CN115138826A - 一种近零膨胀Al-ZrW2O8复合材料的制备方法 - Google Patents

一种近零膨胀Al-ZrW2O8复合材料的制备方法 Download PDF

Info

Publication number
CN115138826A
CN115138826A CN202110339364.2A CN202110339364A CN115138826A CN 115138826 A CN115138826 A CN 115138826A CN 202110339364 A CN202110339364 A CN 202110339364A CN 115138826 A CN115138826 A CN 115138826A
Authority
CN
China
Prior art keywords
zrw
composite material
ink
micro
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110339364.2A
Other languages
English (en)
Inventor
王永娣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Jingwei Ultra Pure Material Technology Co.,Ltd.
Original Assignee
Xi'an Bangdao New Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Bangdao New Materials Co ltd filed Critical Xi'an Bangdao New Materials Co ltd
Priority to CN202110339364.2A priority Critical patent/CN115138826A/zh
Publication of CN115138826A publication Critical patent/CN115138826A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/04Casting by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种近零膨胀Al‑ZrW2O8复合材料的制备方法,首先采用3D喷墨打印方法制备ZrW2O8微桁架结构,ZrW2O8微桁架打印结构的前驱体为粒度范围为10‑500μm的ZrW2O8颗粒与水基或有机物基溶液配置形成的稳定流变体;打印出的ZrW2O8微桁架在450‑700℃的空气环境中烧结获得ZrW2O8骨架结构,骨架结构的孔隙率控制为28‑32%;之后将铝或铝合金熔液在400‑750℃的温度范围内渗入ZrW2O8骨架,获得ZrW2O8骨架结构的Al‑ZrW2O8复合材料,复合材料在‑100~100℃温度范围内的热膨胀系数为(‑0.5~0.5)×10‑6K‑1

Description

一种近零膨胀Al-ZrW2O8复合材料的制备方法
技术领域
本发明涉及精密仪器领域低膨胀系数材料的制备方法,特别涉及在宽的温度范围内具有近零膨胀系数的Al-ZrW2O8材料的制备方法。
背景技术
近零膨胀材料是支撑精密器件结构尺寸稳定性、低环境敏感性及冷热冲击情况下结构和功能方面稳定性的重要需求,是卫星通讯、光学***、电子封装、精密仪器和信息安全等领域的关键材料。
因瓦合金(Invar)是一种在室温附近具有极低热膨胀系数的合金(约为1.5 ×10- 6K-1),制造工艺成熟、可靠,广泛应用于长度标尺、大地测量基线尺、微波技术、液态气体容器、谐振腔、航天遥感器、精密激光、光学测量***、波导管结构件、天文望远镜支撑***以及光学透镜等科学仪器中。然而,因瓦合金存在密度大(密度8.1g/cm3)、低膨胀区温度范围窄(-20~20℃)、热导率低 (仅为45钢导热系数的1/4~1/3),难以满足现代航空航天和光学通讯领域的发展需求。
ZrW2O8(钨酸锆)是一种各向同性的负膨胀材料,在-270~770℃温度区间内展现负膨胀效应,负膨胀系数达到-8.9×10-6K-1,与铝合金匹配可获得一种密度小、热导率高、在更宽温度范围内具有近零热膨胀系数的复合材料。然而,已经制备出的Al-ZrW2O8材料热膨胀系数往往显著大于按二组元匹配得到的理论计算值、也不能获得近零的膨胀系数。
已经制备出的Al-ZrW2O8材料不能获得近零热膨胀系数的原因在于ZrW2O8在材料中呈弥散的颗粒状分布,虽然其单独颗粒能够在温度变化过程中为周围的铝基体提供变形空间、降低整个材料的变形量,但由于ZrW2O8颗粒之间不能彼此协调发挥整体约束作用,铝合金基体仍然能够不受约束地向周围的3D空间变形,使材料的热膨胀系数显著大于根据Al和ZrW2O8二组元各自热膨胀系数理论计算得出的结果,更无法获得近零的热膨胀系数值。
如果能够改变Al-ZrW2O8材料中ZrW2O8相的分散分布状态,将ZrW2O8相由离散分布改变为连续骨架状分布,则可以使ZrW2O8不仅在微观上为铝相提供反向变形空间,在宏观上也能够发挥整体约束作用,使ZrW2O8以骨架形式完全承担铝合金基体由于温度变化产生的内部应力和抵消其变形程度,在整体结构上约束Al合金相的反向变形,Al相和ZrW2O8相二者的相互配合制造出相当于理论计算值的热膨胀系数,从而可由成份设计精确制造出近零膨胀系数的Al-ZrW2O8复合材料。
发明内容
本发明的目的在于提供一种具有ZrW2O8连续骨架结构的Al-ZrW2O8材料复合材料的制备方法,从而在Al-ZrW2O8材料中实现铝合金相和钨酸锆相微观、宏观上都彼此约束的整体结构,获得在更宽温度范围内具有近零热膨胀系数值的Al-ZrW2O8复合材料。
为了达到上述目的,本发明的技术原理如下:
首先采用3D喷墨打印方法获得三维ZrW2O8骨架结构。之后将铝合金渗入连接起来的ZrW2O8骨架,获得Al合金相和ZrW2O8在宏观和微观尺度都彼此约束的整体结构。
为了达到发明目的,本发明的技术方案是这样实现的:
一种近零膨胀Al-ZrW2O8复合材料的制备方法,包括以下步骤:
1.用3D喷墨打印和烧结方法制备ZrW2O8骨架结构。
(1)采用粒度范围为10-500μm的ZrW2O8颗粒,将颗粒加入水基和有机物基的溶液中,制备出ZrW2O8颗粒悬浮液,配置形成稳定的流变体;
(2)将含ZrW2O8颗粒的流变体装入3D喷墨打印机墨盒作为打印墨水,设定欲打印结构的计算机程序,在程序控制下经针头挤出流变体,形成ZrW2O8颗粒和添加剂组成的微桁架3D结构。
(3)将微桁架经干燥和在450-700℃的空气环境中烧结,去除添加剂组分并获得ZrW2O8骨架结构,骨架结构的孔隙率控制为28-32%。
2.在400-750℃的温度范围将铝或铝合金熔液渗入ZrW2O8骨架,获得 ZrW2O8骨架结构的Al-ZrW2O8复合材料,复合材料在-100~100℃温度范围内的热膨胀系数为(-0.5~0.5)×10-6K-1
具体实施方式
下面结合实施例详细说明本发明的实施方式。
实施例一
本实施例的步骤为:
1.用3D喷墨打印和烧结方法制备ZrW2O8骨架结构。
(1)制备水基打印墨水(ZrW2O8颗粒的水基悬浮液),ZrW2O8颗粒的粒度范围为100-150μm:将去离子水:聚乙二醇(PEG-4000)溶液=4:1混合液作为预混液,加入0.2%的三乙醇胺分散剂,混合均匀后加入20wt%的ZrW2O8颗粒,搅拌8小时后用盐酸将溶液PH值调节到7左右,获得喷墨打印用ZrW2O8颗粒墨水。
(2)打印ZrW2O8颗粒的微桁架结构:将制得的水基液体混合物(墨水) 转移至3D喷墨打印机的注射器中,在计算机预定程序的控制下经由孔径410μm的金属针头挤出,打印速度为20mm·s-1,打印成30/60°交替重复的微桁架结构,微桁架的宏观尺寸为200×200×100mm,其中每一层内纤维间距为1mm,上下相邻两层间距为350μm。微桁架结构的表观孔隙率约为60%。
(3)制备ZrW2O8骨架:将打印好的前驱体在80℃的空气炉中干燥12 小时,去除残余溶剂。之后在空气环境中烧结,烧结方法为以2℃/min 的升温温速度升温至600℃,保温2h,制备出ZrW2O8骨架,骨架孔隙率为28-30%。
2.熔渗铝合金:将烧结好的ZrW2O8骨架放入石墨模内、骨架上方放入含镁25%、质量比ZrW2O8骨架多10%的铝镁合金,石墨模周围用石墨纸将ZrW2O8骨架、铝镁合金与石墨模隔离。将石墨模及其中的ZrW2O8骨架、铝镁合金在真空加热炉内的真空环境中加热到 580℃保温,之后在真空炉内充入0.5MPa的氩气,将铝-镁熔液在压力下渗入ZrW2O8骨架中,制备出接近零热膨胀系数值的、骨架结构的Al-ZrW2O8复合材料。
实施例二
本实施例的步骤为:
1.用3D喷墨打印和烧结方法制备ZrW2O8骨架结构。
(1)制备打印墨水(ZrW2O8颗粒的有机混合物):将聚苯乙烯(聚合物粘结剂):二氯甲烷(溶剂):邻苯二甲酸二丁酯(增塑剂):乙二醇一丁醚(表面活性剂)按4:12:1:6的质量比例混合静置直到固体完全溶解,之后将粒度范围为74-100μm的ZrW2O8颗粒加入配好的有机液体中,ZrW2O8颗粒与有机液体的质量比为1:1.2,对 ZrW2O8粉末与有机液体的混合物搅拌3小时,制成均匀的混合物。将得到的液体混合物在50℃水浴加热2-4小时,使液体混合物的黏度不断提升直至可以用于打印。
(2)打印ZrW2O8颗粒的微桁架结构:将制得的液体混合物(墨水)转移至3D墨水打印机的注射器中,在计算机预定程序的控制下经由孔径300μm的金属针头挤出,打印速度为15mm·s-1,打印成0/90°交替重复的微桁架结构,微桁架的宏观尺寸为200×200×150mm,其中每一层内纤维间距为0.8mm,上下相邻两层间距为200μm。微桁架结构的表观孔隙率约为60%。
(3)制备ZrW2O8骨架:将打印好的前驱体在80℃的空气炉中干燥12 小时,去除残余溶剂。之后在空气环境中烧结,烧结方法为以2℃/min 的升温温速度升温至650℃,保温2h,制备出ZrW2O8骨架,骨架孔隙率为29-31%。
2.熔渗铝合金:将烧结好的ZrW2O8骨架放入钢模内,钢模及其中的 ZrW2O8骨架被加热到570-580℃保温,之后将温度为590-610℃、含有10wt%硅的铝-硅熔液浇铸入钢模中并施加50MPa的机械压力,将铝-硅熔液在压力下渗入ZrW2O8骨架中,制备出-100~100℃温度范围内接近零热膨胀系数值的、骨架结构的Al-ZrW2O8复合材料。
实施例三
1.用3D喷墨打印和烧结方法制备ZrW2O8骨架结构。
(1)制备水基打印墨水(ZrW2O8颗粒的水基悬浮液),ZrW2O8颗粒的粒度范围为150-200μm:采用去离子水:聚乙二醇(PEG-1000)溶液=1:1混合液作为预混液,混合均匀后加入15wt%的ZrW2O8颗粒,搅拌8小时,作为喷墨打印用的含ZrW2O8颗粒墨水。
(2)打印ZrW2O8颗粒的微桁架结构:将制得的水基液体混合物(墨水) 转移至3D喷墨打印机的注射器中,在计算机预定程序的控制下经由孔径450μm的金属针头挤出,打印速度为25mm·s-1,打印成螺旋交替重复的微桁架结构,微桁架的宏观尺寸为300×300×200mm,其中每一层内纤维间距为1mm,上下相邻两层间距为300μm。微桁架结构的表观孔隙率约为60%。
(3)制备ZrW2O8骨架:将打印好的前驱体在100℃的空气炉中干燥12 小时,之后在空气环境中烧结,烧结方法为以2℃/min的升温速度升温至620℃,保温3h,制备出ZrW2O8骨架,骨架孔隙率为 28-30%。
2.熔渗铝合金:将烧结好的ZrW2O8骨架放入钢模内,钢模及其中的 ZrW2O8骨架被加热到550-560℃保温,之后将温度为690-700℃的纯铝熔液浇铸入钢模中并施加60MPa的机械压力,将纯铝熔液在压力下渗入ZrW2O8骨架中,制备出在-100~100℃温度范围内的热膨胀系数为(-0.5~0.5)×10-6K-1的Al-ZrW2O8骨架结构复合材料。

Claims (5)

1.一种近零膨胀Al-ZrW2O8复合材料的制备方法,其特征在于,包括以下步骤:
首先采用3D喷墨打印方法制备ZrW2O8微桁架结构,将微桁架在空气中烧结获得ZrW2O8骨架结构,骨架结构的孔隙率控制为28-32%;之后将铝或铝合金熔液渗入ZrW2O8骨架,获得ZrW2O8骨架结构的Al-ZrW2O8复合材料,复合材料的热膨胀系数范围为(-0.5~0.5)×10-6K-1
2.根据权利要求1所述的一种近零膨胀Al-ZrW2O8复合材料的制备方法,其特征在于,所述的3D喷墨打印墨水制备方式为:采用粒度范围为10-500μm的ZrW2O8颗粒,将ZrW2O8颗粒加入水基或有机物基的溶液中,制备出Al-ZrW2O8颗粒悬浮液,配置形成稳定的流变体。
3.根据权利要求1所述的一种近零膨胀Al-ZrW2O8复合材料的制备方法,其特征在于,所述的3D喷墨打印方式为:将含ZrW2O8颗粒的流变体装入3D喷墨打印机墨盒作为打印墨水,设定欲打印结构的计算机程序,在程序控制下经针头挤出流变体,形成ZrW2O8颗粒和添加剂组成的3D微桁架结构。
4.根据权利要求1所述的一种近零膨胀Al-ZrW2O8复合材料的制备方法,其特征在于,所述的烧结方式为:将微桁架经干燥和在450-700℃的空气环境中烧结,去除添加剂组分并获得ZrW2O8骨架,骨架结构的孔隙率控制为28-32%。
5.根据权利要求1所述的一种近零膨胀Al-ZrW2O8复合材料的制备方法,其特征在于,所述的熔渗方式为:在400-750℃的温度范围将纯铝或铝合金熔液渗入ZrW2O8骨架,获得ZrW2O8骨架结构的Al-ZrW2O8复合材料,复合材料在-100~100℃温度范围内的热膨胀系数为(-0.5~0.5)×10-6K-1
CN202110339364.2A 2021-03-30 2021-03-30 一种近零膨胀Al-ZrW2O8复合材料的制备方法 Pending CN115138826A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110339364.2A CN115138826A (zh) 2021-03-30 2021-03-30 一种近零膨胀Al-ZrW2O8复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110339364.2A CN115138826A (zh) 2021-03-30 2021-03-30 一种近零膨胀Al-ZrW2O8复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN115138826A true CN115138826A (zh) 2022-10-04

Family

ID=83404056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110339364.2A Pending CN115138826A (zh) 2021-03-30 2021-03-30 一种近零膨胀Al-ZrW2O8复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN115138826A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969123A (en) * 1975-02-11 1976-07-13 The United States Of America As Represented By The United States Energy Research And Development Administration Refractory ceramic compositions and method for preparing same
US6132676A (en) * 1997-06-30 2000-10-17 Massachusetts Institute Of Technology Minimal thermal expansion, high thermal conductivity metal-ceramic matrix composite
CN1718815A (zh) * 2004-07-06 2006-01-11 中南大学 铝基钨酸锆颗粒复合材料的制备方法
CN104557037A (zh) * 2014-12-30 2015-04-29 郑州大学 一种新型近零膨胀陶瓷及其固相烧结合成方法
CN105886823A (zh) * 2016-06-27 2016-08-24 哈尔滨工业大学 一种放电等离子烧结制备多孔钨酸锆/铝复合材料的方法
CN108129168A (zh) * 2017-12-29 2018-06-08 广东省材料与加工研究所 一种基于3d打印的铝基复合材料的制备方法及铝基复合材料
CN108167469A (zh) * 2018-01-31 2018-06-15 兰州大学 一种钨酸锆负热膨胀材料智能阀门
CN112501469A (zh) * 2020-10-27 2021-03-16 华南理工大学 基于喷墨打印技术制备石墨烯增强铝基复合材料的方法及制得的石墨烯增强铝基复合材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969123A (en) * 1975-02-11 1976-07-13 The United States Of America As Represented By The United States Energy Research And Development Administration Refractory ceramic compositions and method for preparing same
US6132676A (en) * 1997-06-30 2000-10-17 Massachusetts Institute Of Technology Minimal thermal expansion, high thermal conductivity metal-ceramic matrix composite
CN1718815A (zh) * 2004-07-06 2006-01-11 中南大学 铝基钨酸锆颗粒复合材料的制备方法
CN104557037A (zh) * 2014-12-30 2015-04-29 郑州大学 一种新型近零膨胀陶瓷及其固相烧结合成方法
CN105886823A (zh) * 2016-06-27 2016-08-24 哈尔滨工业大学 一种放电等离子烧结制备多孔钨酸锆/铝复合材料的方法
CN108129168A (zh) * 2017-12-29 2018-06-08 广东省材料与加工研究所 一种基于3d打印的铝基复合材料的制备方法及铝基复合材料
CN108167469A (zh) * 2018-01-31 2018-06-15 兰州大学 一种钨酸锆负热膨胀材料智能阀门
CN112501469A (zh) * 2020-10-27 2021-03-16 华南理工大学 基于喷墨打印技术制备石墨烯增强铝基复合材料的方法及制得的石墨烯增强铝基复合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄兰萍;陈康华;: "近零膨胀ZrW_2O_8/A l6013复合材料的制备与性能", 金属热处理, no. 01, pages 20 - 22 *

Similar Documents

Publication Publication Date Title
Zhao et al. Direct ink writing of continuous SiO 2 fiber reinforced wave-transparent ceramics
US7105235B2 (en) Isotropic zero CTE reinforced composite materials
CN103223689B (zh) 一种梯度功能材料型芯型壳一体化陶瓷铸型的制备方法
Tang et al. Layered extrusion forming—a simple and green method for additive manufacturing ceramic core
EP2851142A1 (en) Molding sand for rapid prototyping
CN104526838A (zh) 陶瓷3d打印成型的方法
Fan et al. Anisotropy management on microstructure and mechanical property in 3D printing of silica-based ceramic cores
Dong et al. Additive manufacturing of silicon nitride ceramics: A review of advances and perspectives
Shen et al. Fused deposition fabrication of high-quality zirconia ceramics using granular feedstock
IT201800006916A1 (it) “sintesi in situ, densificazione e conformazione di ceramiche non ossidiche mediante tecnologie di produzione additive sottovuoto”
Zheng et al. Improved mechanical properties of SiB6 reinforced silica-based ceramic cores fabricated by 3D stereolithography printing
Saha et al. Additive manufacturing of ceramics and cermets: present status and future perspectives
Zhang et al. Effects of particle grading on properties of silica ceramics prepared by selective laser sintering
Hur et al. Material extrusion for ceramic additive manufacturing with polymer-free ceramic precursor binder
CN105478683A (zh) 一种碳纤维增强镁基复合材料空心管及其制备方法
Zhen et al. A glass-ceramic coating with self-healing capability and high infrared emissivity for carbon/carbon composites
CN104550975B (zh) 一种快速注射成型制备硅铝合金电子封装材料的方法
Zheng et al. Preparation of high-performance silica-based ceramic cores with B4C addition using selective laser sintering and SiO2–Al2O3 sol infiltration
Yin et al. Influence of debinding parameter and nano-ZrO2 particles on the silica-based ceramic cores fabricated by stereolithography-based additive manufacturing
CN115138826A (zh) 一种近零膨胀Al-ZrW2O8复合材料的制备方法
Li et al. Controlled anisotropy in 3D printing of silica-based ceramic cores through oxidization reaction of aluminum powders
Miao et al. Zero sintering-induced shrinkage of porous oxide ceramics
CN103242044A (zh) 一种BN/Si3N4复相陶瓷的凝胶注模成型制备方法
Cui High volume fraction SiCp/Al composites prepared by pressureless melt infiltration: processing, properties and applications
CN111747741A (zh) 一种3d打印材料及其制备方法、3d打印方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230928

Address after: 710061 Room 808, Building 5, Xizhang Er Village Headquarters Economic Park, Diaotai Street, Fengxi New City, Xixian New District, Xi'an City, Shaanxi Province

Applicant after: Xi'an Jingwei Ultra Pure Material Technology Co.,Ltd.

Address before: Room 411-1, 4th Floor, Building 3, Fengyue Yunchuang Center, Hanchi 1st Road, Haojing Avenue, Fengdong New City, Xi'an City, Shaanxi Province 710005

Applicant before: Xi'an Bangdao New Materials Co.,Ltd.