-1-2、2-1-4、2-2-2、2-2-3进行分析;
(4)破裂面图像采集:
三轴压缩试验结束,取出破坏试样,将第一组试样1-1-1、1-1-2、1-1-3、1-1-4、1-2-3与第二组试样2-1-2、2-1-4、2-2-2、2-2-3全部平整放置于工作台面,采用数字摄像机垂直于破裂面采集图像,试样破裂面采集图像如图6所示;
(5)特征化处理获取破裂角αf
采用PicPick数字图像软件处理试样破裂面图像,原理相当于量角器测量角度,将试样破裂面图像特征化处理,获取试样破坏的破裂角αf,处理过程如图7所示,结果见表1;
(6)计算内摩擦角
Figure BDA0003713635690000041
三轴压缩试验中试样破坏面与大主应力作用面的破裂角αf与的内摩擦角
Figure BDA0003713635690000042
的关系为:
Figure BDA0003713635690000043
根据上式得到内摩擦角的计算公式:
Figure BDA0003713635690000044
根据步骤(5)得到的试样破坏面与大主应力作用面的破裂角αf计算软岩内摩擦角
Figure BDA0003713635690000045
结果见表1。
表1:泥岩试样内摩擦角φ(单位:°)
Figure BDA0003713635690000046
Figure BDA0003713635690000051
确定内摩擦角方法计算得到泥岩的内摩擦角
Figure BDA0003713635690000052
为23.2°。
实施例2:
本实施例对实施例1的试样采用现有摩尔-库伦强度准则方法计算内摩擦角
Figure BDA0003713635690000053
在统计三轴试验结果,利用破坏主应力线和莫尔强度包线的几何关系,大主应力σ1、小主应力σ3、内摩擦角
Figure BDA0003713635690000054
三者之间的关系如式(3)所示,
Figure BDA0003713635690000055
根据三轴试验结果拟合大主应力σ1和小主应力σ3二者之间的关系,得到式(4)
σ1=a+bσ3 (4)
式中a、b分别为拟合直线的截距与斜率,推导可得式(5)、(6)
Figure BDA0003713635690000056
Figure BDA0003713635690000057
由式(6)计算上述两组泥岩三轴试验结果分别为:
第1组:
Figure BDA0003713635690000058
第2组:
Figure BDA0003713635690000059
平均值:
Figure BDA00037136356900000510
本实施例与实施例1计算方法测定的泥岩内摩擦角度
Figure BDA00037136356900000511
分别为21.6°和23.2°,二者相差仅6.9%。通过与摩尔-库伦强度准则方法对比验证,表明本实施例提出的确定软岩内摩擦角的方法科学可行。

Claims (1)

1.一种确定软岩内摩擦角的方法,其特征在于,具体过程为:
(1)钻取原状软岩:选用直径75mm的小直径钻头和直径73mm的岩芯管钻取原状软岩,得到直径50mm的原状软岩,使其符合单轴抗压强度及三轴压缩试验直径的要求。
(2)试样处理:选用美术刻刀对原状软岩削刻,并用锐齿钢丝锯条磨断,不断重复直至原状软岩高度满足标准试样尺寸,并将每一试样进行编号处理;
(3)开展三轴压缩试验:将试样表面套入橡皮膜后将装入高压低温水合物三轴试验***的压力室,开展原状软岩三轴压缩试验,其中同等围压等级做两次平行试验;
(4)破裂面图像采集:三轴压缩试验结束,取出破坏试样,将所有试样平整放置于工作台面,采用数字摄像机垂直于破裂面采集破裂面图像;
(5)特征化处理获取破裂角:采用PicPick数字图像软件处理试样的破裂面图像,将破裂面图像进行特征化处理,获取试样破坏面与大主应力作用面的破裂角αf
(6)计算内摩擦角:根据破裂角αf与内摩擦角
Figure FDA0003713635680000011
的关系式:
Figure FDA0003713635680000012
得到内摩擦角的计算公式:
Figure FDA0003713635680000013
根据式(2)得到软岩的内摩擦角
Figure FDA0003713635680000014
CN202210731352.9A 2022-06-24 2022-06-24 一种确定软岩内摩擦角的方法 Pending CN115266392A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210731352.9A CN115266392A (zh) 2022-06-24 2022-06-24 一种确定软岩内摩擦角的方法
PCT/CN2023/097672 WO2023246459A1 (zh) 2022-06-24 2023-06-01 一种确定软岩内摩擦角的方法
GB2319807.0A GB2624982A (en) 2022-06-24 2023-06-01 Method for determining angle of internal friction of soft rock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210731352.9A CN115266392A (zh) 2022-06-24 2022-06-24 一种确定软岩内摩擦角的方法

Publications (1)

Publication Number Publication Date
CN115266392A true CN115266392A (zh) 2022-11-01

Family

ID=83760737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210731352.9A Pending CN115266392A (zh) 2022-06-24 2022-06-24 一种确定软岩内摩擦角的方法

Country Status (3)

Country Link
CN (1) CN115266392A (zh)
GB (1) GB2624982A (zh)
WO (1) WO2023246459A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246459A1 (zh) * 2022-06-24 2023-12-28 青岛理工大学 一种确定软岩内摩擦角的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645383B (zh) * 2012-04-06 2014-12-03 中冶集团资源开发有限公司 利用三轴压缩测量岩石不连续剪切面抗剪强度的方法
CN109141960A (zh) * 2018-07-06 2019-01-04 绍兴文理学院 一种获取岩石参数的原位试验方法
EP3904867B9 (de) * 2020-04-29 2022-11-02 voestalpine Stahl GmbH Verfahren und vorrichtung zur bestimmung der bruchfläche einer probe
CN112014240B (zh) * 2020-09-01 2023-11-24 山东科技大学 一种基于原位表面单裂隙的岩体剪切参数评估方法
CN115266392A (zh) * 2022-06-24 2022-11-01 青岛理工大学 一种确定软岩内摩擦角的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246459A1 (zh) * 2022-06-24 2023-12-28 青岛理工大学 一种确定软岩内摩擦角的方法
GB2624982A (en) * 2022-06-24 2024-06-05 Univ Qingdao Technology Method for determining angle of internal friction of soft rock

Also Published As

Publication number Publication date
GB202319807D0 (en) 2024-02-07
WO2023246459A1 (zh) 2023-12-28
GB2624982A (en) 2024-06-05

Similar Documents

Publication Publication Date Title
WO2021022465A1 (zh) 一种基于数字图像技术的粗糙面裂隙生成方法及试验***
CN104777046B (zh) 基于小时间尺度的疲劳裂纹扩展机理测试方法
WO2023246459A1 (zh) 一种确定软岩内摩擦角的方法
CN105547831A (zh) 一种测定含复杂结构面岩体变形性质的模型试验方法
CN108710762B (zh) 煤层液态co2相变定向射孔致裂优势方向判断方法
CN107091623A (zh) 隧道围岩松动圈厚度计算方法
CN113138107B (zh) 基于随钻岩屑录井资料的岩石脆性评价方法
CN114202160A (zh) 一种岩石可钻性的模糊综合评价方法
Ye et al. Fracture properties characterization of shale rocks
CN113029746A (zh) 一种通过细/微观力学测试来确定页岩宏观模量的方法
Liu et al. Multiscale structural characterizations of anisotropic natural granite residual soil
Nath et al. Laboratory Investigation of Dynamic Strain Development in Sandstone and Carbonate Rocks Under Diametrical Compression Using Digital-Image Correlation
Yang et al. Quantifying the impact of 2D and 3D fractures on permeability in wellbore cement after uniaxial compressive loading
Boutrid et al. Strength hardness rock testing
Zhang et al. Particle strength of calcareous sand in nansha islands, south China sea
CN105371996A (zh) 一种金属材料压力加工产生的残余应力的测量方法
CN106679871A (zh) 一种利用内摩擦角获得岩石单轴声发射条件下真实地应力值的方法
CN116429595A (zh) 重构裂隙剪切渗流的蠕变与疲劳等效试验与分析方法
CN104675396B (zh) 一种层状硬脆性泥页岩水化特性的评价装置
Boutrid et al. Investigation into Brinell hardness test applied to rocks
CN116106139A (zh) 一种温差条件下天然裂缝剪切强度的测量方法
Huayan et al. EXPERIMENTAL INVESTIGATION ON THE POINT LOAD STRENGTH OF RED-BED SILTSTONE WITH DIFFERENT SHAPES.
Martin et al. Core analysis workflow for evaluation of geomechanical heterogeneity and anisotropy in an Oligocene shale from the Gulf of Mexico
CN113281148A (zh) 一种岩石蠕变破坏微裂纹贯通阶段起始时间辨识方法
CN106153460B (zh) 一种利用钻屑测试岩石杨氏模量的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination