CN115141838A - 一种白藜芦醇合酶基因转化花生体系的构建 - Google Patents

一种白藜芦醇合酶基因转化花生体系的构建 Download PDF

Info

Publication number
CN115141838A
CN115141838A CN202210641715.XA CN202210641715A CN115141838A CN 115141838 A CN115141838 A CN 115141838A CN 202210641715 A CN202210641715 A CN 202210641715A CN 115141838 A CN115141838 A CN 115141838A
Authority
CN
China
Prior art keywords
peanut
culture
synthase gene
resveratrol
resveratrol synthase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210641715.XA
Other languages
English (en)
Inventor
杜娟
胡玲
杨林
王亮
杨东生
胡文忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai Institute Of Science And Technology
Original Assignee
Zhuhai Institute Of Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai Institute Of Science And Technology filed Critical Zhuhai Institute Of Science And Technology
Priority to CN202210641715.XA priority Critical patent/CN115141838A/zh
Publication of CN115141838A publication Critical patent/CN115141838A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01095Trihydroxystilbene synthase (2.3.1.95)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于花生分子育种技术领域,具体涉及一种白藜芦醇合酶基因转化花生体系的构建。本发明利用农杆菌侵染法将川鄂爬山虎白藜芦醇合成酶RS基因全长序列(1179bp)转化花生,经PCR、Southern印记杂交、Northern杂交等分子生物学检测,证明白藜芦醇合成酶基因RS已整合到花生的基因组中。本发明利用转基因技术提高花生中的RS含量,在改善花生抗性的同时促进下游产物白藜芦醇的含量增加,为研究RS基因代谢产物的生物学功能及调控机制提供了理论基础,为改良物种抗性和提高代谢物产量提供了一种有效途径。

Description

一种白藜芦醇合酶基因转化花生体系的构建
技术领域
本发明属于花生分子育种技术领域,具体涉及一种白藜芦醇合酶基因转化花生体系的构建。
背景技术
花生(Arachis hypogaea L.)是全球第四大油料作物,也是中国重要的经济和油料作物之一,在农业乃至整个国民经济中均具有重要地位。然而,由于花生栽培种遗传基础狭窄、抗逆性差,尤其易感多种病虫害,严重影响其产量和品质。随着生物技术的发展,利用转基因技术来改进花生栽培种受到研究者的广泛重视。
白藜芦醇(Resveratrol,Res)是一种天然的多酚类植物抗毒素,具有显著的抗癌活性,主要存在于虎杖、葡萄和花生中,白藜芦醇具有抗氧化、抗增殖、促凋亡、抗衰老和免疫调节作用,在癌症和免疫***疾病的治疗中得到广泛的应用。白藜芦醇最早是从毛叶藜芦根部提取物中获得的,目前已从70多种植物中获取。研究表明:虎杖、葡萄、花生中含量较高。白藜芦醇合成酶(RS)是催化丙二酰辅酶A和香豆酰辅酶A反应的关键酶,催化的最终产物是白藜芦醇。RS酶的催化反应是一系列的缩合反应,也是影响白藜芦醇生物合成的重要调控酶。可见,RS基因在植物、微生物功能的改造方面具有良好的应用前景。
近年,白藜芦醇的功能和开发利用的研究已取得了很大的进展,但RS基因如何参与胁迫响应及其作用机制还有待深入研究,随着可持续农业的发展和人类对药物、保健品的不断需求,利用植物基因工程技术提高白藜芦醇产量以迫在眉睫。随着白藜芦醇合成酶RS基因的不断克隆和改良,加上利用RS基因进行农作物、药物和微生物的遗产改良及新品种培育也在有序进行中,通过转入白藜芦醇合成酶RS基因从而提高受体植物自身的营养附加值以及重组微生物中Res的产量,才能够满足Res在食品、保健和医药等行业的需求。可见,通过基因转化技术将RS基因转化到花生中,有望提高花生的抗逆性以及白藜芦醇的产量,进而提高花生的经济价值。
发明内容
为了克服上述现有技术的不足,本发明的目的是提供一种白藜芦醇合酶基因转化花生体系的构建方法,通过转入白藜芦醇合成酶RS基因,从而提高花生的抗逆性以及白藜芦醇的产量,提高花生的经济价值。
为实现上述目的,本发明是通过以下技术方案来实现的:
本发明提供了一种白藜芦醇合酶基因转化花生体系的构建方法,该方法包括以下步骤:
S1、将质粒pCAMBIA3300-RJ39-RS-Tnos转化到农杆菌感受态LBA4404中,并将筛选的阳性菌落在含Rif,Sm和Kan的培养基中培养至对数生长期,制得农杆菌菌液;
S2、将花生无菌苗叶片切成小片,然后用步骤S1的农杆菌菌液进行侵染,侵染后放入MS0培养基中共培养,再转移到再生培养基上进行分化培养,分化培养后再转移到生根培养基上进行生根培养,最后将生根花生苗移栽至温室培养。
白藜芦醇合成酶(Resveratrol synthase,RS)是白藜芦醇(Resveratrol,Res)合成途径中的关键酶,在植物的代谢及调控等方面发挥重要的生物学作用。本发明的白藜芦醇合成酶RS基因是从川鄂爬山虎中克隆得到的,其苷酸序列长1179bp,编码392个氨基酸(王晓丽.转基因植物中白藜芦醇生物合成的调控[D].石河子大学,2007;钱昆.白藜芦醇合酶基因对草莓遗传转化的研究[D].福建农林大学,2010.),该基因与GenBank登录号为FM955393的花生白藜芦醇合成酶基因的同源性为84.41%。鉴于启动子对基因的表达及受体植物所表现的生理生化特性具有重要的调控作用,本发明利用草莓果实特异性启动子RJ39构建的pCAMBIA3300-RJ39-RS-Tnos植物表达载体转化花生,旨在花生的果实中获得RS基因的过表达,通过转入川鄂爬山虎克隆的RS基因异源表达,从而提高花生的经济价值。
优选地,将质粒pCAMBIA3300-RJ39-RS-Tnos转化到农杆菌感受态LBA4404时,采用液氮冻融法。所述质粒pCAMBIA3300-RJ39-RS-Tnos为把克隆的RS基因置于草莓果实特异性启动子RJ39的调控下,用除草剂抗性基因(bar)做选择标记构建而来。
优选地,所述花生为花生品种鲁花18号。
进一步地,采用液氮冻融法进行转化时,先液氮冻2min,再37℃孵育5min。
优选地,所述含Rif,Sm和Kan的培养基为含50mg/L Rif,100mg/L Sm和100mg/LKan的液体CYM培养基。
优选地,农杆菌菌液侵染的时间为15-30min。进一步地,农杆菌菌液侵染的时间为20min。
优选地,所述共培养采用暗培养的方式,时间为2-4d。进一步地,所述共培养的时间为3d。
优选地,分化培养至生苗高1.5-2.5cm后再转到的生根培养基进行生根培养。进一步地,分化培养至生苗高2cm后再转到的生根培养基进行生根培养。
优选地,所述生根培养为培养至形成不定根。时间大概需要5周左右。
优选地,还包括对生根花生苗进行鉴定的步骤。
进一步地,鉴定采用PCR法,PCR所采用的引物如SED ID NO;1和SED ID NO;2所示。
具体地,PCR的反应体系(20μL)为:模板DNA1μL;引物RS-F1μL;引物RS-R1μL;10×buffer 2μL;dNTPs(2.5mmol/L)2μL;Taq DNA聚合酶(10000U/mL)0.2μL。反应条件为:94℃预变性4min;94℃变性30s,50℃退火1min30s,72℃延伸1min 30s,30个循环;然后72℃再延伸10min。
与现有技术相比,本发明的有益效果是:
本发明公开了一种白藜芦醇合酶基因转化花生体系的构建方法,利用农杆菌侵染法将川鄂爬山虎白藜芦醇合成酶RS基因全长序列(1179bp)转化花生,经PCR、Southern印记杂交、Northern杂交等分子生物学检测,证明白藜芦醇合成酶基因RS已整合到花生的基因组中。本发明利用转基因技术提高花生中的RS含量,在改善花生抗性的同时促进下游产物白藜芦醇的含量增加,为研究RS基因代谢产物的生物学功能及调控机制提供了理论基础,为改良物种抗性和提高代谢物产量提供了一种有效途径。
附图说明
图1为pCAMBIA3300-RJ39-RS-Tnos植物表达载体;
图2为pCAMBIA3300-RS-RJ39-Tnos转基因花生的PCR鉴定(1-8:转基因花生的PCR鉴定阳性结果;-:野生型花生的DNA为模板的负对照;+:质粒;pCAMBIA3300-RJ39-RS-Tnos为模板的正对照;M:DL2000marker);
图3为转RS基因的花生的PCR扩增、PCR-Southern杂交结果(1:RS阴性植株;2-7:RS阳性植株;8:阴性对照(非转基因材料);9:阳性对照;M:DL2000marker);
图4为Northern blotting分析结果(1-4:RS阳性植株;-:阴性对照(非转基因材料);+:阳性对照)。
具体实施方式
下面对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
下述实施例中的实验方法,如无特殊说明,均为常规方法,下述实施例中所用的试验材料,如无特殊说明,均为可通过常规的商业途径购买得到。
实施例1白藜芦醇合酶基因转化花生体系的构建
1、实验材料与方法
1.1、实验材料
(1)花生组织培养及转RS基因所用培养基:
MS0基本培养基,pH 5.8,固体培养基含0.8%琼脂;
侵染培养基,MS+2.0mg/L 6-BA+0.1mg/L 2,4-D;
再生培养基,MS+3.0mg/L 6-BA+0.1mg/L 2,4-D+350mg/L Cb;
增殖培养基,MS+1.0mg/L 6-BA+0.1mg/L IAA+350mg/L Cb;
筛选培养基,MS+0.1mg/L IBA+2mg/L PPT+350mg/L Cb;
生根培养基,MS+2.0mg/L IBA。无菌苗培养温度为25~28℃,光照度为1000~1200Lx,光照时间14h/d。
注释:MS:MS培养基;6-BA:6-苄氨基嘌呤;2,4-D:2,4-二氯苯氧乙酸;Cb:羧苄青霉素;IAA:吲哚乙酸;IBA:吲哚丁酸;PPT草丁膦。
(2)菌种及表达载体
根癌农杆菌(Agrobacterium tumefaciens)、LBA4404(Rif R,SmR)、表达载体pCAMBIA3300、RS基因重组载体pCAMBIA3300-RJ39-RS-Tnos(RJ39为果实特异启动子)由北京大学生命科学院植物基因工程与蛋白质工程国家重点实验室构建并保存。
(3)引物、酶和试剂
扩增RS基因的引物(由上海生工生物工程技术公司合成):
RS-F:5’-CGGGATCCGCCATGGCTTCAGTTGAGAAATTTAG-3’(SED ID NO;1);
RS-R:5’-GTGAGCTCGAAGGGTAAACCATTCTCTTTTAT-3’(SED ID NO;2);
T4 DNA连接酶、Taq DNA聚合酶、DNA限制性内切酶、pMD18T载体、d NTPs、凝胶回收试剂盒等购于Takara公司(日本);卡那霉素、链霉素、利福平等购自北京鼎国生物技术公司;测序由上海生物工程有限公司完成。
(4)花生
花生品种为鲁花18号,购于淘宝网。
1.2、实验方法
(1)花生无菌苗的培养
将鲁花18号的花生经70%乙醇消毒3分钟,10%次氯酸钠灭菌15分钟,无菌水洗三次后接种于MS0培养基。
(2)农杆菌介导转化法
利用根癌农杆菌(Agrobacterium tumefaciens)LBA4404(RifR,SmR)和质粒pCAMBIA3300-RJ39-RS-Tnos,用液氮冻融法将含有目的基因的质粒转化到农杆菌感受态LBA4404中(液氮冻2min,37℃孵育5min),筛选的阳性菌落在含Rif(50mg/L),Sm(100mg/L)和Kan(100mg/L)的液体CYM培养基中28℃振荡培养2d至对数生长期,制得农杆菌菌液。将花生无菌苗叶片切成0.5cm2的小片,用经MS0液体培养基稀释100倍的农杆菌菌液侵染20min,侵染后的叶片用无菌滤纸吸干除去多余的农杆菌菌液后放入MS0培养基中共培养(暗培养)3d,将共培养后的花生叶盘转移到再生培养基上,分化出的花生苗高2cm左右后转到的生根培养基上,5周左右形成不定根,将生根花生苗移栽至温室培养。
(3)转RS基因植物的鉴定与检测
1)转RS基因花生的PCR检测
剪取转RS基因花生和非转RS基因花生的叶片,采用CTAB法提取转化体和非转化体的基因组DNA,PCR反应体系(20μL)为:模板DNA1μL;引物RS-F1μL;引物RS-R1μL;10×buffer2μL;dNTPs(2.5mmol/L)2μL;Taq DNA聚合酶(10000U/mL)0.2μL。反应条件为:94℃预变性4min;94℃变性30s,50℃退火1min30s,72℃延伸1min 30s,30个循环;然后72℃再延伸10min。取PCR产物在0.7%琼脂糖凝胶上电泳,凝胶成像仪观察目的基因的大小。
2)转RS基因花生的Southern印记杂交检测
采用CTAB(十六烷基三甲基溴化铵)法提取花生的幼叶总DNA、PCR(与步骤1)相同)、转膜、制备探针、杂交和检测。
探针的制备和预处理:吸取农杆菌LBA4404质粒DNA 2μL,用ddH2O将其稀释10倍,在沸水中处理15min使其质粒DNA变性,在变性体系中加入预冷处理的4μL DIG溶液,5000rpm离心后放入37℃金属浴预处理18h。预处理后,将离心管转入70℃水浴中终止预处理反应15min,制备得到质粒探针。然后进行以下操作:①预杂交:将配置好的杂交液装入杂交瓶预热,装入烘干的硝酸纤维素滤膜,杂交炉42℃预杂交2h。②杂交处理:倒掉预杂交液,加入已经制备好的探针,杂交炉50℃杂交处理24h。③洗膜处理:取出杂交滤膜,用洗膜液漂洗3次,洗涤充分后再将其使用Washing buffer冲洗15min,在封闭液中封闭处理15min,再次使用Washing buffer冲洗2次,每次10min。最后,将滤膜放置在Detection buffer中处理15min后备用。④Southern blot显色反应:滤膜取出后用滤纸吸干,并放入含有显色试剂NBT/BCIP的Detection buffer中显色处理,避光静止处理24h。显色结束后观察滤膜上的杂交条带,使用TE缓冲液冲洗处理滤膜15min,观察成像和条带情况。
3)转RS基因植株的Northern杂交检测
采用Trizol法提取转基因与非转基因花生的幼叶总RNA、电泳、转膜、制备探针、杂交和检测。
探针的制备和标记:50μL反应体系中加入5μL 10×PCR buffer,引物RS-F和
RS-R各50pmol,1μL dNTP,0.5μL Taq酶,0.1μL DIG-labeled溶液,2μL模板DNA。反应结束后电泳检测制备探针的标记效果并储于-20℃备用。使用前沸水中煮15分钟,迅速移至冰上备用。
说明:DIG标记效率的检验一般的Kit都有,PCR法标记的DNA很少测检测效率,因为这种方法标记效率比较高,不像随机引物法,受实验条件的影响很大。效率的检测方法就是根据标准探针的梯度显影强度,判断待测探针中标记上DIG的探针量,杂交时按照所估测的含有DIG的探针量计算加入的探针量,而不是探针的总含量。
杂交和检测:①预杂交:将膜的反面紧贴杂交瓶,加入预杂交液5mL,42℃预杂交3h。②杂交:将变性的探针(95~100℃变性5min,冰浴5min)加入到预杂交液中,42℃杂交16h。③洗膜:倾去杂交液,加入2×SSC/0.1%SDS,室湿洗15min,再用0.2×SSC/0.1%SDS,55℃洗15min×2次。④压片:将膜用双蒸水漂洗片刻,用滤纸吸去膜上水分。用保鲜膜将尼龙膜包好,置于暗盒中,在暗室中压上X光片。暗盒置-70℃放射自显影7天左右检测条带。
2、结果与分析
2.1、转基因花生的PCR鉴定
北京大学生命科学院植物基因工程与蛋白质工程国家重点实验室从川鄂爬山虎克隆的白藜芦醇合成酶RS基因,基因序列长1179bp,编码392个氨基酸。利用草莓果实特异性启动子RJ39构建pCAMBIA3300-RJ39-Tnos植物表达载体(钱昆.白藜芦醇合酶基因对草莓遗传转化的研究[D].福建农林大学,2010.)(图1)。
将植物表达载体pCAMBIA3300-RJ39-RS-Tnos转化到根癌农杆菌LBA4404中,筛选标记基因为抗除草剂抗性基因(bar),通过农杆菌介导的叶盘法转化鲁花18花生,得到50个抗性株系,提取基因组DNA,用引物RS-F和RS-R进行PCR扩增,电泳结果表明有18个株系为阳性,转化率达36%。转RS基因阳性花生植株扩增条带大小约1.1kb,而负对照没有。部分转RS基因花生植株的PCR结果如图2所示。
2.2、转基因花生的Southern印记杂交检测
从18个转RS阳性株系中随意选择7个株系做Southern印记杂交检测,采用CTAB法提取花生的幼叶总DNA、PCR、转膜、制备探针、杂交和检测。结果6个株系均为转基因花生株系,一个为RS阴性株系(图3)。
2.3、转基因植株的Northern杂交检测
选取PCR鉴定呈阳性的转RS基因的花生的总RNA,经甲醛变性电泳后转移至HybondN+膜上。用地高辛标记的全长RS基因片段作探针与之杂交,通过Northern杂交检测RS基因在转基因花生中的转录水平。Northern blotting分析结果表明,外源的RS基因能够在转基因花生叶片中正常转录,而非转基因材料则未有杂交信号(图4)。
以上对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。
序列表
<110> 珠海科技学院
<120> 一种白藜芦醇合酶基因转化花生体系的构建
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 34
<212> DNA/RNA
<213> RS-F(Artificial Sequence)
<400> 1
cgggatccgc catggcttca gttgagaaat ttag 34
<210> 2
<211> 32
<212> DNA/RNA
<213> RS-R(Artificial Sequence)
<400> 2
gtgagctcga agggtaaacc attctctttt at 32

Claims (10)

1.一种白藜芦醇合酶基因转化花生体系的构建方法,其特征在于,包括以下步骤:
S1、将质粒pCAMBIA3300-RJ39-RS-Tnos转化到农杆菌感受态LBA4404中,并将筛选的阳性菌落在含Rif,Sm和Kan的培养基中培养至对数生长期,制得农杆菌菌液;
S2、将花生无菌苗叶片切成小片,然后用步骤S1的农杆菌菌液进行侵染,侵染后放入MS0培养基中共培养,再转移到再生培养基上进行分化培养,分化培养后再转移到生根培养基上进行生根培养,最后将生根花生苗移栽至温室培养。
2.根据权利要求1所述的一种白藜芦醇合酶基因转化花生体系的构建方法,其特征在于,将质粒pCAMBIA3300-RJ39-RS-Tnos转化到农杆菌感受态LBA4404时,采用液氮冻融法。
3.根据权利要求2所述的一种白藜芦醇合酶基因转化花生体系的构建方法,其特征在于,采用液氮冻融法进行转化时,先液氮冻2min,再37℃孵育5min。
4.根据权利要求1所述的一种白藜芦醇合酶基因转化花生体系的构建方法,其特征在于,所述含Rif,Sm和Kan的培养基为含50mg/L Rif,100mg/L Sm和100mg/L Kan的液体CYM培养基。
5.根据权利要求1所述的一种白藜芦醇合酶基因转化花生体系的构建方法,其特征在于,农杆菌菌液侵染的时间为15-30min。
6.根据权利要求1所述的一种白藜芦醇合酶基因转化花生体系的构建方法,其特征在于,所述共培养采用暗培养的方式,时间为2-4d。
7.根据权利要求1所述的一种白藜芦醇合酶基因转化花生体系的构建方法,其特征在于,分化培养至生苗高1.5-2.5cm后再转到的生根培养基进行生根培养。
8.根据权利要求1所述的一种白藜芦醇合酶基因转化花生体系的构建方法,其特征在于,所述生根培养为培养至形成不定根。
9.根据权利要求1所述的一种白藜芦醇合酶基因转化花生体系的构建方法,其特征在于,还包括对生根花生苗进行鉴定的步骤。
10.根据权利要求9所述的一种白藜芦醇合酶基因转化花生体系的构建方法,其特征在于,鉴定采用PCR法,PCR所采用的引物如SED ID NO;1和SED ID NO;2所示。
CN202210641715.XA 2022-06-07 2022-06-07 一种白藜芦醇合酶基因转化花生体系的构建 Pending CN115141838A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210641715.XA CN115141838A (zh) 2022-06-07 2022-06-07 一种白藜芦醇合酶基因转化花生体系的构建

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210641715.XA CN115141838A (zh) 2022-06-07 2022-06-07 一种白藜芦醇合酶基因转化花生体系的构建

Publications (1)

Publication Number Publication Date
CN115141838A true CN115141838A (zh) 2022-10-04

Family

ID=83408585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210641715.XA Pending CN115141838A (zh) 2022-06-07 2022-06-07 一种白藜芦醇合酶基因转化花生体系的构建

Country Status (1)

Country Link
CN (1) CN115141838A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4440200A1 (de) * 1994-11-10 1996-05-15 Bayer Ag DNA-Sequenzen und ihre Verwendung
CN1748472A (zh) * 2005-10-25 2006-03-22 林忠平 利用川鄂爬山虎sts基因培育含白藜芦醇生菜的方法
WO2008005988A2 (en) * 2006-07-05 2008-01-10 Arkansas State University Research And Development Institute Production of stilbenes and derivatives in plant hairy root cultures
CN101199355A (zh) * 2007-11-29 2008-06-18 山东省农业科学院高新技术研究中心 一种提高花生仁中白藜芦醇含量的方法
CN105505990A (zh) * 2016-01-15 2016-04-20 福建农林大学 特异启动子NtR2驱动AhRESS在花生发状根系产白藜芦醇的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4440200A1 (de) * 1994-11-10 1996-05-15 Bayer Ag DNA-Sequenzen und ihre Verwendung
CN1748472A (zh) * 2005-10-25 2006-03-22 林忠平 利用川鄂爬山虎sts基因培育含白藜芦醇生菜的方法
WO2008005988A2 (en) * 2006-07-05 2008-01-10 Arkansas State University Research And Development Institute Production of stilbenes and derivatives in plant hairy root cultures
CN101199355A (zh) * 2007-11-29 2008-06-18 山东省农业科学院高新技术研究中心 一种提高花生仁中白藜芦醇含量的方法
CN105505990A (zh) * 2016-01-15 2016-04-20 福建农林大学 特异启动子NtR2驱动AhRESS在花生发状根系产白藜芦醇的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林碧英;钱昆;连肖华;林忠平;张瑜;: "白藜芦醇合酶基因对草莓遗传转化的研究", 热带作物学报, no. 05, pages 848 - 853 *

Similar Documents

Publication Publication Date Title
CN112899245A (zh) 一种乙醛脱氢酶基因DkALDH10及其应用
CN117534744A (zh) 神农香菊转录因子ChiMYB44及其应用
CN114807174B (zh) 一种逆向调控水稻对稻瘟病菌抗性的遗传位点及其应用
CN114591972B (zh) 一种芹菜耐热基因AgDREBA6c及其应用
CN115141838A (zh) 一种白藜芦醇合酶基因转化花生体系的构建
CN116083445A (zh) 一种CrBZR1基因及其应用
CN107022553A (zh) 芍药hsp70基因及其植物表达载体和应用
CN107034231B (zh) 一种中国板栗的基因转化方法
CN113774080A (zh) 一种利用miR156创制高花色素园艺观赏杨树的方法
CN104988176B (zh) 一种提高杜仲含胶量的方法
CN117069817B (zh) 一种通过过表达SlNAC3基因预报低温胁迫提早番茄耐低温方法
CN114958904B (zh) 一种快速获得萝卜转基因材料的方法
CN116751791B (zh) PvPSK3基因在提高禾本科植物遗传转化效率中的应用
CN117511892B (zh) 一种fto蛋白在促进树木繁育中的应用
AU2021107266A4 (en) A method of vacuum infiltration assisting agrobacterium-mediated genetic transformation of sugarcane
CN117187259B (zh) 一种高温逆境下调控植物生长和光合作用的基因及其编码蛋白和应用
CN116479007B (zh) 一种芹菜AgDREBA6a基因及其在提高植物耐高温胁迫中的应用
CN115820689B (zh) 一种多基因串联法提高蔬菜中nmn含量的方法及其应用
CN116375835B (zh) 一种燕子花MYB4b蛋白在调控植物叶片形态中的应用
KR101198648B1 (ko) 직접 신초 유도를 통한 오이 계통의 형질전환 방법 및 상기방법에 의해 제조된 오이 계통 형질전환체
CN106754992B (zh) 一种葡萄抗病相关基因VvPUB17的应用、表达载体及其应用
CN116396370A (zh) 具有提高镉抗性及促进生物量提升的植物编码基因及蛋白和转基因株系
CN116179574A (zh) CmEAF7基因在提高甜瓜耐冷性和/或果实品质中的应用
CN116355870A (zh) 玉米核糖核苷酸还原酶大亚基ZmLSC1基因在植物品种育种中的应用
CN118266404A (zh) 一种快速获得草木樨毛状根的诱导方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination