CN115219625A - 同时测定饮用水中溴酸盐和亚氯酸盐的方法 - Google Patents

同时测定饮用水中溴酸盐和亚氯酸盐的方法 Download PDF

Info

Publication number
CN115219625A
CN115219625A CN202210834752.2A CN202210834752A CN115219625A CN 115219625 A CN115219625 A CN 115219625A CN 202210834752 A CN202210834752 A CN 202210834752A CN 115219625 A CN115219625 A CN 115219625A
Authority
CN
China
Prior art keywords
chlorite
bromate
column
water
drinking water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210834752.2A
Other languages
English (en)
Inventor
陈若虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Inavison Biotechnology Co ltd
Original Assignee
Guangzhou Inavison Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Inavison Biotechnology Co ltd filed Critical Guangzhou Inavison Biotechnology Co ltd
Priority to CN202210834752.2A priority Critical patent/CN115219625A/zh
Publication of CN115219625A publication Critical patent/CN115219625A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • G01N2030/965Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange suppressor columns

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本申请的目的为建立同时测定水中痕量消毒副产物溴酸盐和亚氯酸盐的方法。用盐酸调节水样pH值约为5并超声脱气,经已用甲醇和盐酸活化过的固相萃取弱阴离子交换小柱上样,用氢氧化钠溶液洗脱,洗脱液过银离子小柱并收集滤液后用离子色谱仪测定。结果BrO3‑和ClO2‑在1μg/L~100μg/L的范围内均呈良好的线性相关,检出限(LODs)为0.6μg/L与0.5μg/L,平均相对标准偏差(RSDs)为7.0%与7.6%,平均回收率为94.6%~107%(BrO3‑)、97.4%~98.6%(ClO2‑)。本申请操作简便、检测效率高,可克服基层实验室设备落后的劣势,用于检测水中痕量的消毒副产物。

Description

同时测定饮用水中溴酸盐和亚氯酸盐的方法
技术领域
本发明涉及一种饮用水检测方法,具体地说,是一种能同时测定饮用水中溴酸盐与亚氯酸盐的方法。
背景技术
目前,饮用水消毒常用的方式主要有氯化消毒、二氧化氯消毒和臭氧消毒等。在消毒过程中会产生消毒副产物,如亚氯酸盐是二氧化氯消毒的副产物,溴酸盐是臭氧消毒的副产物。这些消毒副产物(disinfection by-products,DBPs)对人体有一定的危害:溴酸盐具致突变性,可引起染色体断裂;亚氯酸盐可导致高铁血红蛋白和溶血性贫血,可能对神经行为有一定的影响,也可引起新生儿出生后减重。有研究表明,人终生饮用含溴酸盐为5.0μg/L或0.5μg/L的饮用水的致癌危险度分别为10-4或10-5,国际癌症研究机构(IARC)将溴酸钾的评级列为“潜在致癌”(2B组),将亚氯酸钠的评级列为“未知”(3组)。国家标准《生活饮用水卫生标准》规定饮用水中溴酸盐的限值是0.01mg/L,亚氯酸盐的限值是0.7mg/L。
离子色谱法是测定溴酸盐和亚氯酸盐的常用方法,但饮用水中消毒副产物的含量非常低,通常达到μg/L的级别。需要较灵敏的检测方法才能达到检测要求。离子色谱的淋洗液***有两类,分别是碳酸盐***和氢氧根***。氢氧根***的淋洗液经过抑制器转变为水,背景电导值极低,可通过大体积进样来提高灵敏度;而碳酸盐***存在水负峰较大的缺点,最大进样体积仅为100μL,无法通过加大进样体积来提高灵敏度。因此,生活饮用水中溴酸盐的检验方法中碳酸盐缓冲体系中万通分析***用的是MSMⅡ+MCS双抑制***,即化学抑制器和二氧化碳抑制器的串联使用,双抑制器比单独的化学抑制器能更有效的扣除背景干扰,具有更好的检测灵敏度。但由于基层实验室对仪器的更新周期较长,相当一部分实验室没有配备MSMⅡ+MCS双抑制***,仍在使用早期的单化学抑制器型离子色谱仪,无法按国标的要求进行溴酸盐的检测,这是现有技术中存在的不足。
发明内容
本发明的目的在于公开一种仅利用单化学抑制器型离子色谱仪就能同时测定饮用水中溴酸盐和亚氯酸盐的方法。
本发明包括如下步骤:
步骤一:绘制标准曲线:标准溶液临用现配,分别取BrO3-、ClO2-各1.0mL标准溶液定容至100mL,所述标准溶液浓度为10mg/L,再分别取适量标准储备液用纯水稀释至浓度为1μg/L、2.5μg/L、5μg/L、10μg/L、50μg/L、100μg/L的混合标准系列,平行测定3—15次;
步骤二:SPE对水样的前处理:水样先用1mol/L盐酸调至pH值约为5,超声除气10min后待用,SPE采用WAX型小柱,按顺序用5mL甲醇和8mL盐酸活化小柱,速度为1mL/min;然后用60mL注射器接SPE连接头装在小柱的上方,往注射器倒入已处理过的水样,水样匀速滴入小柱,上样体积为50mL,速度控制在3mL/min;洗脱前将小柱彻底抽干,再用3mL氢氧化钠溶液以0.5mL/min的速度洗脱并收集洗脱液;用5mL注射器抽取洗脱液过银离子小柱,弃0.5mL初滤液,收集滤液过0.20μm滤膜待离子色谱分析。
步骤三:离子色谱条件:阴离子色谱柱(250mm×4mmi.d.)配保护柱,流动相为Na2CO3(3.2mmol/L)和NaHCO3(1.0mmol/L)的混合溶液,流速为0.65mL/min,进样体积为100μL,以峰高定量。
所述步骤一中平行测定为3次。
所述步骤二中所述盐酸为10mmol/L。
所述步骤二中所述氢氧化钠溶液为40mmol/L。
所述步骤三中所述阴离子色谱柱为250mm×4mmi.d.。
所述步骤三中所述Na2CO3为3.2mmol/L。
所述步骤三中所述NaHCO3为1.0mmol/L。
本申请引入固相萃取弱阴离子交换再过银离子小柱除过量氯离子的前处理步骤,将水样先进行富集再用单抑制器的离子色谱仪进行检测,能有效的提高方法的灵敏度,满足国标的检出限要求,解决基层实验室的实际应用难题,具有一定的启示意义。
附图说明
图1是不同体积的盐酸活化WAX小柱后BrO3-和ClO2-的峰高对比图。
图2是水中常见阴离子及消毒副产物标准溶液的离子色谱图。
图3是SPE-Ag柱-IC法测定加标矿泉水(50μg/L)的色谱图
具体实施方式
下面结合附图对本申请作进一步详述。
参照图1,本发明的步骤一:绘制标准曲线:标准溶液临用现配,分别取BrO3-、ClO2-各1.0mL标准溶液定容至100mL,所述标准溶液浓度为10mg/L,再分别取适量标准储备液用纯水稀释至浓度为1μg/L、2.5μg/L、5μg/L、10μg/L、50μg/L、100μg/L的混合标准系列,平行测定3—15次;步骤二:SPE对水样的前处理:水样先用1mol/L盐酸调至pH值约为5,超声除气10min后待用,SPE采用WAX型小柱,按顺序用5mL甲醇和8mL盐酸活化小柱,速度为1mL/min;然后用60mL注射器接SPE连接头装在小柱的上方,往注射器倒入已处理过的水样,水样匀速滴入小柱,上样体积为50mL,速度控制在3mL/min;洗脱前将小柱彻底抽干,再用3mL氢氧化钠溶液以0.5mL/min的速度洗脱并收集洗脱液;用5mL注射器抽取洗脱液过银离子小柱,弃0.5mL初滤液,收集滤液过0.20μm滤膜待离子色谱分析。步骤三:离子色谱条件:阴离子色谱柱(250mm×4mmi.d.)配保护柱,流动相为Na2CO3(3.2mmol/L)和NaHCO3(1.0mmol/L)的混合溶液,流速为0.65mL/min,进样体积为100μL,以峰高定量。
如图2所示,本申请方法的SPE条件:1.SPE小柱的选择:固相萃取在本实验中所起的主要作用是在F-、Cl-、NO3-、SO42-等水中常见阴离子共存的条件下富集较低浓度的BrO3-和ClO2-,达到降低方法检出限的目的。考虑到待测物是极性较强的阴离子,本文选取SAX、WAX、NH2三种SPE小柱进行比较,发现SAX对待测离子的吸附力很强,但使用Na2CO3溶液(0.1mol/L)、NaHCO3溶液(0.1mol/L)、纯水、氨水(0.1mol/L)和氢氧化钠(0.05mol/L)等都难以将待测离子从SAX小柱上洗脱下来;而WAX小柱和NH2小柱则对待测离子均有一定的吸附力,使用稀碱液可洗脱下来,而WAX小柱比NH2小柱有更好的回收率,故选用WAX小柱。pH值对SPE过程的影响:pH值的控制在整个SPE的吸附与解吸过程起到关键作用,pH值直接决定待测离子在上样时经过WAX小柱的吸附效果和洗脱时能否被完全洗脱下来。秉着“酸性吸附,碱性解吸”的原则,同时考虑WAX小柱和离子色谱分析柱均为硅胶填料,pH值范围应在3~9之间,对小柱活化时的酸液及对应的浓度和体积、洗脱时的碱液及对应的浓度和体积进行优化。如图1与图3所示,预实验中,小柱活化的酸液选择甲酸(20mmol/L)、乙酸(10mmol/L)、磷酸(5mmol/L)三种中等强度的酸进行比较,三种酸都可以使阴离子被WAX吸附,但在离子色谱分离时,甲酸根和乙酸根的出峰均与ClO2-的峰很接近,浓度大时会影响ClO2-的定量,而磷酸根的出峰则对待测离子和其他常见阴离子无干扰,拟选用磷酸活化小柱。但当应用到实际水体时,发现经磷酸酸化的WAX小柱无法有效的吸附住阴离子,在弃液中检测到较高浓度的待测离子,即使加大磷酸的浓度也无明显改善。这可能是由于实际水体的基体复杂,经磷酸活化的小柱易受基体干扰;且在离子色谱分析时P3O43-的峰高电导率高达100μS/cm,易使色谱柱过载。后考虑使用盐酸活化小柱,发现纯水或实际水样中的待测物均可被吸附在小柱上。考虑到过量的Cl-可能会超出离子色谱柱的检测范围而损坏色谱柱,将洗脱液收集后过银离子小柱除去Cl-。用于活化的酸液和洗脱的碱液的条件选择均采用含50μg/L的BrO3-和ClO2-的水样。盐酸的浓度选择5mmol/l、10mmol/l各10ml对小柱活化,发现使用10mmol/L盐酸活化后待测离子的回收率明显高于5mmol/L盐酸活化的。再分别选用3ml、6ml、8ml、10ml的10mmol/L盐酸对小柱活化,由图1发现WAX小柱吸附待测离子的能力随着盐酸活化体积的增加而增加,当活化体积至8ml时趋于饱和,故选择8ml盐酸(10mmol/L)对小柱进行活化。碱液的优化则在相同的活化及上样条件下,选择氢氧化钠溶液和氨水+甲醇(5+95)进行比较,发现两种碱液均可将待测离子洗脱下来,但用氨水+甲醇(5+95)的洗脱液在氮吹时在转移过程中易引起待测离子不同程度的损失而导致重现性较差,且用离子色谱分析时基线不稳定,而氢氧化钠溶液不存在以上问题,只需在洗脱时注意完全洗脱即可,所以选择氢氧化钠溶液为洗脱液。使用20mmol/L、30mmol/L、40mmol/L的氢氧化钠溶液洗脱,待测离子随着洗脱液浓度加大而增加,选择40mmol/L的氢氧化钠溶液为洗脱液。洗脱液的体积应考虑两个方面,一方面应加大体积尽可能把待测离子洗脱下来,另一方面加大体积会使待测离子被稀释。为了使待测离子用尽可能小的体积完全洗脱下来,先分别用2.0ml、2.5ml、3.0ml氢氧化钠溶液(40mmol/L)洗脱,然后分别在原来的小柱上再用1.0ml氢氧化钠溶液(40mmol/L)洗脱,分开收集,结果见表1。用2.0ml的洗脱液洗脱后,仍有超过10%的待测离子未被洗脱下来;2.5ml和3.0ml的洗脱效率接近,用3.0ml洗脱后待测离子的残余量更少,而且洗脱液还需过银离子小柱要弃去0.5ml初滤液致待测体积减少,所以选择3.0ml氢氧化钠溶液(40mmol/L)洗脱。
表1不同体积的氢氧化钠溶液(40mmol/L)洗脱液测得的BrO3 -和ClO2 -的峰高比较
Figure BDA0003747244850000071
上样体积对SPE过程的影响:在相同的实验条件下,选择50ml、100ml、200ml、300ml、600ml等上样体积进行比较。结果发现水样的体积越大,需要的SPE小柱活化剂的量越多,否则无法将待测物吸附在小柱上。因此,对上样体积的选择一方面考虑水样的量可以达到检出限的要求,另一方面使用适量的活化剂以免损坏SPE小柱。实验发现50ml的水样已可满足检测要求,故将上样体积确定为50ml。
实际水样的前处理:由于实际水样基体复杂,pH值也相差较大,如水样偏碱则不易被吸附在SPE小柱上,所以需对偏碱性的待测水样调节pH值,一般调至弱酸性即可。水中的CO2会引起水样pH值不稳定,影响SPE过程的重现性,可通过超声10min除去。
色谱条件的确定:本实验参考应波[11]的色谱柱条件,采用阴离子色谱柱-和保护柱。虽然亚氯酸根与溴酸根无法完全分离,但使用保护柱时在溴酸根后会出现一个影响其定量的***峰,且本方法采用峰高定量,本实验条件下的分离度对定量不会造成影响。
淋洗液的优化则是比较了3种浓度的碳酸盐缓冲体系,分别用3.2mmol/L Na2CO3-1.0mmol/L NaHCO3(A)、2.5mol/L Na2CO3-1.0mmol/L NaHCO3(B)、1.3mmol/L Na2CO3-2.0mmol/L NaHCO3(C)作淋洗液检测水中常见阴离子及消毒副产物的标准溶液(F-、Cl-、NO3-、SO42-、NO2-、BrO3-、ClO2-、ClO3-各为1.0μg/ml)。实验发现不同浓度的淋洗液影响阴离子的出峰时间及分离效果,在A淋洗液条件下各离子有较好的分离度,24min内全部离子出峰完毕;B淋洗液的分离度较A差;C淋洗液的分离效果最好,但各离子出峰时间推迟,SO42-在55min才出峰,耗费大量时间。综合考虑采用3.2mmol/L Na2CO3-1.0mmol/L NaHCO3为淋洗液,色谱图见图2。同时比较了0.45ml/min、0.55ml/min、0.65ml/min三种流速,发现降低流速对BrO3-和ClO3-的分离度起不到明显的改善,故选择0.65ml/min的流速。
1:F-(5.71min);3:ClO2-(7.31min);4:BrO3-(7.57min);5:Cl-(8.36min);6:NO2-(9.88min);7:ClO3-(11.75min);8:NO3-(13.56min);9:SO42-(22.33min)
图2水中常见阴离子及消毒副产物标准溶液(1μg/ml)的离子色谱图,淋洗液为3.2mmol/L Na2CO3-1.0mmol/L NaHCO3
本申请的检验:1.线性关系、线性范围与检出限:本法以标准物质浓度为x(单位为μg/L),峰高电导率为y(单位为μS/cm)建立回归方程,BrO3-和ClO2-在1μg/L~100μg/L的范围内均呈良好的线性相关,回归方程与相关系数见表2。检出限(LOD)以3倍信噪比的水平计算,定量限(LOQ)以10倍信噪比的水平计算。
2.精密度:分别配制低、中、高3个浓度水平(1μg/L、10μg/L、50μg/L)的混合标准溶,按上述优化条件进行测定,每个浓度重复测定6次并计算其相对标准偏差(RSD)及平均RSD,结果见表2。
表2 SPE-Ag柱-IC法测定水中BrO3 -和ClO2 -的线性方程、检出限、定量限及精密度(n=6)
Figure BDA0003747244850000091
3.实际水样的测定及回收率:分别选取市售的纯净水、矿泉水、矿物质水,以实际水样为溶剂分别配制低、中、高浓度(1μg/L、10μg/L、50μg/L)的加标溶液进行加标回收率试验,每个样品重复测定3次。经测定,在某品牌的纯净水中检出溴酸盐,其含量为17.2μg/L,其他样品则未检出,ClO2-均未检出。计算得三种样品中BrO3-的平均回收率为94.6%~107%,ClO2-的平均回收率为97.4%~98.6%之间,结果见表3。图3为矿泉水加标50μg/L的色谱图,该图中没有Cl-的出峰,是银离子小柱将Cl-去除从而不会因过量的Cl-而造成色谱柱过载。
表3选取的纯净水、矿泉水、矿物质水的本底值与加标回收率(n=3)
Figure BDA0003747244850000092
Figure BDA0003747244850000101
注:*ND:未检出
1:F-(5.70min);3:ClO2 -(7.29min);4:BrO3 -(7.57min);5:NO2 -(9.95min)

Claims (7)

1.一种同时测定饮用水中溴酸盐和亚氯酸盐的方法,包括如下步骤:步骤一:绘制标准曲线,标准溶液临用现配,分别取BrO3-、ClO2-各1.0mL标准溶液定容至100mL,所述标准溶液浓度为10mg/L,再分别取适量标准储备液用纯水稀释至浓度为1μg/L、2.5μg/L、5μg/L、10μg/L、50μg/L、100μg/L的混合标准系列,平行测定3—15次;
步骤二:SPE对水样的前处理:水样先用1mol/L盐酸调至pH值约为5,超声除气10min后待用,SPE采用WAX型小柱,按顺序用5mL甲醇和8mL盐酸活化小柱,速度为1mL/min;然后用60mL注射器接SPE连接头装在小柱的上方,往注射器倒入已处理过的水样,水样匀速滴入小柱,上样体积为50mL,速度控制在3mL/min;洗脱前将小柱彻底抽干,再用3mL氢氧化钠溶液以0.5mL/min的速度洗脱并收集洗脱液;用5mL注射器抽取洗脱液过银离子小柱,弃0.5mL初滤液,收集滤液过0.20μm滤膜待离子色谱分析;
步骤三:离子色谱条件:阴离子色谱柱配保护柱,流动相为Na2CO3和NaHCO3的混合溶液,流速为0.65mL/min,进样体积为100μL,以峰高定量。
2.根据权利要求1所述的同时测定饮用水中溴酸盐和亚氯酸盐的方法,其特征为所述步骤一中的平行测定为3次。
3.根据权利要求1所述的同时测定饮用水中溴酸盐和亚氯酸盐的方法,其特征为所述步骤二中所述盐酸为10m mol/L。
4.根据权利要求1所述的同时测定饮用水中溴酸盐和亚氯酸盐的方法,其特征为所述步骤二中所述氢氧化钠溶液为40mmol/L。
5.根据权利要求1所述的同时测定饮用水中溴酸盐和亚氯酸盐的方法,其特征为所述步骤三中所述阴离子色谱柱为250mm×4mmi.d.。
6.根据权利要求1所述的同时测定饮用水中溴酸盐和亚氯酸盐的方法,其特征为所述步骤三中所述Na2CO3为3.2mmol/L。
7.根据权利要求1所述的同时测定饮用水中溴酸盐和亚氯酸盐的方法,其特征为所述步骤三中所述NaHCO3为1.0mmol/L。
CN202210834752.2A 2022-07-14 2022-07-14 同时测定饮用水中溴酸盐和亚氯酸盐的方法 Pending CN115219625A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210834752.2A CN115219625A (zh) 2022-07-14 2022-07-14 同时测定饮用水中溴酸盐和亚氯酸盐的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210834752.2A CN115219625A (zh) 2022-07-14 2022-07-14 同时测定饮用水中溴酸盐和亚氯酸盐的方法

Publications (1)

Publication Number Publication Date
CN115219625A true CN115219625A (zh) 2022-10-21

Family

ID=83612654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210834752.2A Pending CN115219625A (zh) 2022-07-14 2022-07-14 同时测定饮用水中溴酸盐和亚氯酸盐的方法

Country Status (1)

Country Link
CN (1) CN115219625A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117538125A (zh) * 2024-01-05 2024-02-09 中检科(北京)测试认证有限公司 一种含有氯酸盐、亚氯酸盐的生活饮用水基质标准样品及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596751A (zh) * 2016-11-04 2017-04-26 天津大学 一种氯代消毒副产物二氯乙酰胺和三氯乙酰胺的高效液相色谱‑电喷雾质谱检测方法
CN107247105A (zh) * 2017-07-10 2017-10-13 中国农业科学院茶叶研究所 一种固相萃取‑高效液相色谱‑串联质谱法检测茶叶中高氯酸盐的方法
CN108226371A (zh) * 2018-01-23 2018-06-29 杭州润泽科学器材有限公司 一种测定桶装水中痕量溴酸盐的方法
CN109738554A (zh) * 2019-03-11 2019-05-10 河北诚信集团有限公司 固相萃取-液相色谱联用测定水中微量苯乙酸的方法
CN111122715A (zh) * 2019-11-14 2020-05-08 浙江工业大学 利用离子色谱法同时测定羧甲基纤维素钠中多种痕量阴离子含量的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596751A (zh) * 2016-11-04 2017-04-26 天津大学 一种氯代消毒副产物二氯乙酰胺和三氯乙酰胺的高效液相色谱‑电喷雾质谱检测方法
CN107247105A (zh) * 2017-07-10 2017-10-13 中国农业科学院茶叶研究所 一种固相萃取‑高效液相色谱‑串联质谱法检测茶叶中高氯酸盐的方法
CN108226371A (zh) * 2018-01-23 2018-06-29 杭州润泽科学器材有限公司 一种测定桶装水中痕量溴酸盐的方法
CN109738554A (zh) * 2019-03-11 2019-05-10 河北诚信集团有限公司 固相萃取-液相色谱联用测定水中微量苯乙酸的方法
CN111122715A (zh) * 2019-11-14 2020-05-08 浙江工业大学 利用离子色谱法同时测定羧甲基纤维素钠中多种痕量阴离子含量的方法

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
周虹;周小新;: "饮用水中的亚氯酸盐、氯酸盐和溴酸盐的离子色谱测定法", 环境与健康杂志, no. 07 *
应波;李淑敏;岳银玲;鄂学礼;: "抑制型电导检测离子色谱法测定饮用水中的痕量溴酸盐", 色谱, no. 03 *
张彦鲁;: "电导检测离子色谱法同时测定饮用水中5种消毒副产物", 广东化工, no. 16 *
李婷婷;周丽;曾文锦;彭波;孙姗姗;: "离子色谱法同时测定包装饮用水中的6种阴离子", 生物加工过程, no. 04 *
杨春英;杭义萍;钟新林;: "离子色谱法同时测定饮用水中5种消毒剂副产物", 分析化学, no. 11 *
林立;张俊燕;: "大体积进样测定饮用水和水源水中的溴酸盐", 食品安全导刊, no. 11 *
王伟;: "大体积进样离子色谱法测定水中溴酸盐", 中小企业管理与科技(上旬刊), no. 05 *
王定坤;文灿;许佩勤;: "国产离子色谱仪直接进样测定饮用水中溴酸盐", 饮料工业, no. 09 *
盛丽娜;林华影;李一丹;张琼;林瑶;: "饮用水中亚氯酸盐、溴酸盐和氯酸盐的离子色谱测定法", 职业与健康, no. 06 *
赵瑞 等: "饮用水消毒副产物测定方法的研究进展", 化学分析计量, pages 1 - 2 *
路会丽;武彦文;欧阳杰;李冰宁;刘玲玲;杜美红;高德江;: "饮用水中溴酸盐检测方法的研究进展", 现代科学仪器, no. 01 *
麦浪;杨文迪;: "换柱测定生活饮用水中亚氯酸盐和氯酸盐的离子色谱法研究", 中国卫生检验杂志, no. 02 *
龙素群;钟志京;丁兰岚;梁霞;: "饮用水中卤氧化物离子色谱分析方法研究", 环境科学与技术, no. 1, pages 1 - 2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117538125A (zh) * 2024-01-05 2024-02-09 中检科(北京)测试认证有限公司 一种含有氯酸盐、亚氯酸盐的生活饮用水基质标准样品及其制备方法
CN117538125B (zh) * 2024-01-05 2024-04-26 中检科(北京)测试认证有限公司 一种含有氯酸盐、亚氯酸盐的生活饮用水基质标准样品及其制备方法

Similar Documents

Publication Publication Date Title
Liang et al. Speciation analysis of inorganic arsenic in water samples by immobilized nanometer titanium dioxide separation and graphite furnace atomic absorption spectrometric determination
Soylak et al. Trace enrichment and atomic absorption spectrometric determination of lead, copper, cadmium and nickel in drinking water samples by use of an activated carbon column
Kendüzler et al. Atomic absorption spectrophotometric determination of trace copper in waters, aluminium foil and tea samples after preconcentration with 1-nitroso-2-naphthol-3, 6-disulfonic acid on Ambersorb 572
Alizadeh Preparation of molecularly imprinted polymer containing selective cavities for urea molecule and its application for urea extraction
Charles et al. Electrospray ion chromatography− tandem mass spectrometry of bromate at sub-ppb levels in water
US4751189A (en) Method for balancing background conductivity for ion chromatography
CN112526022A (zh) 一种乳中母乳低聚糖的检测方法
CN115219625A (zh) 同时测定饮用水中溴酸盐和亚氯酸盐的方法
Bakircioglu et al. Concentration of cadmium, copper and zinc using water soluble polyacrylic acid polymer
Baytak et al. Application of silica gel 60 loaded with Aspergillus niger as a solid phase extractor for the separation/preconcentration of chromium (III), copper (II), zinc (II), and cadmium (II)
Knežević et al. ETAAS determination of aluminium and copper in dialysis concentrates after microcolumn chelating ion-exchange preconcentration
Kendüzler et al. Determination of iron, manganese and zinc in water samples by flame atomic absorption spectrophotometry after preconcentration with solid-phase extraction onto ambersorb 572
Charles et al. Analysis of oxyhalides in water by ion chromatography–ionspray mass spectrometry
Tokman et al. Preconcentration and separation of copper (II), cadmium (II) and chromium (III) in a syringe filled with 3-aminopropyltriethoxysilane supported on silica gel
Frenzel et al. Sample preparation techniques for ion chromatography
Liang et al. Preconcentration of rare earth elements on silica gel loaded with 1-phenyl-3-methyl-4-benzoylpyrazol-5-one prior to their determination by ICP-AES
Jiang et al. Microcolumn packed with YPA4 chelating resin on-line separation/preconcentration combined with graphite furnace atomic absorption spectrometry using Pd as a permanent modifier for the determination of trace mercury in water samples
Liu Determination of ultra-trace amounts of inorganic selenium species in natural water by ion chromatography-inductively coupled plasma-mass spectrometry coupled with nano-Al2O3 solid phase extraction
Jones et al. Determination of cobalt at picogram levels by high-performance liquid chromatography with chemiluminescence detection
CN111122715B (zh) 利用离子色谱法同时测定羧甲基纤维素钠中多种痕量阴离子含量的方法
Li et al. Determination of bisphenol A in landfill leachate by solid phase microextraction with headspace derivatization and gas chromatography-mass spectrophotometry
Bramanti et al. Selective determination of thiolic proteins by hydrophobic interaction chromatography coupled with on-line cold vapour atomic fluorescence spectrometry
Ikedo et al. Selective and simultaneous determination of phosphate and silicate ions in leaching process waters for ceramics glaze raw materials of narutal origin by ion-exclusion chromatography coupled with UV-detection after postcolumn derivatization
CN111220722A (zh) 一种同时测定土壤中8种对羟基苯甲酸酯类化合物的方法
Murakami et al. Facile and effective pretreatment using stop and go extraction tips for LC-MS/MS analysis of trace amounts of DNA adducts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20221021

WD01 Invention patent application deemed withdrawn after publication