CN115265592A - 一种光纤陀螺磁温交联耦合误差的在线补偿方法 - Google Patents

一种光纤陀螺磁温交联耦合误差的在线补偿方法 Download PDF

Info

Publication number
CN115265592A
CN115265592A CN202210843070.8A CN202210843070A CN115265592A CN 115265592 A CN115265592 A CN 115265592A CN 202210843070 A CN202210843070 A CN 202210843070A CN 115265592 A CN115265592 A CN 115265592A
Authority
CN
China
Prior art keywords
fiber
optic gyroscope
inertial navigation
error
navigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210843070.8A
Other languages
English (en)
Other versions
CN115265592B (zh
Inventor
蔡庆中
涂勇强
杨功流
李晶
尹洪亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202210843070.8A priority Critical patent/CN115265592B/zh
Publication of CN115265592A publication Critical patent/CN115265592A/zh
Application granted granted Critical
Publication of CN115265592B publication Critical patent/CN115265592B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/721Details

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Gyroscopes (AREA)

Abstract

本发明公开了一种光纤陀螺磁温交联耦合误差的在线补偿方法,步骤为:S1、通过导航解算获得实时惯性导航解算结果;S2、在光纤陀螺内的X向、Y向和Z向的光纤陀螺上分别设置温度传感器和磁传感器,以实时采集各向光纤陀螺的温度和磁场强度;S3、判断配制的GPS的信号是否有效;若GPS有效则执行S4、将GPS输出与光纤陀螺惯导的输出进行组合导航和S5、基于集成学习算法训练光纤陀螺磁温交联耦合误差模型;若GPS无效则执行S6、利用步骤S5构建的模型预测各向光纤陀螺磁温交联耦合零偏误差和S7、将零偏预测值补偿至陀螺输出并代入惯导解算方程中,得到经过补偿的导航结果;该方法通过在线完成补偿,且误差抑制和补偿效果好,纬度精度提高14.4%,经度精度提高10.5%。

Description

一种光纤陀螺磁温交联耦合误差的在线补偿方法
技术领域
本发明涉及光纤陀螺惯导误差抑制技术领域,特别涉及一种光纤陀螺磁温交联耦合误差的在线补偿方法。
背景技术
光纤陀螺惯导/GPS组合导航***由光纤陀螺惯导和GPS组成,利用卡尔曼滤波器对二者的导航信息进行组合导航以提高***的导航精度。在复杂地形、障碍物遮挡等情况导致GPS信号无效时,光纤陀螺惯导/GPS组合导航***的导航精度由光纤陀螺惯导的导航精度决定,但外界环境的磁场、温度场严重降低了光纤陀螺的使用精度,限制了光纤陀螺惯导的导航精度。
为了解决上述问题,现有技术分别对磁场、温度场对光纤陀螺的影响进行单独补偿,例如,授权发明专利CN108775898B公开了一种抑制光纤陀螺磁场敏感度的光纤环及其制备方法用于单独抑制磁场对光纤陀螺的影响,授权发明专利CN111238462B提供了一种基于深度嵌入聚类的LSTM光纤陀螺温补建模方法用于单独补偿温度场对光纤陀螺的影响。在单独补偿了磁场和温度场对光纤陀螺的影响后,在实际使用中,光纤陀螺在温度场和磁场共同作用下仍出现零偏误差,并最终导致光纤陀螺惯导导航精度下降。磁场和温度场对光纤陀螺的影响被称为光纤陀螺磁温交联耦合误差,为了抑制该误差以提高光纤陀螺惯导的导航精度,授权发明专利CN110146109B提供了一种光纤陀螺磁温交联耦合误差的二维补偿方法,发明专利CN113865576A公开了一种基于插值的光纤陀螺磁温交联耦合误差补偿方法,发明专利CN113865577A公开了一种光纤陀螺磁温交联耦合误差的分段补偿方法。
然而,上述现有技术存在着以下这些问题:1)采用简单的多项式拟合方法构建磁温交联耦合误差模型,但实际的磁温交联耦合误差模型极其复杂,用多项式拟合方法建模精度低;2)在实验室环境进行补偿,但实际的磁温交联耦合误差受环境影响极大,单独利用实验室环境的补偿结果补偿效果差;3)只针对单个光纤陀螺进行补偿,未对导航结果进行补偿,特别是未利用GPS的信息进行辅助,误差抑制效果差。
发明内容
本发明的目的是提供一种解决上述用于光纤陀螺磁温交联耦合误差补偿的现有技术存在的问题的光纤陀螺磁温交联耦合误差的在线补偿方法。
为此,本发明技术方案如下:
一种光纤陀螺磁温交联耦合误差的在线补偿方法,步骤如下:
S1、采用适合于计算机解算的离散化递推算法,对光纤陀螺惯导中光纤陀螺和加速度计的输出进行惯性导航解算,以获得实时即k时刻的惯性导航解算结果:αk、βk、γk
Figure BDA0003751149200000021
Lk、λk和hk
S2、在光纤陀螺内的X向光纤陀螺、Y向光纤陀螺和Z向光纤陀螺上分别固定有温度传感器和磁传感器,以实时采集X向光纤陀螺的温度TX和磁场强度MX,Y向光纤陀螺的温度TY和磁场强度MY,以及Z向光纤陀螺的温度TZ和磁场强度MZ
S3、判断光纤陀螺自带GPS或后配置GPS的信号是否有效:
情况1:当正常接收GPS信号且接收到的GPS信号显示星数≥6颗,则判断为GPS有效,执行步骤S4~步骤S5,并输出补偿后的导航结果;
情况2:当无法接收GPS信号、或正常接收GPS信号但GPS信号显示星数<6颗,则判断为GPS失效,执行步骤S6~步骤S7,并输出补偿后的导航结果;
S4、将GPS输出与光纤陀螺惯导的输出进行组合导航;其中,
S401、根据惯导解算的误差方程,构建组合导航的卡尔曼滤波器的状态方程:
Figure BDA0003751149200000031
式中,X15为组合导航卡尔曼滤波器的十五维状态量,
Figure BDA0003751149200000032
其中,
Figure BDA0003751149200000033
为光纤陀螺惯导的东向误差角,
Figure BDA0003751149200000034
为光纤陀螺惯导的北向误差角,
Figure BDA0003751149200000035
为光纤陀螺惯导的天向误差角,δVE为光纤陀螺惯导的东向速度误差,δVN为光纤陀螺惯导的北向速度误差,δVU为光纤陀螺惯导的天向速度误差,δL为光纤陀螺惯导的纬度误差,δλ为光纤陀螺惯导的经度误差、δh为光纤陀螺惯导的高度误差、εx为光纤陀螺惯导的X向光纤陀螺零偏误差、εy为光纤陀螺惯导的Y向光纤陀螺零偏误差、εz为光纤陀螺惯导的Z向陀螺零偏误差、
Figure BDA0003751149200000036
为光纤陀螺惯导的X向加速度计零偏误差、
Figure BDA0003751149200000037
为光纤陀螺惯导的Y向加速度计零偏误差、
Figure BDA0003751149200000038
为光纤陀螺惯导的Z向加速度计零偏误差;
F15为状态转移矩阵,其表达式为:
Figure BDA0003751149200000039
Figure BDA00037511492000000310
Figure BDA00037511492000000311
Figure BDA0003751149200000041
Figure BDA0003751149200000042
Figure BDA0003751149200000043
其中,L为纬度,λ为经度,h为高度;VE、VN和VU分别为光纤陀螺惯导的东向速度、北向速度和天向速度;RM和RN分别为当地地球子午圈半径和卯酉圈半径;ωie为地球自转角速率;
Figure BDA0003751149200000044
Figure BDA0003751149200000045
分别为光纤陀螺惯导中加速度计测量的东向比力、北向比力和天向比力;
Figure BDA0003751149200000046
为陆用捷联惯导的姿态矩阵;
G15为测量噪声输入矩阵,
Figure BDA0003751149200000047
u为测量噪声,
Figure BDA0003751149200000048
其中,ug为光纤陀螺的测量噪声,ug=[ugx ugy ugz]T,ugx为X向光纤陀螺的测量噪声,ugy为Y向光纤陀螺的测量噪声,ugz为Z向光纤陀螺的测量噪声;ua为加速度计的测量噪声,ua=[uax uay uaz]T,uax为X向加速度计的测量噪声、uay为Y向加速度计的测量噪声,uaz为Z向加速度计的测量噪声;
S402、构建组合导航的卡尔曼滤波器的测量方程:Z=HX15+υ,
式中,Z为观测向量,Z=[VE-VGE,VN-VGN,VU-VGU,L-LG,λ-λG,h-hG]T,其中,VE、VN和VU分别为光纤陀螺惯导的东向速度、北向速度和天向速度;VGE、VGN、VGU为GPS信号中的东向速度、北向速度和天向速度;L、λ和h分别为光纤惯导输出的纬度、经度和高度;LG、λG和hG分别为GPS信号中的纬度、经度和高度;H为观测矩阵,
Figure BDA0003751149200000051
I3为三行三列的单位矩阵,
Figure BDA0003751149200000052
03×3为三行三列的零矩阵,03×6为三行六列的零矩阵;υ为观测噪声;
S403、利用卡尔曼滤波算法对步骤S401构建的状态方程和步骤S402构建的观测方程进行解算,以获得实时的十五维组合导航卡尔曼滤波器中的状态量X15
S404、在步骤S1得到的惯性导航解算结果,即αk、βk、γk
Figure BDA0003751149200000053
Lk、λk和hk中分别减去实时的十五维组合导航卡尔曼滤波器中的九个导航结果误差的相应状态量,即
Figure BDA0003751149200000054
δVE、δVN、δVU、δL、δλ、δh,以通过导航误差补偿获得组合导航的导航结果,即αk'、βk'、γk'、Vk'、Lk'、λk'和hk';
S5、基于集成学习算法构建光纤陀螺磁温交联耦合误差模型,并以步骤S2采集的三个光纤陀螺的温度和磁场强度为输入数据,以步骤S4得到的组合导航估计的陀螺零偏为输出数据,通过训练分别获得X向光纤陀螺零偏误差与其温度、磁场强度的预测模型,Y向光纤陀螺零偏误差与其温度、磁场强度的预测模型,以及Z向光纤陀螺零偏误差与其温度、磁场强度的预测模型;
S6、将步骤S2采集的三个光纤陀螺的温度和磁场强度,分别代入X向光纤陀螺零偏误差与其温度、磁场强度的预测模型,Y向光纤陀螺零偏误差与其温度、磁场强度的预测模型,以及Z向光纤陀螺零偏误差与其温度、磁场强度的预测模型中,以分别获得光纤陀螺磁温交联耦合误差导致的X向光纤陀螺零偏误差ε′x,Y向光纤陀螺零偏误差ε′y和Z向光纤陀螺零偏误差ε′z
S7、利用步骤S6得到的零偏预测值ε′=[ε′x ε′y ε′z]T,将步骤S1的解算方程中的
Figure BDA0003751149200000061
补偿为
Figure BDA0003751149200000062
再将
Figure BDA0003751149200000063
代入惯导解算方程中,得到经过补偿的导航结果,包括:αk'、βk'、γk'、Vk'、Lk'、λk'和hk'。
进一步地,在步骤S1中,惯性导航解算的解算公式为:
Figure BDA0003751149200000064
Figure BDA0003751149200000065
Lk=Lk-1+TsVNk-1/(RM+hk-1),
λk=λk-1+TsVEk-1secLk-1/(RN+hk-1),
hk=hk-1+TsVUk-1
式中,
Figure BDA0003751149200000066
Figure BDA0003751149200000067
gn=[0 0 -g]T
Figure BDA0003751149200000068
Figure BDA0003751149200000069
其中,Ts为原始数据的实时采样周期;k为离散化的时刻;每个在右下角带k的符号的物理量表示为k时刻的该物理量的状态值,每个在右下角带k-1的符号表示为k-1时刻的该物理状态值;
Figure BDA00037511492000000610
V,L,λ,h为惯性导航解算结果,
Figure BDA00037511492000000611
为光纤陀螺惯导的姿态矩阵;V为光纤陀螺惯导在导航坐标系下的速度向量,V为光纤陀螺惯导在导航坐标系下的速度向量,V=[VE VN VU]T,VE、VN和VU分别为光纤陀螺惯导的东向速度、北向速度和天向速度;L、λ和h分别为光纤陀螺惯导在地球表面的纬度、经度和高度;
Figure BDA00037511492000000612
和fm为原始数据,
Figure BDA00037511492000000613
为光纤陀螺惯导中陀螺仪组件测量的角速率原始数据,fm为光纤陀螺惯导中加速度计组件测量的比力原始数据;ωie和g分别为地球自转角速度和重力加速度;RM和RN分别为当地地球的子午圈半径和卯酉圈半径;
进而,根据
Figure BDA00037511492000000614
获得导航结果中的三个姿态角:纵摇角α=acrsin(C23),横滚角
Figure BDA0003751149200000071
航向角
Figure BDA0003751149200000072
进一步地,在步骤S2中,温度传感器优选采用型号为DS18B20的数字温度传感器;磁传感器优选采用型号为AH810的可编辑霍尔效应线性传感器。
进一步地,在步骤S5中,基于集成学习算法构建光纤陀螺磁温交联耦合误差模型中,个体学习器采用决策树算法学习器,学习器结合算法Bagging算法。
与现有技术相比,该光纤陀螺磁温交联耦合误差的在线补偿方法的有益效果在于:
1)本申请采用了集成学习算法构建磁温交联耦合误差模型,建模精度高;同时采用GPS信号有效情况下实时采集的温度、磁场强度与GPS有效时组合导航卡尔曼滤波器实时估计的陀螺零偏为数据对模型进行训练,提升误差抑制效果,而在GPS信号无效情况下直接利用模型对陀螺零偏进行预测以完成补偿,充分考虑到了环境对磁热交联耦合误差的影响,补偿效果好;该方法不仅能同步对三个光纤陀螺进行补偿,且能够对导航结果也进行补偿,且补偿过程中不需要实验室标定过程,而是在导航过程中实现在线完成补偿,过程简便;
2)在动态试验中,采用本申请的方法对某光纤陀螺惯导进行磁热交联耦合误差补偿的结果与未补偿情况相比,最大纬度误差从0.97Km减少到0.83Km,纬度精度提高14.4%,最大经度误差从0.76Km减少到0.68Km,经度精度提高10.5%,证明了本方法提供的光纤陀螺磁温交联耦合误差的在线补偿方法的正确性和准确性,具有很好的实用性。
附图说明
图1为本发明的光纤陀螺磁温交联耦合误差的在线补偿方法的流程示意图;
图2为本发明的实施例中光纤陀螺惯导利用本发明方法在动态试验中补偿前和补偿后的纬度误差的示意图;
图3为本发明的实施例中光纤陀螺惯导利用本发明方法在动态试验中补偿前和补偿后的经度误差的示意图。
具体实施方式
下面结合附图及具体实施例对本发明做进一步的说明,但下述实施例绝非对本发明有任何限制。
如图1所示,该光纤陀螺磁温交联耦合误差的在线补偿方法的具体步骤如下:
S1、光纤陀螺惯导进行惯性导航解算;
采用适合于计算机解算的离散化递推算法,对光纤陀螺惯导中光纤陀螺和加速度计的输出进行惯性导航解算,其具体解算公式为:
Figure BDA0003751149200000081
Figure BDA0003751149200000082
Lk=Lk-1+TsVNk-1/(RM+hk-1),
λk=λk-1+TsVEk-1secLk-1/(RN+hk-1),
hk=hk-1+TsVUk-1
式中,
Figure BDA0003751149200000083
Figure BDA0003751149200000084
gn=[0 0 -g]T
Figure BDA0003751149200000085
Figure BDA0003751149200000086
其中,Ts为原始数据的实时采样周期;k为离散化的时刻;每个在右下角带k的符号的物理量表示为k时刻的该物理量的状态值,每个在右下角带k-1的符号表示为k-1时刻的该物理状态值;
Figure BDA0003751149200000087
V,L,λ,h为惯性导航解算结果,
Figure BDA0003751149200000088
为光纤陀螺惯导的姿态矩阵;V为光纤陀螺惯导在导航坐标系下的速度向量,V为光纤陀螺惯导在导航坐标系下的速度向量,V=[VE VN VU]T,VE、VN和VU分别为光纤陀螺惯导的东向速度、北向速度和天向速度;L、λ和h分别为光纤陀螺惯导在地球表面的纬度、经度和高度;
Figure BDA0003751149200000091
和fm为原始数据,
Figure BDA0003751149200000092
为光纤陀螺惯导中陀螺仪组件测量的角速率原始数据,fm为光纤陀螺惯导中加速度计组件测量的比力原始数据;ωie和g分别为地球自转角速度和重力加速度;RM和RN分别为当地地球的子午圈半径和卯酉圈半径;
其中,惯性导航解算结果在k=0时的初值由光纤陀螺惯导的初始对准过程得到;当k≥1时,由光纤陀螺惯导在k时刻输出的实时原始数据
Figure BDA0003751149200000093
Figure BDA0003751149200000094
进行惯性导航解算获得k时刻惯性导航解算结果
Figure BDA0003751149200000095
Vk、Lk、λk和hk
进一步地,根据
Figure BDA0003751149200000096
进而可从
Figure BDA0003751149200000097
获得导航结果中的三个姿态角:α=acrsin(C23),
Figure BDA0003751149200000098
其中,C11
Figure BDA0003751149200000099
的第一行第一列元素,C12
Figure BDA00037511492000000910
的第一行第二列元素,C13
Figure BDA00037511492000000911
的第一行第三列元素,C21
Figure BDA00037511492000000912
的第二行第一列元素,C22
Figure BDA00037511492000000913
的第二行第二列元素,C23
Figure BDA00037511492000000914
的第二行第三列元素,C31
Figure BDA00037511492000000915
的第三行第一列元素,C32
Figure BDA00037511492000000916
的第三行第二列元素,C33
Figure BDA00037511492000000917
的第三行第三列元素;α为纵摇角,β为横滚角,γ为航向角;符号acrsin(·)代表反正弦计算,符号arctan(·)代表反正切计算;因此,可由k时刻的
Figure BDA00037511492000000918
获得k时刻的αk、βk和γk
S2、在光纤陀螺内的X向光纤陀螺、Y向光纤陀螺和Z向光纤陀螺上分别固定有温度传感器和磁传感器,以实时采集X向光纤陀螺的温度TX和磁场强度MX,Y向光纤陀螺的温度TY和磁场强度MY,以及Z向光纤陀螺的温度TZ和磁场强度MZ;其中,温度传感器优选采用型号为DS18B20的数字温度传感器;磁传感器优选采用型号为AH810的可编辑霍尔效应线性传感器;
S3、判断光纤陀螺自带GPS或后配置GPS的信号是否有效:
情况1:当正常接收GPS信号且接收到的GPS信号显示星数≥6颗,则判断为GPS有效;该情况下执行步骤S4~步骤S5,并输出补偿后的导航结果;
情况2:当无法接收GPS信号、或正常接收GPS信号但GPS信号显示星数<6颗,则判断为GPS失效;该情况下执行步骤S6~步骤S7,并输出补偿后的导航结果;
S4、将GPS输出与光纤陀螺惯导的输出进行组合导航,其具体步骤为:
S401、根据惯导解算的误差方程,构建组合导航的卡尔曼滤波器的状态方程,其表达式为:
Figure BDA0003751149200000101
式中,X15为组合导航卡尔曼滤波器的十五维状态量,其表达式为:
Figure BDA0003751149200000102
其中,
Figure BDA0003751149200000103
为光纤陀螺惯导的东向误差角,
Figure BDA0003751149200000104
为光纤陀螺惯导的北向误差角,
Figure BDA0003751149200000105
为光纤陀螺惯导的天向误差角,δVE为光纤陀螺惯导的东向速度误差,δVN为光纤陀螺惯导的北向速度误差,δVU为光纤陀螺惯导的天向速度误差,δL为光纤陀螺惯导的纬度误差,δλ为光纤陀螺惯导的经度误差、δh为光纤陀螺惯导的高度误差、εx为光纤陀螺惯导的X向光纤陀螺零偏误差、εy为光纤陀螺惯导的Y向光纤陀螺零偏误差、εz为光纤陀螺惯导的Z向陀螺零偏误差、
Figure BDA0003751149200000106
为光纤陀螺惯导的X向加速度计零偏误差、
Figure BDA0003751149200000107
为光纤陀螺惯导的Y向加速度计零偏误差、
Figure BDA0003751149200000108
为光纤陀螺惯导的Z向加速度计零偏误差;
F15为状态转移矩阵,其表达式为:
Figure BDA0003751149200000109
其中,F11、F12、F13、F21、F22、F13、F32、F33为非零矩阵元素,
Figure BDA0003751149200000111
Figure BDA0003751149200000112
Figure BDA0003751149200000113
Figure BDA0003751149200000114
Figure BDA0003751149200000115
其中,L为纬度,λ为经度,h为高度;VE、VN和VU分别为光纤陀螺惯导的东向速度、北向速度和天向速度;RM和RN分别为当地地球子午圈半径和卯酉圈半径;ωie为地球自转角速率;
Figure BDA0003751149200000116
Figure BDA0003751149200000117
分别为光纤陀螺惯导中加速度计测量的东向比力、北向比力和天向比力;
Figure BDA0003751149200000121
为陆用捷联惯导的姿态矩阵;
G15为测量噪声输入矩阵,其表达式为:
Figure BDA0003751149200000122
u为测量噪声,其表达式为:
Figure BDA0003751149200000123
其中,ug为光纤陀螺的测量噪声,ug=[ugx ugy ugz]T,ugx为X向光纤陀螺的测量噪声,ugy为Y向光纤陀螺的测量噪声,ugz为Z向光纤陀螺的测量噪声;ua为加速度计的测量噪声,ua=[uax uay uaz]T,uax为X向加速度计的测量噪声、uay为Y向加速度计的测量噪声,uaz为Z向加速度计的测量噪声;
S402、构建组合导航的卡尔曼滤波器的测量方程,其表达式为:
Z=HX15+υ,
式中,Z为观测向量,Z=[VE-VGE,VN-VGN,VU-VGU,L-LG,λ-λG,h-hG]T,其中,VE、VN和VU分别为光纤陀螺惯导的东向速度、北向速度和天向速度;VGE、VGN、VGU为GPS信号中的东向速度、北向速度和天向速度;L、λ和h分别为光纤惯导输出的纬度、经度和高度;LG、λG和hG分别为GPS信号中的纬度、经度和高度;H为观测矩阵,其表达式为:
Figure BDA0003751149200000124
I3为三行三列的单位矩阵,
Figure BDA0003751149200000125
03×3为三行三列的零矩阵,03×6为三行六列的零矩阵;υ为观测噪声;
S403、利用卡尔曼滤波算法实时对步骤S401构建的状态方程和步骤S402构建的观测方程进行解算,以获得实时的十五维组合导航卡尔曼滤波器中的状态量X15
S404、在步骤S1得到的惯性导航解算结果,即αk、βk、γk
Figure BDA0003751149200000126
Lk、λk和hk这九个导航结果中,分别减去实时的十五维组合导航卡尔曼滤波器中的九个导航结果误差的相应状态量:
Figure BDA0003751149200000127
δVE、δVN、δVU、δL、δλ、δh以进行导航误差补偿,进而获得组合导航的导航结果:αk'、βk'、γk'、Vk'、Lk'、λk'和hk';具体地,
Figure BDA0003751149200000131
Figure BDA0003751149200000132
Figure BDA0003751149200000133
Figure BDA0003751149200000134
Lk'=Lk-δL,
λk'=λk-δλ,
hk'=hk-δh;
该步骤S404的组合导航的导航结果即为在GPS有效的情况下进行补偿后的导航结果;
S5、构建光纤陀螺磁温交联耦合误差模型,并以步骤S2采集的三个光纤陀螺的温度和磁场强度为输入数据,以步骤S4得到的组合导航估计的陀螺零偏为输出数据,对模型进行训练;
具体地,步骤S5的具体实施方式为:
S501、基于集成学习算法构建光纤陀螺磁温交联耦合误差模型,其中,个体学习器采用决策树算法学习器,学习器结合算法Bagging算法;
S502、对模型进行训练:
1)对X向光纤陀螺:以步骤S2采集的X向光纤陀螺的温度TX和磁场强度MX为输入数据,以步骤S403获得的十五维组合导航卡尔曼滤波器中的状态量中的X向光纤陀螺的零偏误差估计值εx为输出数据,进而利用集成学习算法训练输入输出数据获得X向光纤陀螺零偏误差与其温度、磁场强度的预测模型;
2)对Y向光纤陀螺:以步骤S2采集的Y向光纤陀螺的温度TY和磁场强度MY为输入数据,以步骤S403获得的十五维组合导航卡尔曼滤波器中的状态量中的Y向光纤陀螺的零偏误差估计值εy为输出数据,进而利用集成学习算法训练输入输出数据获得Y向光纤陀螺零偏误差与其温度、磁场强度的预测模型;
3)对Z向光纤陀螺:以步骤S2采集的Z向光纤陀螺的温度TZ和磁场强度MZ为输入数据,以步骤S403获得的十五维组合导航卡尔曼滤波器中的状态量中的Z向光纤陀螺的零偏误差估计值εz为输出数据,进而利用集成学习算法训练输入输出数据获得Z向光纤陀螺零偏误差与其温度、磁场强度的预测模型;
经过该步骤S5,即可在GPS信号有效的情况下不断对光纤陀螺磁温交联耦合误差模型进行训练,以进而在GPS信号无效的情况下直接利用训练好的光纤陀螺磁温交联耦合误差模型,对光纤陀螺磁温交联耦合误差导致的零偏进行准确预测;
S6、将步骤S2采集的三个光纤陀螺的温度和磁场强度,代入至在光纤陀螺磁温交联耦合误差模型中,以获得光纤陀螺磁温交联耦合误差导致的零偏预测值;具体地,
对X向光纤陀螺:以步骤S2采集的X向光纤陀螺的温度TX和磁场强度MX为输入数据,代入步骤S5获得的X向光纤陀螺零偏误差与其温度、磁场强度的预测模型,获得在GPS无效时预测的磁热耦合导致的X向光纤陀螺零偏误差ε′x
对Y向光纤陀螺:以步骤S2采集的Y向光纤陀螺的温度TY和磁场强度MY为输入数据,代入步骤S5获得的Y向光纤陀螺零偏误差与其温度、磁场强度的预测模型,获得在GPS无效时预测的磁热耦合导致的Y向光纤陀螺零偏误差ε′y
对Z向光纤陀螺:以步骤S2采集的Z向光纤陀螺的温度TZ和磁场强度MZ为输入数据,代入步骤S5获得的Z向光纤陀螺零偏误差与其温度、磁场强度的预测模型,获得在GPS无效时预测的磁热耦合导致的Z向光纤陀螺零偏误差ε′z
S7、利用由步骤S6得到的光纤陀螺磁温交联耦合误差导致的零偏预测值,对步骤S1解算得到的导航结果进行补偿,以获得补偿后的导航结果;
具体地,记陀螺零偏补偿向量为ε′=[ε′x ε′y ε′z]T,其中,ε′x为步骤S6预测的X向光纤陀螺零偏误差,ε′y为步骤S6预测的Y向光纤陀螺零偏误差,ε′z为步骤S6预测的Z向光纤陀螺零偏误差;
将步骤S1中的惯性导航解算方程中的
Figure BDA0003751149200000151
补偿为
Figure BDA0003751149200000152
其计算公式为:
Figure BDA0003751149200000153
式中,
Figure BDA0003751149200000154
为补偿前的光纤陀螺测量的角速率向量,
Figure BDA0003751149200000155
为补偿后的光纤陀螺测量的角速率向量;该补偿过程中,步骤S1中的惯性导航解算方程中的其他物理量不变;
进而将
Figure BDA0003751149200000156
代入惯导解算方程中,得到GPS无效的情况下经过光纤陀螺磁温交联耦合误差补偿的导航结果,包括:αk'、βk'、γk'、Vk'、Lk'、λk'和hk'。
为验证本发明提出的光纤陀螺磁温交联耦合误差的在线补偿方法的正确性和准确性,选用一套陆光纤陀螺进行车载试验。具体地,在试验车上安装选用的光纤陀螺惯导以及一套GPS;光纤陀螺惯导具体由三个零偏稳定性为0.003°/h的光纤陀螺仪和三个零偏稳定性为10μg的加速度计组成;同时,在光纤陀螺内的X向光纤陀螺、Y向光纤陀螺和Z向光纤陀螺上分别固定有温度传感器和磁传感器,温度传感器具体采用型号为DS18B20的数字温度传感器;磁传感器具体采用型号为AH810的可编辑霍尔效应线性传感器。
车载试验方法设计为:在光纤陀螺惯导对准完成后开车进行动态试验,动态试验总时间为12.5小时,利用本申请的方法对磁温交联耦合误差进行补偿得到补偿后的导航结果,利用GPS信息为基准获得磁温交联耦合误差补偿后的光纤陀螺惯导的纬度误差和经度误差;试验过程中保持好试验数据。在试验结束后,作为对比参照,首先,用未采用本申请方法的惯性导航解算计算导航结果并同样利用GPS信息为基准得到的未补偿的光纤陀螺惯导的纬度误差和经度误差;然后,在利用本申请的方法对上述试验过程中保存的数据进行磁热交联耦合误差补偿后,计算得到经过补偿的光纤陀螺惯导的纬度误差和经度误差。
如图2所示为该实施例中光纤陀螺惯导利用本申请的方法在动态试验中补偿前和补偿后的纬度误差的示意图;如图3所示为该实施例中光纤陀螺惯导利用本申请的方法在动态试验中补偿前和补偿后的经度误差的示意图;对比图2和图3可以明显看出,利用本申请的方法对某光纤陀螺惯导进行磁热交联耦合误差补偿,最大纬度误差从0.97Km减少到0.83Km,纬度精度提高14.4%,最大经度误差从0.76Km减少到0.68Km,经度精度提高10.5%;可见,采用本申请的方法实现光纤陀螺磁温交联耦合误差的在线补偿方法具有一定的正确性和准确性,且该在线补偿方式简单、易操作,实用性佳。
本发明未详细公开的部分属于本领域的公知技术。尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化时显而易见的,一切利用本发明构思的发明创造均为保护之列。

Claims (4)

1.一种光纤陀螺磁温交联耦合误差的在线补偿方法,其特征在于,步骤如下:
S1、采用适合于计算机解算的离散化递推算法,对光纤陀螺惯导中光纤陀螺和加速度计的输出进行惯性导航解算,以获得实时即k时刻的惯性导航解算结果:αk、βk、γk
Figure FDA0003751149190000011
Lk、λk和hk
S2、在光纤陀螺内的X向光纤陀螺、Y向光纤陀螺和Z向光纤陀螺上分别固定有温度传感器和磁传感器,以实时采集X向光纤陀螺的温度TX和磁场强度MX,Y向光纤陀螺的温度TY和磁场强度MY,以及Z向光纤陀螺的温度TZ和磁场强度MZ
S3、判断光纤陀螺自带GPS或后配置GPS的信号是否有效:
情况1:当正常接收GPS信号且接收到的GPS信号显示星数≥6颗,则判断为GPS有效,执行步骤S4~步骤S5,并输出补偿后的导航结果;
情况2:当无法接收GPS信号、或正常接收GPS信号但GPS信号显示星数<6颗,则判断为GPS失效,执行步骤S6~步骤S7,并输出补偿后的导航结果;
S4、将GPS输出与光纤陀螺惯导的输出进行组合导航;其中,
S401、根据惯导解算的误差方程,构建组合导航的卡尔曼滤波器的状态方程:
Figure FDA0003751149190000012
式中,X15为组合导航卡尔曼滤波器的十五维状态量,
Figure FDA0003751149190000013
其中,
Figure FDA0003751149190000014
为光纤陀螺惯导的东向误差角,
Figure FDA0003751149190000015
为光纤陀螺惯导的北向误差角,
Figure FDA0003751149190000016
为光纤陀螺惯导的天向误差角,δVE为光纤陀螺惯导的东向速度误差,δVN为光纤陀螺惯导的北向速度误差,δVU为光纤陀螺惯导的天向速度误差,δL为光纤陀螺惯导的纬度误差,δλ为光纤陀螺惯导的经度误差、δh为光纤陀螺惯导的高度误差、εx为光纤陀螺惯导的X向光纤陀螺零偏误差、εy为光纤陀螺惯导的Y向光纤陀螺零偏误差、εz为光纤陀螺惯导的Z向陀螺零偏误差、
Figure FDA0003751149190000017
为光纤陀螺惯导的X向加速度计零偏误差、
Figure FDA0003751149190000018
为光纤陀螺惯导的Y向加速度计零偏误差、
Figure FDA0003751149190000019
为光纤陀螺惯导的Z向加速度计零偏误差;
F15为状态转移矩阵,其表达式为:
Figure FDA0003751149190000021
Figure FDA0003751149190000022
Figure FDA0003751149190000023
Figure FDA0003751149190000024
Figure FDA0003751149190000025
Figure FDA0003751149190000026
其中,L为纬度,λ为经度,h为高度;VE、VN和VU分别为光纤陀螺惯导的东向速度、北向速度和天向速度;RM和RN分别为当地地球子午圈半径和卯酉圈半径;ωie为地球自转角速率;
Figure FDA0003751149190000031
Figure FDA0003751149190000032
分别为光纤陀螺惯导中加速度计测量的东向比力、北向比力和天向比力;
Figure FDA0003751149190000033
为陆用捷联惯导的姿态矩阵;
G15为测量噪声输入矩阵,
Figure FDA0003751149190000034
u为测量噪声,
Figure FDA0003751149190000035
其中,ug为光纤陀螺的测量噪声,ug=[ugx ugy ugz]T,ugx为X向光纤陀螺的测量噪声,ugy为Y向光纤陀螺的测量噪声,ugz为Z向光纤陀螺的测量噪声;ua为加速度计的测量噪声,ua=[uax uay uaz]T,uax为X向加速度计的测量噪声、uay为Y向加速度计的测量噪声,uaz为Z向加速度计的测量噪声;
S402、构建组合导航的卡尔曼滤波器的测量方程:Z=HX15+υ,
式中,Z为观测向量,Z=[VE-VGE,VN-VGN,VU-VGU,L-LG,λ-λG,h-hG]T,其中,VE、VN和VU分别为光纤陀螺惯导的东向速度、北向速度和天向速度;VGE、VGN、VGU为GPS信号中的东向速度、北向速度和天向速度;L、λ和h分别为光纤惯导输出的纬度、经度和高度;LG、λG和hG分别为GPS信号中的纬度、经度和高度;H为观测矩阵,
Figure FDA0003751149190000036
I3为三行三列的单位矩阵,
Figure FDA0003751149190000037
03×3为三行三列的零矩阵,03×6为三行六列的零矩阵;υ为观测噪声;
S403、利用卡尔曼滤波算法对步骤S401构建的状态方程和步骤S402构建的观测方程进行解算,以获得实时的十五维组合导航卡尔曼滤波器中的状态量X15
S404、在步骤S1得到的惯性导航解算结果,即αk、βk、γk
Figure FDA0003751149190000038
Lk、λk和hk中分别减去实时的十五维组合导航卡尔曼滤波器中的九个导航结果误差的相应状态量,即
Figure FDA0003751149190000039
δVE、δVN、δVU、δL、δλ、δh,以通过导航误差补偿获得组合导航的导航结果,即αk'、βk'、γk'、Vk'、Lk'、λk'和hk';
S5、基于集成学习算法构建光纤陀螺磁温交联耦合误差模型,并以步骤S2采集的三个光纤陀螺的温度和磁场强度为输入数据,以步骤S4得到的组合导航估计的陀螺零偏为输出数据,通过训练分别获得X向光纤陀螺零偏误差与其温度、磁场强度的预测模型,Y向光纤陀螺零偏误差与其温度、磁场强度的预测模型,以及Z向光纤陀螺零偏误差与其温度、磁场强度的预测模型;
S6、将步骤S2采集的三个光纤陀螺的温度和磁场强度,分别代入X向光纤陀螺零偏误差与其温度、磁场强度的预测模型,Y向光纤陀螺零偏误差与其温度、磁场强度的预测模型,以及Z向光纤陀螺零偏误差与其温度、磁场强度的预测模型中,以分别获得光纤陀螺磁温交联耦合误差导致的X向光纤陀螺零偏误差ε′x,Y向光纤陀螺零偏误差ε′y和Z向光纤陀螺零偏误差ε′z
S7、利用步骤S6得到的零偏预测值ε′=[ε′x ε′y ε′z]T,将步骤S1的解算方程中的
Figure FDA0003751149190000041
补偿为
Figure FDA0003751149190000042
再将
Figure FDA0003751149190000043
代入惯导解算方程中,得到经过补偿的导航结果,包括:αk'、βk'、γk'、Vk'、Lk'、λk'和hk'。
2.根据权利要求1所述的光纤陀螺磁温交联耦合误差的在线补偿方法,其特征在于,在步骤S1中,惯性导航解算的解算公式为:
Figure FDA0003751149190000044
Figure FDA0003751149190000045
Lk=Lk-1+TsVNk-1/(RM+hk-1),
λk=λk-1+TsVEk-1secLk-1/(RN+hk-1),
hk=hk-1+TsVUk-1
式中,
Figure FDA0003751149190000046
Figure FDA0003751149190000047
gn=[0 0 -g]T
Figure FDA0003751149190000048
Figure FDA0003751149190000049
其中,Ts为原始数据的实时采样周期;k为离散化的时刻;每个在右下角带k的符号的物理量表示为k时刻的该物理量的状态值,每个在右下角带k-1的符号表示为k-1时刻的该物理状态值;
Figure FDA0003751149190000051
V,L,λ,h为惯性导航解算结果,
Figure FDA0003751149190000052
为光纤陀螺惯导的姿态矩阵;V为光纤陀螺惯导在导航坐标系下的速度向量,V为光纤陀螺惯导在导航坐标系下的速度向量,V=[VE VNVU]T,VE、VN和VU分别为光纤陀螺惯导的东向速度、北向速度和天向速度;L、λ和h分别为光纤陀螺惯导在地球表面的纬度、经度和高度;
Figure FDA0003751149190000053
和fm为原始数据,
Figure FDA0003751149190000054
为光纤陀螺惯导中陀螺仪组件测量的角速率原始数据,fm为光纤陀螺惯导中加速度计组件测量的比力原始数据;ωie和g分别为地球自转角速度和重力加速度;RM和RN分别为当地地球的子午圈半径和卯酉圈半径;
进而,根据
Figure FDA0003751149190000055
获得导航结果中的三个姿态角:纵摇角α=acrsin(C23),横滚角
Figure FDA0003751149190000056
航向角
Figure FDA0003751149190000057
3.根据权利要求1所述的光纤陀螺磁温交联耦合误差的在线补偿方法,其特征在于,在步骤S2中,温度传感器优选采用型号为DS18B20的数字温度传感器;磁传感器优选采用型号为AH810的可编辑霍尔效应线性传感器。
4.根据权利要求1所述的光纤陀螺磁温交联耦合误差的在线补偿方法,其特征在于,在步骤S5中,基于集成学习算法构建光纤陀螺磁温交联耦合误差模型中,个体学习器采用决策树算法学习器,学习器结合算法Bagging算法。
CN202210843070.8A 2022-07-18 2022-07-18 一种光纤陀螺磁温交联耦合误差的在线补偿方法 Active CN115265592B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210843070.8A CN115265592B (zh) 2022-07-18 2022-07-18 一种光纤陀螺磁温交联耦合误差的在线补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210843070.8A CN115265592B (zh) 2022-07-18 2022-07-18 一种光纤陀螺磁温交联耦合误差的在线补偿方法

Publications (2)

Publication Number Publication Date
CN115265592A true CN115265592A (zh) 2022-11-01
CN115265592B CN115265592B (zh) 2024-04-09

Family

ID=83766113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210843070.8A Active CN115265592B (zh) 2022-07-18 2022-07-18 一种光纤陀螺磁温交联耦合误差的在线补偿方法

Country Status (1)

Country Link
CN (1) CN115265592B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031882A (zh) * 2018-08-02 2019-07-19 哈尔滨工程大学 一种基于sins/dvl组合导航***的外量测信息补偿方法
CN110686671A (zh) * 2019-09-29 2020-01-14 同济大学 基于多传感器信息融合的室内3d实时定位方法及装置
CN111399021A (zh) * 2020-03-26 2020-07-10 桂林电子科技大学 一种导航定位方法
WO2020220729A1 (zh) * 2019-04-29 2020-11-05 南京航空航天大学 基于角加速度计/陀螺/加速度计的惯性导航解算方法
US20210080287A1 (en) * 2019-09-18 2021-03-18 Harbin Engineering University Method for initial alignment of radar assisted airborne strapdown inertial navigation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031882A (zh) * 2018-08-02 2019-07-19 哈尔滨工程大学 一种基于sins/dvl组合导航***的外量测信息补偿方法
WO2020220729A1 (zh) * 2019-04-29 2020-11-05 南京航空航天大学 基于角加速度计/陀螺/加速度计的惯性导航解算方法
US20210080287A1 (en) * 2019-09-18 2021-03-18 Harbin Engineering University Method for initial alignment of radar assisted airborne strapdown inertial navigation system
CN110686671A (zh) * 2019-09-29 2020-01-14 同济大学 基于多传感器信息融合的室内3d实时定位方法及装置
CN111399021A (zh) * 2020-03-26 2020-07-10 桂林电子科技大学 一种导航定位方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李宇寰;杨功流;于沛;宋凝芳;陶玉波;: "基于Bagging模型的惯导***误差抑制方法", 中国惯性技术学报, no. 01, 15 February 2017 (2017-02-15) *
陈光武;李文元;于月;刘孝博;: "基于改进径向基神经网络的MEMS惯导***误差抑制方法", 中国惯性技术学报, no. 01, 15 February 2019 (2019-02-15) *

Also Published As

Publication number Publication date
CN115265592B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
CN108168574B (zh) 一种基于速度观测的8位置捷联惯导***级标定方法
CN106990426B (zh) 一种导航方法和导航装置
CN101706281B (zh) 惯性/天文/卫星高精度组合导航***及其导航方法
CN105300379B (zh) 一种基于加速度的卡尔曼滤波姿态估计方法及***
CN108413887B (zh) 光纤光栅辅助分布式pos的机翼形变测量方法、装置和平台
CN106500693B (zh) 一种基于自适应扩展卡尔曼滤波的ahrs算法
CN109870173A (zh) 一种基于校验点的海底管道惯性导航***的轨迹修正方法
CN104344837B (zh) 一种基于速度观测的冗余惯导***加速度计***级标定方法
CN109974697A (zh) 一种基于惯性***的高精度测绘方法
CN103245359B (zh) 一种惯性导航***中惯性传感器固定误差实时标定方法
CN111121766B (zh) 一种基于星光矢量的天文与惯性组合导航方法
CN110243377B (zh) 一种基于分层式结构的集群飞行器协同导航方法
CN108458725A (zh) 捷联惯导***晃动基座上的***级标定方法
CN101290229A (zh) 硅微航姿***惯性/地磁组合方法
CN103076025B (zh) 一种基于双解算程序的光纤陀螺常值误差标定方法
CN109000640A (zh) 基于离散灰色神经网络模型的车辆gnss/ins组合导航方法
CN102645223B (zh) 一种基于比力观测的捷联惯导真空滤波修正方法
CN112432642B (zh) 一种重力灯塔与惯性导航融合定位方法及***
CN101706284A (zh) 提高船用光纤陀螺捷联惯导***定位精度的方法
CN103727941A (zh) 基于载体系速度匹配的容积卡尔曼非线性组合导航方法
CN110186478B (zh) 用于捷联式惯导***的惯性传感器选型方法及***
JP7111869B2 (ja) 機首方位測定システムにおけるセンサ測定の欠如を補償するシステムと方法
CN104215262A (zh) 一种惯性导航***惯性传感器误差在线动态辨识方法
CN109708663B (zh) 基于空天飞机sins辅助的星敏感器在线标定方法
CN113175933A (zh) 一种基于高精度惯性预积分的因子图组合导航方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant