CN115261743A - 一种低成本高锰钢板及其生产方法 - Google Patents

一种低成本高锰钢板及其生产方法 Download PDF

Info

Publication number
CN115261743A
CN115261743A CN202210711116.0A CN202210711116A CN115261743A CN 115261743 A CN115261743 A CN 115261743A CN 202210711116 A CN202210711116 A CN 202210711116A CN 115261743 A CN115261743 A CN 115261743A
Authority
CN
China
Prior art keywords
steel plate
rolling
temperature
low
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210711116.0A
Other languages
English (en)
Inventor
赵燕青
齐建军
孙力
陈振业
莫德敏
庞辉勇
张朋
杨浩
魏浩
石帅
高云哲
白丽娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HBIS Co Ltd
Original Assignee
HBIS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HBIS Co Ltd filed Critical HBIS Co Ltd
Priority to CN202210711116.0A priority Critical patent/CN115261743A/zh
Publication of CN115261743A publication Critical patent/CN115261743A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种低成本高锰钢板及其生产方法,所述低成本高锰钢板化学成分组成及其质量百分含量为:C:0.44~0.60%,Si:0.22~0.60%,Mn:22~26%,P≤0.010%,S≤0.005%,Cr:3~6%,Al:0.02~0.07%,N:0.08~0.12%,余量为Fe和不可避免的杂质;所述生产方法包括冶炼、加热、轧制、驰豫冷却工序。本发明不需要添加贵重的Ni元素,充分利用N元素扩大奥氏体区,配合高温轧制和轧后驰豫冷却工艺,获得综合力学性能优异,低温冲击韧性良好的高锰钢板,可作为LNG储罐用新钢铁材料;同时生产过程无需热处理,生产成本低廉。

Description

一种低成本高锰钢板及其生产方法
技术领域
本发明属于钢铁材料冶炼加工技术领域,具体涉及一种低成本高锰钢板及其生产方法。
背景技术
随着我国经济的快速发展以及环境保护力度的加大,我国天然气的消费量逐年增加,而液化天然气(LNG)通常需要在超低温环境条件下运输,此前主要采用9Ni钢作为LNG储罐的主要材料。不过,此种钢材的焊接质量控制难度大,且钢中含有大量价格昂贵的Ni元素,同时 9Ni钢采用正火回火或调质态交货,生产周期长,能耗高,资源消耗大,大幅提高了钢材生产成本。
Mn元素在合金化过程中具有与Ni元素相近的物理化学特性,且成本更低。钢中加入质量含量20%以上的Mn代替传统低温钢中的Ni元素,并加入适量的C元素,可以在室温下获得奥氏体组织,可显著提高钢板的低温韧性。
中国专利CN104988385A公开了一种不含镍的超低温环境用钢板及其制备方法,其化学成分为C:0.16~0.22%,Si:0.20~0.35%,Mn:22.5~28%,Al:1.50~2.50%,V:0.04~0.10%,余量为Fe和不可避免的杂质,其抗拉强度只有540~730MPa,钢的强度级别相对较低,同时这种钢Al含量较高,增大钢液的粘度,破坏钢的表面和内部质量,且易在浇铸时候形成氧化物,堵塞浇铸的水口,连铸生产比较困难,不利于高锰钢的工业化生产。
发明内容
本发明所要解决的技术问题是提供一种低成本高锰钢板及其生产方法。
为解决上述技术问题,本发明采用的技术方案是:一种低成本高锰钢板,所述低成本高锰钢板化学成分组成及其质量百分含量为:C:0.44~0.60%,Si:0.22~0.60%,Mn:22~26%,P≤0.010%,S≤0.005%,Cr:3~6%,Al:0.02~0.07%,N:0.08~0.12%,余量为Fe和不可避免的杂质。
本发明所述低成本高锰钢板厚度规格为12~20mm。
本发明所述低成本高锰钢板屈服强度400~450MPa,抗拉强度810~870MPa,低温冲击韧性良好,-196℃冲击功达到100J以上。
本发明还提供了一种低成本高锰钢板的生产方法,所述生产方法包括冶炼、加热、轧制、驰豫冷却工序;所述轧制工序,采用高温轧制工艺,开轧温度为1150~1190℃,终轧温度为940~990℃;所述驰豫冷却工序,钢板终轧完成后,驰豫到820~850℃,钢板驰豫后以≥10℃/s的冷却速度水淬至室温。
本发明所述冶炼工序,采用真空电磁感应炉熔炼,冶炼后钢水浇铸成厚度为150mm的钢锭,钢锭化学成分组成及其质量百分含量为:C:0.44~0.60%,Si:0.22~0.60%,Mn:22~26%,P≤0.010%,S≤0.005%,Cr:3~6%,Al:0.02~0.07%,N:0.08~0.12%,余量为Fe和不可避免的杂质。
本发明所述加热工序,将钢锭以400~500℃/h的升温速度加热至1210~1230℃保温,保温时间130~200min。
采用上述技术方案所产生的有益效果在于: 1、本发明充分利用N元素扩大奥氏体区,N元素固溶于钢中显著提高钢的轧态强度。2、本发明采用高温轧制工艺,降低钢板轧制过程中的变形抗力,且有利于-196℃超低温冲击韧性的改善。3、本发明终轧后驰豫,使奥氏体再结晶晶粒分布均匀化,降低钢板轧制应力;驰豫后快速水冷,抑制大量碳化物在晶界处析出,保证其性能要求。4、本发明生产工序流程短,无需热处理即可获得综合力学性能优异,低温冲击韧性良好的高锰钢板,可作为LNG储罐用新钢铁材料,生产工艺简单。5、本发明不需要添加贵重的Ni元素,降低了生产成本。
附图说明
图1为实施例1低成本高锰钢板的金相组织图。
具体实施方式
下面结合具体实施例对本发明作进一步详细的说明。
实施例1
本实施例低成本高锰钢板厚度为12mm,其化学成分组成及质量百分含量见表1。
本实施例低成本高锰钢板的生产方法包括冶炼、加热、轧制、驰豫冷却工序,具体工艺步骤如下所述:
(1)冶炼工序:采用真空电磁感应炉熔炼,冶炼后钢水浇铸成厚度为150mm的钢锭,浇铸规格为150*150*260mm,钢锭化学成分组成及其质量百分含量见表1;
(2)加热工序:将钢锭以400℃/h的升温速度加热至1210℃保温,保温时间200min;
(3)轧制工序:采用高温轧制工艺,开轧温度为1150℃,终轧温度为990℃;
(4)驰豫冷却工序:钢板终轧完成后,驰豫到850℃,钢板驰豫后以11℃/s的冷却速度水淬至室温。
本实施例低成本高锰钢板力学性能见表2;钢板显微组织见图1。(实施例2-8低成本高锰钢显微组织图与图1类似,故省略。)
实施例2
本实施例低成本高锰钢板厚度为20mm,其化学成分组成及质量百分含量见表1。
本实施例低成本高锰钢板的生产方法包括冶炼、加热、轧制、驰豫冷却工序,具体工艺步骤如下所述:
(1)冶炼工序:采用真空电磁感应炉熔炼,冶炼后钢水浇铸成厚度为150mm的钢锭,浇铸规格为150*150*260mm,钢锭化学成分组成及其质量百分含量见表1;
(2)加热工序:将钢锭以400℃/h的升温速度加热至1230℃保温,保温时间130min;
(3)轧制工序:采用高温轧制工艺,开轧温度为1190℃,终轧温度为970℃;
(4)驰豫冷却工序:钢板终轧完成后,驰豫到840℃,钢板驰豫后以12℃/s的冷却速度水淬至室温。
本实施例低成本高锰钢板力学性能见表2。
实施例3
本实施例低成本高锰钢板厚度为13mm,其化学成分组成及质量百分含量见表1。
本实施例低成本高锰钢板的生产方法包括冶炼、加热、轧制、驰豫冷却工序,具体工艺步骤如下所述:
(1)冶炼工序:采用真空电磁感应炉熔炼,冶炼后钢水浇铸成厚度为150mm的钢锭,浇铸规格为150*150*260mm,钢锭化学成分组成及其质量百分含量见表1;
(2)加热工序:将钢锭以400℃/h的升温速度加热至1220℃保温,保温时间170min;
(3)轧制工序:采用高温轧制工艺,开轧温度为1160℃,终轧温度为960℃;
(4)驰豫冷却工序:钢板终轧完成后,驰豫到820℃,钢板驰豫后以15℃/s的冷却速度水淬至室温。
本实施例低成本高锰钢板力学性能见表2。
实施例4
本实施例低成本高锰钢板厚度为17mm,其化学成分组成及质量百分含量见表1。
本实施例低成本高锰钢板的生产方法包括冶炼、加热、轧制、驰豫冷却工序,具体工艺步骤如下所述:
(1)冶炼工序:采用真空电磁感应炉熔炼,冶炼后钢水浇铸成厚度为150mm的钢锭,浇铸规格为150*150*260mm,钢锭化学成分组成及其质量百分含量见表1;
(2)加热工序:将钢锭以400℃/h的升温速度加热至1225℃保温,保温时间140min;
(3)轧制工序:采用高温轧制工艺,开轧温度为1170℃,终轧温度为940℃;
(4)驰豫冷却工序:钢板终轧完成后,驰豫到820℃,钢板驰豫后以10℃/s的冷却速度水淬至室温。
本实施例低成本高锰钢板力学性能见表2。
实施例5
本实施例低成本高锰钢板厚度为15mm,其化学成分组成及质量百分含量见表1。
本实施例低成本高锰钢板的生产方法包括冶炼、加热、轧制、驰豫冷却工序,具体工艺步骤如下所述:
(1)冶炼工序:采用真空电磁感应炉熔炼,冶炼后钢水浇铸成厚度为150mm的钢锭,浇铸规格为150*150*260mm,钢锭化学成分组成及其质量百分含量见表1;
(2)加热工序:将钢锭以500℃/h的升温速度加热至1215℃保温,保温时间150min;
(3)轧制工序:采用高温轧制工艺,开轧温度为1180℃,终轧温度为950℃;
(4)驰豫冷却工序:钢板终轧完成后,驰豫到830℃,钢板驰豫后以13℃/s的冷却速度水淬至室温。
本实施例低成本高锰钢板力学性能见表2。
实施例6
本实施例低成本高锰钢板厚度为18mm,其化学成分组成及质量百分含量见表1。
本实施例低成本高锰钢板的生产方法包括冶炼、加热、轧制、驰豫冷却工序,具体工艺步骤如下所述:
(1)冶炼工序:采用真空电磁感应炉熔炼,冶炼后钢水浇铸成厚度为150mm的钢锭,浇铸规格为150*150*260mm,钢锭化学成分组成及其质量百分含量见表1;
(2)加热工序:将钢锭以450℃/h的升温速度加热至1220℃保温,保温时间160min;
(3)轧制工序:采用高温轧制工艺,开轧温度为1165℃,终轧温度为980℃;
(4)驰豫冷却工序:钢板终轧完成后,驰豫到825℃,钢板驰豫后以14℃/s的冷却速度水淬至室温。
本实施例低成本高锰钢板力学性能见表2。
实施例7
本实施例低成本高锰钢板厚度为16mm,其化学成分组成及质量百分含量见表1。
本实施例低成本高锰钢板的生产方法包括冶炼、加热、轧制、驰豫冷却工序,具体工艺步骤如下所述:
(1)冶炼工序:采用真空电磁感应炉熔炼,冶炼后钢水浇铸成厚度为150mm的钢锭,浇铸规格为150*150*260mm,钢锭化学成分组成及其质量百分含量见表1;
(2)加热工序:将钢锭以420℃/h的升温速度加热至1225℃保温,保温时间180min;
(3)轧制工序:采用高温轧制工艺,开轧温度为1170℃,终轧温度为950℃;
(4)驰豫冷却工序:钢板终轧完成后,驰豫到835℃,钢板驰豫后以16℃/s的冷却速度水淬至室温。
本实施例低成本高锰钢板力学性能见表2。
实施例8
本实施例低成本高锰钢板厚度为12mm,其化学成分组成及质量百分含量见表1。
本实施例低成本高锰钢板的生产方法包括冶炼、加热、轧制、驰豫冷却工序,具体工艺步骤如下所述:
(1)冶炼工序:采用真空电磁感应炉熔炼,冶炼后钢水浇铸成厚度为150mm的钢锭,浇铸规格为150*150*260mm,钢锭化学成分组成及其质量百分含量见表1;
(2)加热工序:将钢锭以470℃/h的升温速度加热至1230℃保温,保温时间190min;
(3)轧制工序:采用高温轧制工艺,开轧温度为1180℃,终轧温度为950℃;
(4)驰豫冷却工序:钢板终轧完成后,驰豫到830℃,钢板驰豫后以15℃/s的冷却速度水淬至室温。
本实施例低成本高锰钢板力学性能见表2。
表1 实施例1-8低成本高锰钢板化学成分组成及其质量百分含量(%)
Figure DEST_PATH_IMAGE002
表1中成分余量为Fe和不可避免的杂质。
表2 实施例1-8低成本高锰钢板的力学性能
Figure DEST_PATH_IMAGE004
以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种低成本高锰钢板,其特征在于,所述低成本高锰钢板化学成分组成及其质量百分含量为:C:0.44~0.60%,Si:0.22~0.60%,Mn:22~26%,P≤0.010%,S≤0.005%,Cr:3~6%,Al:0.02~0.07%,N:0.08~0.12%,余量为Fe和不可避免的杂质。
2.根据权利要求1所述的一种低成本高锰钢板,其特征在于,所述低成本高锰钢板厚度规格为12~20mm。
3.根据权利要求1所述的一种低成本高锰钢板,其特征在于,所述低成本高锰钢板屈服强度400~450MPa,抗拉强度810~870MPa,低温冲击韧性良好,-196℃冲击功达到100J以上。
4.基于权利要求1-3任意一项所述的一种低成本高锰钢板的生产方法,其特征在于,所述生产方法包括冶炼、加热、轧制、驰豫冷却工序;所述轧制工序,采用高温轧制工艺,开轧温度为1150~1190℃,终轧温度为940~990℃;所述驰豫冷却工序,钢板终轧完成后,驰豫到820~850℃,钢板驰豫后以≥10℃/s的冷却速度水淬至室温。
5.根据权利要求4所述的一种低成本高锰钢板的生产方法,其特征在于,所述加热工序,将钢锭以400~500℃/h的升温速度加热至1210~1230℃保温,保温时间130~200min。
6.根据权利要求4或5所述的一种低成本高锰钢板的生产方法,其特征在于,所述生产方法包括冶炼、加热、轧制、驰豫冷却工序;所述加热工序,将钢锭以400℃/h的升温速度加热至1210℃保温,保温时间200min;所述轧制工序,采用高温轧制工艺,开轧温度为1150℃,终轧温度为990℃;所述驰豫冷却工序,钢板终轧完成后,驰豫到850℃,钢板驰豫后以11℃/s的冷却速度水淬至室温。
7.根据权利要求4或5所述的一种低成本高锰钢板的生产方法,其特征在于,所述生产方法包括冶炼、加热、轧制、驰豫冷却工序;所述加热工序,将钢锭以400℃/h的升温速度加热至1230℃保温,保温时间130min;所述轧制工序,采用高温轧制工艺,开轧温度为1190℃,终轧温度为970℃;所述驰豫冷却工序,钢板终轧完成后,驰豫到840℃,钢板驰豫后以12℃/s的冷却速度水淬至室温。
8.根据权利要求4或5所述的一种低成本高锰钢板的生产方法,其特征在于,所述生产方法包括冶炼、加热、轧制、驰豫冷却工序;所述加热工序,将钢锭以400℃/h的升温速度加热至1220℃保温,保温时间170min;所述轧制工序,采用高温轧制工艺,开轧温度为1160℃,终轧温度为960℃;所述驰豫冷却工序,钢板终轧完成后,驰豫到820℃,钢板驰豫后以15℃/s的冷却速度水淬至室温。
9.根据权利要求4或5所述的一种低成本高锰钢板的生产方法,其特征在于,所述生产方法包括冶炼、加热、轧制、驰豫冷却工序;所述加热工序,将钢锭以450℃/h的升温速度加热至1220℃保温,保温时间160min;所述轧制工序,采用高温轧制工艺,开轧温度为1165℃,终轧温度为980℃;所述驰豫冷却工序,钢板终轧完成后,驰豫到825℃,钢板驰豫后以14℃/s的冷却速度水淬至室温。
10.根据权利要求4或5所述的一种低成本高锰钢板的生产方法,其特征在于,所述生产方法包括冶炼、加热、轧制、驰豫冷却工序;所述加热工序,将钢锭以470℃/h的升温速度加热至1230℃保温,保温时间190min;所述轧制工序,采用高温轧制工艺,开轧温度为1180℃,终轧温度为950℃;所述驰豫冷却工序,钢板终轧完成后,驰豫到830℃,钢板驰豫后以15℃/s的冷却速度水淬至室温。
CN202210711116.0A 2022-06-22 2022-06-22 一种低成本高锰钢板及其生产方法 Pending CN115261743A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210711116.0A CN115261743A (zh) 2022-06-22 2022-06-22 一种低成本高锰钢板及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210711116.0A CN115261743A (zh) 2022-06-22 2022-06-22 一种低成本高锰钢板及其生产方法

Publications (1)

Publication Number Publication Date
CN115261743A true CN115261743A (zh) 2022-11-01

Family

ID=83760475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210711116.0A Pending CN115261743A (zh) 2022-06-22 2022-06-22 一种低成本高锰钢板及其生产方法

Country Status (1)

Country Link
CN (1) CN115261743A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222554A (zh) * 2016-08-23 2016-12-14 南京钢铁股份有限公司 一种经济型超低温用钢及其制备方法
CN109518098A (zh) * 2018-10-29 2019-03-26 南京钢铁股份有限公司 一种奥氏体低温钢及其制备方法
CN110573642A (zh) * 2017-04-26 2019-12-13 杰富意钢铁株式会社 高Mn钢及其制造方法
CN110724872A (zh) * 2018-07-17 2020-01-24 宝钢特钢有限公司 具有超低温冲击韧性的高锰奥氏体钢及其热轧板制造方法
CN111433381A (zh) * 2017-12-07 2020-07-17 杰富意钢铁株式会社 高Mn钢及其制造方法
CN111788325A (zh) * 2018-03-02 2020-10-16 杰富意钢铁株式会社 高Mn钢及其制造方法
US20210301378A1 (en) * 2018-08-03 2021-09-30 Jfe Steel Corporation HIGH-Mn STEEL AND METHOD OF PRODUCING SAME
CN113637908A (zh) * 2021-07-30 2021-11-12 河钢股份有限公司 一种大厚度低温环境用高锰钢板及其生产方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222554A (zh) * 2016-08-23 2016-12-14 南京钢铁股份有限公司 一种经济型超低温用钢及其制备方法
CN110573642A (zh) * 2017-04-26 2019-12-13 杰富意钢铁株式会社 高Mn钢及其制造方法
CN111433381A (zh) * 2017-12-07 2020-07-17 杰富意钢铁株式会社 高Mn钢及其制造方法
CN111788325A (zh) * 2018-03-02 2020-10-16 杰富意钢铁株式会社 高Mn钢及其制造方法
CN110724872A (zh) * 2018-07-17 2020-01-24 宝钢特钢有限公司 具有超低温冲击韧性的高锰奥氏体钢及其热轧板制造方法
US20210301378A1 (en) * 2018-08-03 2021-09-30 Jfe Steel Corporation HIGH-Mn STEEL AND METHOD OF PRODUCING SAME
CN109518098A (zh) * 2018-10-29 2019-03-26 南京钢铁股份有限公司 一种奥氏体低温钢及其制备方法
CN113637908A (zh) * 2021-07-30 2021-11-12 河钢股份有限公司 一种大厚度低温环境用高锰钢板及其生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
翁宇庆等: "《超细晶钢 钢的组织细化理论与控制技术》", 冶金工业出版社, pages: 296 - 298 *

Similar Documents

Publication Publication Date Title
CN110541110B (zh) 高强度低屈强比船舶LNG储罐用9Ni钢板及其制造方法
JP7340627B2 (ja) LNG貯蔵タンク用7Ni鋼板の製造方法
WO2020020034A1 (zh) 一种高强度高耐蚀节镍奥氏体不锈钢及其制造方法
CN109440009A (zh) 一种tmcp态船舶voc储罐用低温钢板及制造方法
WO2018036379A1 (zh) 一种低成本高强韧薄规格9Ni钢板的制造方法
CN104264064B (zh) 一种特厚规格q690高强度结构钢板及其制造方法
CN104674110B (zh) 一种压力容器用低温钢板及其生产方法
CN101985722A (zh) 低屈强比细晶粒高强管线钢板及其生产方法
CN104711492A (zh) 一种超硬态奥氏体不锈钢及其制造方法
CN110129685B (zh) 一种超低温容器用7Ni钢厚板的制造方法
CN109504899B (zh) 一种塑料模具钢及其制备方法
CN112813360B (zh) 一种低碳Cr-Ni-Al系高强韧耐蚀钢及其制备方法
CN111809115B (zh) 耐冲击腐蚀磨损性能优异的特厚塑料模具钢及其制备方法
CN105112782A (zh) 一种热轧态船用低温铁素体lt-fh40钢板及其生产方法
CN107523748A (zh) 超低温环境用高锰钢板及其生产方法
CN109182669B (zh) 高硬度高韧性易焊接预硬化塑料模具钢及其制备方法
CN112281066A (zh) 一种高屈服强度lng储罐用高锰中厚板及其制备方法
CN109576449A (zh) 一种抵抗剩磁增加、节约生产能耗的9Ni钢板的生产方法
CN102586696A (zh) 应用于深冷环境的7Ni钢及其制备工艺
CN104651735A (zh) 一种韧性大于50J/cm2的低合金耐磨钢及生产方法
CN110791706A (zh) 一种冷锻用奥氏体粗晶粒结构钢及其盘条的制备方法
CN112501504B (zh) 一种bca2级集装箱船用止裂钢板及其制造方法
CN115261743A (zh) 一种低成本高锰钢板及其生产方法
CN114318137A (zh) 一种核电用奥氏体不锈钢板及其制造方法
CN114196875A (zh) 一种阀片用不锈钢及其热处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination