CN115124363B - 一种耐高温超轻质陶瓷纤维多孔弹性体材料及其制备方法和应用 - Google Patents

一种耐高温超轻质陶瓷纤维多孔弹性体材料及其制备方法和应用 Download PDF

Info

Publication number
CN115124363B
CN115124363B CN202210752515.1A CN202210752515A CN115124363B CN 115124363 B CN115124363 B CN 115124363B CN 202210752515 A CN202210752515 A CN 202210752515A CN 115124363 B CN115124363 B CN 115124363B
Authority
CN
China
Prior art keywords
ceramic
temperature
fiber
light
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210752515.1A
Other languages
English (en)
Other versions
CN115124363A (zh
Inventor
张晚林
刘圆圆
李文静
戴晶鑫
王鹏
张昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Research Institute of Materials and Processing Technology
Original Assignee
Aerospace Research Institute of Materials and Processing Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Research Institute of Materials and Processing Technology filed Critical Aerospace Research Institute of Materials and Processing Technology
Priority to CN202210752515.1A priority Critical patent/CN115124363B/zh
Publication of CN115124363A publication Critical patent/CN115124363A/zh
Application granted granted Critical
Publication of CN115124363B publication Critical patent/CN115124363B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明涉及一种耐高温超轻质陶瓷纤维多孔弹性体材料及其制备方法和应用,所述方法包括如下步骤:将陶瓷微米纤维、表面活性剂和水经高速搅拌分散均匀,形成陶瓷微米纤维分散液,然后往其中加入氧化石墨烯溶液、还原剂和粘结剂并搅拌均匀,再依次经凝胶反应、预冷冻、冷冻干燥、惰性气氛下1200~1600℃热退火处理0.1~2h和空气气氛下300~800℃煅烧处理1~6h,制得耐高温超轻质陶瓷纤维多孔弹性体材料。本发明所制备的耐高温超轻质陶瓷纤维多孔弹性体材料的耐温极限不小于1400℃,最高可达1600℃,既可以作为超轻弹性气凝胶材料的耐高温增强体和红外遮光体,也可单独作为超轻高温隔热材料。

Description

一种耐高温超轻质陶瓷纤维多孔弹性体材料及其制备方法和 应用
技术领域
本发明属于耐高温材料技术领域,尤其涉及一种耐高温超轻质陶瓷纤维多孔弹性体材料及其制备方法和应用。
背景技术
常规珍珠项链结构的陶瓷气凝胶材料具有较低的密度和热导率,是航空航天、建筑、石油管道等众多领域常用的高效隔热材料,然而由于颗粒间不充分的连接,导致材料力学性能低、脆性大,特别是由于纳米结构的高表面能,在高温条件下内部纳米孔结构容易坍塌,难以满足航空航天等领域中瞬间热冲击和长时间承受高温等极端环境应用要求。陶瓷纤维多孔材料是一种由一维连续陶瓷纤维组成的宏观多孔材料,由于陶瓷纤维结构的表面能显著低于颗粒结构材料,因而具有耐高温、抗氧化、热稳定性好和耐机械振动性能好等诸多优点,不仅可以作为常规气凝胶材料的增强体和红外遮光体,也可单独作为高温隔热材料,在航空航天、化工冶金和核能发电等领域具有广阔的应用前景。与刚性陶瓷纤维多孔材料相比,具有较大可逆形变功能的陶瓷纤维弹性多孔材料,由于具有压缩回弹的力学特性,其内部冷结构变形所产生的应力相对较小,无需考虑热匹配问题,同时易于维修和安装,减轻了操作中的负担,因此陶瓷纤维多孔弹性体材料在实际工程应用中具有更加广泛的现实需求,引起了研究者们强烈的关注。
陶瓷纤维多孔弹性体材料,根据所采用陶瓷纤维的尺度范围,可以分为纳米陶瓷纤维弹性体材料和微米陶瓷纤维弹性体材料。近年来,纳米陶瓷纤维弹性体材料取得了较大进展,往往通过利用静电纺丝或者高温气相反应制备得到纳米陶瓷纤维,将陶瓷纳米纤维进行液相分散经冷冻定型和冷冻干燥而制备得到陶瓷纳米纤维气凝胶,具有超轻、超弹、耐高温等特点。中国专利申请CN108840656A报道了一种基于静电纺纳米纤维气凝胶隔热材料及其制备和应用,首先制备纳米纤维,然后制备纤维分散液,随后将所述分散液进行预冻处理,然后脱除其溶剂,形成聚合物纤维基气凝胶再经高温锻烧处理,制得改性纳米纤维气凝胶隔热材料;中国专利申请CN111116221A报道了一种耐高温的莫来石纳米纤维气凝胶的制备方法,以聚氢硅氧烷和仲丁醇铝为原料,采用静电纺丝工艺制备莫来石纳米前驱体纤维布,然后将该前驱体纤维分散采用叔丁醇凝胶注模的方法制备莫来石纳米纤维气凝胶;中国专利申请CN112607740A公开了一种碳化硅纳米纤维气凝胶的制备方法,将SiO2/C凝胶粉铺设在坩埚底部,将制备的蓬松碳纤维毡放至SiO2/C凝胶粉上方、盖上坩埚盖,将坩埚置于高温气氛炉内,制备得到碳化硅纳米纤维气凝胶。然而,上述专利申请中的弹性纳米陶瓷纤维多孔材料,由于纤维直径在几十到数百纳米之间,其表面能仍然较大,在高温下容易发生烧结,导致其耐温极限一般在1100~1300℃,很难达到1300℃以上。此外,由于纳米纤维的制备需要涉及相对复杂的静电纺丝和高温气相反应过程,纳米纤维原料的制备具有一定的技术难度,某种程度上限制了其大规模应用。
商品化的耐高温陶瓷微米纤维其直径一般为数微米到十几微米,长度可达数百微米甚至厘米以上,材料本身的耐温极限基本能超过1400℃,甚至达到1600℃,在耐高温超轻质陶瓷纤维多孔弹性体材料制备上具有显著潜在优势。然而,目前的主流陶瓷纤维弹性体是采用纳米纤维,基本没有考虑用微米纤维作为构筑基元的,原因可能主要是:第一,微米纤维较粗导致非常容易沉降,且微米纤维的密度更大,纵使均匀分散后,也很容易再次团聚、发生沉降,因此很难得到长时稳定分散的微米纤维分散液;第二,微米纤维力学性能相对纳米纤维较差,陶瓷微米纤维如果是随机搭接,呈现散棉状态,其弹性力学性能很差。这两个主要因素导致采用陶瓷微米纤维制备具有高弹性的耐高温超轻质陶瓷纤维多孔弹性体材料难度很大。
因此亟需从材料选择和结构设计方面出发,采用陶瓷微米纤维制备出耐高温超轻质陶瓷纤维多孔弹性体材料。
发明内容
为了解决现有技术中存在的一个或者多个技术问题,本发明提供了一种耐高温超轻质陶瓷纤维多孔弹性体材料及其制备方法和应用。
本发明在第一方面提供了一种耐高温超轻质陶瓷纤维多孔弹性体材料的制备方法,所述方法包括如下步骤:
(1)将陶瓷微米纤维、表面活性剂和水经高速搅拌分散均匀,形成陶瓷微米纤维分散液;
(2)往所述陶瓷微米纤维分散液中加入氧化石墨烯溶液、还原剂和粘结剂并搅拌均匀,然后经凝胶反应,得到陶瓷微米纤维/石墨烯复合湿凝胶;
(3)将所述陶瓷微米纤维/石墨烯复合湿凝胶依次进行预冷冻和冷冻干燥的步骤,得到陶瓷微米纤维/石墨烯复合泡沫;
(4)将所述陶瓷微米纤维/石墨烯复合泡沫依次在惰性气氛下1200~1600℃热退火处理0.1~2h和空气气氛下300~800℃煅烧处理1~6h,制得耐高温超轻质陶瓷纤维多孔弹性体材料。
优选地,所述陶瓷微米纤维为商品化陶瓷微米纤维,优选的是,所述陶瓷微米纤维为氧化铝陶瓷微米纤维、SiBNC陶瓷微米纤维、莫来石陶瓷微米纤维、碳化硅陶瓷微米纤维中的一种或多种;和/或所述陶瓷微米纤维的直径为2~16μm,长度为100~900μm。
优选地,所述表面活性剂为APG1214、APG0810、TX-10、AEO-3、AEG300、AEO-7、异构十三碳醇聚氧乙烯醚1309、SOE表面活性剂、SKYIN EP2445表面活性剂中的一种或多种。
优选地,在步骤(1)中:所述陶瓷微米纤维、表面活性剂与水的质量比为(0.001~0.06):(0.00001~0.001):1,优选为0.01:0.0001:1。
优选地,在步骤(1)中:所述高速搅拌的速度为2000~4000rpm,时间为1~6h。
优选地,在步骤(2)中:所述氧化石墨烯溶液中含有的氧化石墨烯的浓度为1~20mg/mL,优选为5mg/mL;所述还原剂选自抗坏血酸、二硫苏糖醇、氢碘酸、亚硫酸钠、水合肼中的一种或多种;和/或所述粘结剂为磷酸二氢铝、磷酸铝、正硅酸甲酯、正硅酸乙酯、硅溶胶、铝溶胶中的一种或多种。
优选地,所述氧化石墨烯溶液中含有的氧化石墨烯、还原剂、粘结剂与陶瓷微米纤维的质量比为(0.02~1):(0.08~4):(0.005~0.05):1,优选为0.1:0.8:0.01:1。
优选地,所述凝胶反应的温度为60~90℃,所述凝胶反应的时间为8~24h;所述预冷冻的温度为-60~-30℃,所述预冷冻的时间为8~24h;所述冷冻干燥在冷冻干燥机中进行,在冷冻干燥过程中,控制所述冷冻干燥机腔室的温度为10~35℃,所述冷冻干燥机冷阱的温度为-80℃~-50℃,所述冷冻干燥的压强为1~30Pa,所述冷冻干燥的时间为24~96h;所述热退火处理的温度为1400℃,时间为0.5h;和/或所述煅烧处理的温度为600℃,时间为3h。
本发明在第二方面提供了由本发明在第一方面所述的制备方法制得的耐高温超轻质陶瓷纤维多孔弹性体材料;优选的是,所述耐高温超轻质陶瓷纤维多孔弹性体材料具有如下一个或多个性质:所述耐高温超轻质陶瓷纤维多孔弹性体材料的耐温极限不小于1400℃,最高为1600℃;所述耐高温超轻质陶瓷纤维多孔弹性体材料在历经1400℃高温考核12h后,在50%压缩形变下回弹率在95%以上;所述耐高温超轻质陶瓷纤维多孔弹性体材料的密度为2~70mg/cm3,具有超轻特性;所述耐高温超轻质陶瓷纤维多孔弹性体材料的室温热导率为0.023~0.032W/(m·K)。
本发明在第三方面提供了由本发明在第一方面所述的制备方法制得的耐高温超轻质陶瓷纤维多孔弹性体材料作为超轻弹性气凝胶材料的耐高温增强体和红外遮光体或超轻高温隔热材料在航空航天高温隔热领域、化工冶金高温隔热领域或核能发电高温隔热领域中的应用。
本发明与现有技术相比至少具有如下有益效果:
(1)本发明制备所述耐高温超轻质陶瓷纤维多孔弹性体材料可以直接采用商品化、货架化陶瓷微米纤维产品作为起始原料,克服了常规方法中需要采取静电纺丝、高温气相反应从头来制备陶瓷纳米纤维的复杂工艺流程,成本更低,整个制备方法更简单,并可实现宏观大尺寸制备,也有利于实际工程化应用。
(2)本发明方法制备的所述耐高温超轻质陶瓷纤维多孔弹性体材料的耐温极限大幅领先目前的纳米纤维弹性气凝胶,例如在一些具体实施例中制备的耐高温氧化铝陶瓷纤维多孔弹性体材料的耐温性为1400℃,耐高温碳化硅陶瓷纤维多孔弹性体材料的耐温性为1500℃,耐高温莫来石陶瓷纤维多孔弹性体材料的耐温性为1600℃,特别是本发明中的这种耐温性考核是基于马弗炉全面考核而非喷灯火焰的片面考核,能满足超高温极端热环境下的隔热需求。
(3)本发明方法制备的所述耐高温超轻质陶瓷纤维多孔弹性体材料的弹性力学行为和抗疲劳性能显著提升,这归功于超高弹性、超抗疲劳特性的石墨烯气凝胶模板效应,所制备的耐高温超轻质陶瓷纤维多孔弹性体材料在经1400℃及以上高温考核后,50%压缩形变下回弹率在95%以上,历经10000次压缩循环后,50%压缩形变下回弹率仍在85%以上;并且,本发明发现,本发明方法制备的所述耐高温超轻质陶瓷纤维多孔弹性体材料采用陶瓷微米纤维作为原料相比采用陶瓷纳米纤维作为原料,具有更优异的高温力学性能。
附图说明
图1是本发明实施例1制得的陶瓷微米纤维分散液在长时稳定16个小时后稳定分散的外形图。
图2是本发明实施例1制得的耐高温超轻质陶瓷纤维多孔弹性体材料的外形图;从图2中可以看出,所述耐高温超轻质陶瓷纤维多孔弹性体材料具有超轻的特性,能承载在一片红叶上不会把叶片压弯。
图3是本发明实施例1制得的耐高温超轻质陶瓷纤维多孔弹性体材料的扫描电镜图。
图4是本发明实施例1制得的耐高温超轻质陶瓷纤维多孔弹性体材料的热重图。
图5是本发明实施例1制得的耐高温超轻质陶瓷纤维多孔弹性体材料在空气气氛1400℃高温马弗炉考核12h后的50%压缩形变下的压缩回弹图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明在第一方面提供了一种耐高温超轻质陶瓷纤维多孔弹性体材料的制备方法,所述方法包括如下步骤:
(1)将陶瓷微米纤维、表面活性剂和水经高速搅拌分散均匀,形成陶瓷微米纤维分散液;在本发明中,所述陶瓷微米纤维为市面上可以直接购买的商品化陶瓷微米纤维;在本发明中,陶瓷微米纤维(微米陶瓷纤维)指的是直径在微米级寸的陶瓷纤维,陶瓷纳米纤维(纳米陶瓷纤维)指的是直径在纳米级的陶瓷纤维。
(2)往所述陶瓷微米纤维分散液中加入氧化石墨烯溶液、还原剂和粘结剂并搅拌均匀,然后经凝胶反应,得到陶瓷微米纤维/石墨烯复合湿凝胶;在本发明中,所述氧化石墨烯溶液指的是氧化石墨烯水溶液;在步骤(2)中,所述搅拌的速度例如为2000~4000rpm,所述搅拌的时间例如为5~15min;
(3)将所述陶瓷微米纤维/石墨烯复合湿凝胶依次进行预冷冻和冷冻干燥的步骤,得到陶瓷微米纤维/石墨烯复合泡沫;
(4)将所述陶瓷微米纤维/石墨烯复合泡沫依次在惰性气氛(例如氮气气氛和/或氩气气氛)下1200~1600℃热退火处理0.1~2h和空气气氛下300~800℃煅烧处理1~6h,制得耐高温超轻质陶瓷纤维多孔弹性体材料;在本发明中,在空气气氛下煅烧处理的温度更优选为500~800℃;在本发明中,所述耐高温超轻质陶瓷纤维多孔弹性体材料具有超轻质的特性。
本发明提供了一种耐高温超轻质陶瓷纤维多孔弹性体材料的制备方法,一方面通过在制备过程中采用气泡辅助分散和表面静电改性的策略,实现了对直径粗壮的陶瓷微米纤维的长时稳定分散,另一方面利用超高弹性的石墨烯气凝胶独特的多孔结构作为模板,实现了多孔陶瓷纤维材料的弹性力学大幅改善。虽然加入表面活性剂配合高速搅拌是当前纳米纤维、微米纤维进行分散的有效策略,表面活性剂主要是通过吸附在纤维表面改变纤维的电荷特性,从而防止纤维之间团聚和发生沉降;但是本发明精心选用的表面活性剂(所述表面活性剂优选为APG1214、APG0810、TX-10、AEO-3、AEG300、AEO-7、异构十三碳醇聚氧乙烯醚1309、SOE表面活性剂、SKYIN EP2445表面活性剂中的一种或多种)除了具有上述表面改性作用,本发明发现其还具有稳定起泡作用,一方面搅拌过程中产生的气泡在流场的剪切下会发生频繁的变形或旋转,这会进一步对其周围的陶瓷微米纤维进行剪切增强,另一方面气泡的产生能极大改变液体的粘性,这一气液粘性能够起到对陶瓷微米纤维浮力作用,综合作用就是对陶瓷微米纤维具有均匀稳定分散作用;此外,本发明通过弹性石墨烯气凝胶的模板效应,使得分布在石墨烯气凝胶孔壁上的陶瓷微米纤维,在去除石墨烯气凝胶模板后所得的多孔陶瓷纤维材料也同样具有很好的弹性力学。一般而言,由微米陶瓷纤维组成的材料其弹性力学性能不如纳米陶瓷纤维组成的材料,但是本发明凭借超弹性石墨烯气凝胶的模板效应,使所制备的微米陶瓷纤维多孔弹性体材料的力学性能在低温下不逊于纳米陶瓷纤维弹性体材料,而在高温下力学性能尤为突出。
本发明制备所述耐高温超轻质陶瓷纤维多孔弹性体材料可以直接采用商品化、货架化陶瓷微米纤维产品作为起始原料,克服了常规方法中需要采取静电纺丝、高温气相反应从头来制备陶瓷纤维的复杂工艺流程,成本更低,整个制备方法更简单,并可实现宏观大尺寸制备,也有利于实际工程化应用;本发明方法制备的所述耐高温超轻质陶瓷纤维多孔弹性体材料的耐温极限大幅领先目前的纳米纤维弹性气凝胶,例如在一些具体实施例中制备的耐高温氧化铝陶瓷纤维多孔弹性体材料的耐温性为1400℃,耐高温碳化硅陶瓷纤维多孔弹性体材料的耐温性为1500℃,耐高温莫来石陶瓷纤维多孔弹性体材料的耐温性为1600℃,特别是本发明中的这种耐温性考核是基于马弗炉全面考核而非喷灯火焰的片面考核,能满足超高温极端热环境下的隔热需求;本发明方法制备的所述耐高温超轻质陶瓷纤维多孔弹性体材料的弹性力学行为和抗疲劳性能显著提升,这归功于超高弹性、超抗疲劳特性的石墨烯气凝胶模板效应,所制备的耐高温超轻质陶瓷纤维多孔弹性体材料在经1400℃及以上高温考核后,50%压缩形变下回弹率在95%以上,历经10000次压缩循环后,50%压缩形变下回弹率仍在85%以上;并且,本发明发现,本发明方法制备的所述耐高温超轻质陶瓷纤维多孔弹性体材料采用陶瓷微米纤维作为原料相比采用陶瓷纳米纤维作为原料,具有更优异的高温力学性能。
现有技术中有利用陶瓷纤维、碳纤维等纤维材料对石墨烯气凝胶进行力学增强(如参见中国专利申请CN105130380A和CN110156432A等)的相关报道,但是这些复合材料不耐高温(有氧环境),高温一烧,石墨烯会氧化烧掉,CN105130380A中氧化锆纤维虽然会留下,但是由于石墨烯模板结构消失,其中的氧化锆纤维由于无搭接结构,也会随之发生坍塌,成为一团收缩的散棉状态,不会具有弹性力学特性;与这些现有技术不同的是,本发明并不是制备了一种力学性能增强的石墨烯气凝胶,而是利用超高弹性的石墨烯气凝胶独特的多孔结构作为模板,实现了耐高温超轻质陶瓷纤维多孔材料的制备,在经过空气气氛下的煅烧处理,石墨烯气凝胶会被主动烧掉。本发明通过在制备过程中引入粘结剂并且在惰性气氛下高温退火处理后,再在空气气氛下煅烧是针对耐高温超轻质陶瓷纤维多孔弹性体材料制备的独特工艺,具有如下效果:(1)本发明引入粘结剂,是为了能够将陶瓷微米纤维之间搭接起来,但是本发明的粘结剂是散乱分布在陶瓷微米纤维上的,只有少许是分布在纤维搭接节点处的,粘接效果相对不够理想,本发明发现,惰性下高温退火处理会使粘结剂发生一定的融化流动或者使得陶瓷微米纤维表面析出低熔点掺杂相,从而增加粘接界面提高陶瓷微米纤维材料弹性;(2)惰性气氛下退火石墨烯气凝胶会发生高度还原反应,石墨烯片层之间的π-π作用会更显著,从而使石墨烯片之间的搭接会更强,综合起来就是作为模板的石墨烯气凝胶弹性力学更佳;(3)在惰性高温下退火后再在300~800℃空气下进行煅烧去除石墨烯模板,本发明发现,相比直接在1400℃高温有氧环境下的直接煅烧,两步分开的策略,可以先提高陶瓷纤维的力学和弹性性能,然后使得再去除石墨烯气凝胶模板对陶瓷纤维弹性体的影响最小,而若直接在1400℃高温有氧环境下直接煅烧,会由于本发明制备的陶瓷纤维弹性体的密度相对较低,这样一步实现粘接增强和石墨烯去除的过程,导致引起陶瓷纤维体的收缩,甚至结构坍塌、弹性性能降低的问题。
根据一些优选的实施方式,所述陶瓷微米纤维为商品化陶瓷微米纤维,优选的是,所述陶瓷微米纤维为氧化铝陶瓷微米纤维、SiBNC陶瓷微米纤维、莫来石陶瓷微米纤维、碳化硅陶瓷微米纤维中的一种或多种;和/或所述陶瓷微米纤维的直径为2~16μm,长度为100~900μm。
根据一些优选的实施方式,所述表面活性剂为牌号为APG1214(烷基糖苷APG1214)、APG0810(烷基糖苷APG0810)、TX-10(烷基酚聚氧乙烯醚TX-10)、AEO-3(脂肪醇聚氧乙烯醚AEO-3)、AEG300(醇醚糖苷AEG300)、AEO-7(脂肪醇聚氧乙烯醚AEO-7)、异构十三碳醇聚氧乙烯醚1309、SOE表面活性剂、SKYIN EP2445表面活性剂中的一种或多种,优选的是,所述表面活性剂为APG1214,在本发明中,这些产品均可以直接从市面上购买得到。
根据一些优选的实施方式,在步骤(1)中:所述陶瓷微米纤维、表面活性剂与水的质量比为(0.001~0.06):(0.00001~0.001):1,优选为,所述陶瓷微米纤维、表面活性剂与水的质量比为(0.008~0.012):(0.00008~0.00012):1,更优选为0.01:0.0001:1。在本发明中,若所述陶瓷微米纤维相比水的含量过低,在石墨烯有氧煅烧的过程中,容易发生收缩,引起孔结构的坍塌,而若所述陶瓷微米纤维相比水的含量过高,过量的陶瓷微米纤维很难完全均匀分散开,且不利于制备超轻质陶瓷纤维多孔弹性体材料;若所述表面活性剂相比于水的含量过低,无法起到起泡及陶瓷微米纤维表面改性的目的,而表面活性剂相比于水的含量过高,发泡率会过大,且孔过于细腻,均会影响陶瓷微米纤维的分散效果。
根据一些优选的实施方式,在步骤(1)中:所述高速搅拌的速度为2000~4000rpm(例如2000rpm、2500rpm、3000rpm、3500rpm或4000rpm),时间为1~6h(例如1、1.5、2、2.5、3、3.5、4、4.5、5、5.5或6h),更优选为3~6h。
根据一些优选的实施方式,在步骤(2)中:所述氧化石墨烯溶液中含有的氧化石墨烯的浓度为1~20mg/mL,优选为5mg/mL;所述还原剂选自抗坏血酸、二硫苏糖醇、氢碘酸、亚硫酸钠、水合肼中的一种或多种,优选的是,所述还原剂为抗坏血酸;和/或
所述粘结剂为磷酸二氢铝、磷酸铝、正硅酸甲酯、正硅酸乙酯、硅溶胶、铝溶胶中的一种或多种,优选的是,所述粘剂剂为磷酸二氢铝;本发明对这些优选的粘结剂的种类没有特别的要求,采用市面上可以直接购买的产品即可。
根据一些优选的实施方式,所述氧化石墨烯溶液中含有的氧化石墨烯、还原剂、粘结剂与陶瓷微米纤维的质量比为(0.02~1):(0.08~4):(0.005~0.05):1,优选为(0.08~0.3):(0.08~4):(0.005~0.05):1,更优选为0.1:0.8:0.01:1。在本发明中,优选为所述粘结剂与所述陶瓷微米纤维的质量比为(0.005~0.05):1,若粘结剂的含量过少无法起到将陶瓷微米纤维有效粘接起来的目的,会使最终制备的陶瓷纤维弹性体的弹性力学性能较差,但是粘接剂的含量过高,会使得微米纤维之间的搭接程度过高,使材料从弹性力学转变为脆性力学;在本发明中,优选为使得陶瓷微米纤维之间的搭接程度适当,才能使得耐高温超轻质陶瓷纤维多孔弹性体材料具备更好的弹性力学。
根据一些优选的实施方式,所述凝胶反应的温度为60~90℃,所述凝胶反应的时间为8~24h;所述预冷冻的温度为-60~-30℃,所述预冷冻的时间为8~24h;所述冷冻干燥在冷冻干燥机中进行,在冷冻干燥过程中,控制所述冷冻干燥机腔室的温度为10~35℃,所述冷冻干燥机冷阱的温度为-80℃~-50℃,所述冷冻干燥的压强为1~30Pa,所述冷冻干燥的时间为24~96h;所述热退火处理的温度为1400℃,时间为0.5h;和/或所述煅烧处理的温度为600℃,时间为3h。
本发明在第二方面提供了由本发明在第一方面所述的制备方法制得的耐高温超轻质陶瓷纤维多孔弹性体材料;优选的是,所述耐高温超轻质陶瓷纤维多孔弹性体材料具有如下一个或多个性质:所述耐高温超轻质陶瓷纤维多孔弹性体材料的耐温极限不小于1400℃,最高为1600℃;所述耐高温超轻质陶瓷纤维多孔弹性体材料在历经静态空气气氛1400℃高温马弗炉考核12h后,在50%压缩形变下回弹率在95%以上;所述耐高温超轻质陶瓷纤维多孔弹性体材料的密度为2~70mg/cm3,具有超轻特性;所述耐高温超轻质陶瓷纤维多孔弹性体材料的室温热导率为0.023~0.032W/(m·K)。本发明制得的所述耐高温超轻质陶瓷纤维多孔弹性体材料,既可以作为超轻弹性气凝胶材料的耐高温增强体和红外遮光体,也可单独作为超轻高温隔热材料,而在航空航天、化工冶金和核能发电等高温隔热领域中的应用。
本发明在第三方面提供了由本发明在第一方面所述的制备方法制得的耐高温超轻质陶瓷纤维多孔弹性体材料作为超轻弹性气凝胶材料的耐高温增强体和红外遮光体或超轻高温隔热材料在航空航天高温隔热领域、化工冶金高温隔热领域或核能发电高温隔热领域中的应用。
下文将通过举例的方式对本发明进行进一步的说明,但是本发明的保护范围不限于这些实施例。
实施例1
①将1g氧化铝陶瓷微米纤维(平均直径为3μm、平均长度为230μm)、0.01gAPG1214和100g水称取于烧杯中,以4000rpm的搅拌速度搅拌4h,得到陶瓷微米纤维分散液。
②往上述陶瓷微米纤维分散液中依次加入20mL氧化石墨烯水溶液(浓度为5mg/mL)、0.8g抗坏血酸、0.01g磷酸二氢铝,以4000rpm的搅拌速度搅拌5min搅拌均匀,将混合液倒入反应釜中,并于90℃下进行凝胶反应12h,待反应釜冷却后取出凝胶块体,即得到陶瓷微米纤维/石墨烯复合湿凝胶。
③将上述陶瓷微米纤维/石墨烯复合湿凝胶取出来放入到温度为-40℃的冰箱中冷冻12h,然后放入到冷冻干燥机中进行冷冻干燥,冷冻干燥机内压强控制在20Pa以下,冷冻干燥机腔室温度控制在25℃,冷冻干燥冷阱温度控制在-70℃,冷冻干燥48h后,得到陶瓷微米纤维/石墨烯复合泡沫。
④将上述陶瓷微米纤维/石墨烯复合泡沫放置在气氛炉中,在Ar气氛下进行高温热退火,将炉内温度从室温缓慢升高到1400℃,升温速率为10℃/min,进气速率20mL/min,并在氩气气氛中1400℃下高温热退火处理0.5h,之后自然降温到600℃并在此温度下保持温度恒定,将Ar气氛变为空气气氛,进气速率提高到100mL/min,并在空气气氛中600℃下煅烧处理3h,待自然冷却到室温后,即得到耐高温超轻质陶瓷纤维多孔弹性体材料。
实施例2
实施例2与实施例1基本相同,不同之处在于:
在步骤①中,采用1g碳化硅陶瓷微米纤维(平均直径为6μm、平均长度为480μm)替换实施例1中的氧化铝陶瓷微米纤维(平均直径为3μm、平均长度为230μm)进行实验。
在步骤④中,将上述陶瓷微米纤维/石墨烯复合泡沫放置气氛炉中,在Ar气氛下进行高温热退火,将炉内温度从室温缓慢升高到1500℃,升温速率为10℃/min,进气速率20mL/min,并在氩气气氛中1500℃下高温热退火处理0.5h,之后自然降到700℃并在此温度下保持温度恒定,将Ar气氛变为空气气氛,进气速率提高到100mL/min,并在空气气氛中700℃下煅烧处理3h,待自然冷却到室温后,即得到耐高温超轻质陶瓷纤维多孔弹性体材料。
实施例3
实施例3与实施例1基本相同,不同之处在于:
在步骤①中,采用1g莫来石陶瓷微米纤维(平均直径为10μm、平均长度为800μm)替换实施例1中的氧化铝陶瓷微米纤维(平均直径为3μm、平均长度为230μm)进行实验。
在步骤④中,将上述陶瓷微米纤维/石墨烯复合泡沫放置在气氛炉中,在Ar气氛下进行高温热退火,将炉内温度从室温缓慢升高到1600℃,升温速率为10℃/min,进气速率20mL/min,并在氩气气氛中1600℃下高温热退火处理0.5h,之后自然降到800℃并在此温度下保持温度恒定,将Ar气氛变为空气气氛,进气速率提高到100mL/min,并在空气气氛中800℃下煅烧处理3h,待自然冷却到室温后,即得到耐高温超轻质陶瓷纤维多孔弹性体材料。
实施例4
实施例4与实施例1基本相同,不同之处在于:
在步骤①中,将0.8g氧化铝陶瓷微米纤维(平均直径为3μm、平均长度为230μm)、0.012gAPG1214和100g水称取于烧杯中,以4000rpm的搅拌速度搅拌4h,得到陶瓷微米纤维分散液。
在步骤②中,往上述陶瓷微米纤维分散液中依次加入12.8mL氧化石墨烯水溶液(浓度为5mg/mL)、0.8g抗坏血酸、0.005g磷酸二氢铝,以4000rpm的搅拌速度搅拌5min搅拌均匀,将混合液倒入反应釜中,并于90℃下进行凝胶反应12h,待反应釜冷却后取出凝胶块体,即得到陶瓷微米纤维/石墨烯复合湿凝胶。
实施例5
实施例5与实施例1基本相同,不同之处在于:
在步骤①中,将1.2g氧化铝陶瓷微米纤维(平均直径为3μm、平均长度为230μm)、0.008gAPG1214和100g水称取于烧杯中,以4000rpm的搅拌速度搅拌4h,得到陶瓷微米纤维分散液。
在步骤②中,往上述陶瓷微米纤维分散液中依次加入72mL氧化石墨烯水溶液(浓度为5mg/mL)、0.8g抗坏血酸、0.05g磷酸二氢铝,以4000rpm的搅拌速度搅拌5min搅拌均匀,将混合液倒入反应釜中,并于90℃下进行凝胶反应12h,待反应釜冷却后取出凝胶块体,即得到陶瓷微米纤维/石墨烯复合湿凝胶。
实施例6
实施例6与实施例1基本相同,不同之处在于:
在步骤①中,将0.1g氧化铝陶瓷微米纤维(平均直径为3μm、平均长度为230μm)、0.05gAPG1214和100g水称取于烧杯中,以4000rpm的搅拌速度搅拌4h,得到陶瓷微米纤维分散液。
在步骤②中,往上述陶瓷微米纤维分散液中依次加入100mL氧化石墨烯水溶液(浓度为5mg/mL)、0.8g抗坏血酸、0.01g磷酸二氢铝,以4000rpm的搅拌速度搅拌5min搅拌均匀,将混合液倒入反应釜中,并于90℃下进行凝胶反应12h,待反应釜冷却后取出凝胶块体,即得到陶瓷微米纤维/石墨烯复合湿凝胶。
实施例7
实施例7与实施例1基本相同,不同之处在于:
在步骤①中,将6g氧化铝陶瓷微米纤维(平均直径为3μm、平均长度为230μm)、0.01gAPG1214和100g水称取于烧杯中,以4000rpm的搅拌速度搅拌4h,得到陶瓷微米纤维分散液。
在步骤②中,往上述陶瓷微米纤维分散液中依次加入480mL氧化石墨烯水溶液(浓度为5mg/mL)、0.8g抗坏血酸、0.01g磷酸二氢铝,以4000rpm的搅拌速度搅拌5min搅拌均匀,将混合液倒入反应釜中,并于90℃下进行凝胶反应12h,待反应釜冷却后取出凝胶块体,即得到陶瓷微米纤维/石墨烯复合湿凝胶。
实施例8
实施例8与实施例1基本相同,不同之处在于:
②往上述陶瓷微米纤维分散液中依次加入20mL氧化石墨烯水溶液(浓度为5mg/mL)、0.8g抗坏血酸、0.004g磷酸二氢铝,以4000rpm的搅拌速度搅拌5min搅拌均匀,将混合液倒入反应釜中,并于90℃下进行凝胶反应12h,待反应釜冷却后取出凝胶块体,即得到陶瓷微米纤维/石墨烯复合湿凝胶。
实施例9
实施例9与实施例1基本相同,不同之处在于:
②往上述陶瓷微米纤维分散液中依次加入20mL氧化石墨烯水溶液(浓度为5mg/mL)、0.8g抗坏血酸、0.06g磷酸二氢铝,以4000rpm的搅拌速度搅拌5min搅拌均匀,将混合液倒入反应釜中,并于90℃下进行凝胶反应12h,待反应釜冷却后取出凝胶块体,即得到陶瓷微米纤维/石墨烯复合湿凝胶。
实施例10
实施例10与实施例1基本相同,不同之处在于:
在步骤④中,将上述陶瓷微米纤维/石墨烯复合泡沫放置在气氛炉中,在Ar气氛下进行高温热退火,将炉内温度从室温缓慢升高到1400℃,升温速率为10℃/min,进气速率20mL/min,并在氩气气氛中1400℃下高温热退火处理0.5h,之后自然降到400℃并在此温度下保持温度恒定,将Ar气氛变为空气气氛,进气速率提高到100mL/min,并在空气气氛中400℃下煅烧处理3h,待自然冷却到室温后,得到耐高温超轻质陶瓷纤维多孔弹性体材料。
对比例1
对比例1与实施例1基本相同,不同之处在于:
④将上述陶瓷微米纤维/石墨烯复合泡沫放置在气氛炉中,在Ar气氛下进行高温热退火,将炉内温度从室温缓慢升高到1400℃,升温速率为10℃/min,进气速率20mL/min,并在氩气气氛中1400℃下高温热退火处理0.5h,之后将Ar气氛变为空气气氛,进气速率提高到100mL/min,并在空气气氛中1400℃下煅烧处理1h,待自然冷却到室温后,得到耐高温超轻质陶瓷纤维多孔弹性体材料。
对比例2
对比例2与实施例1基本相同,不同之处在于:
②往上述陶瓷微米纤维分散液中依次加入20mL氧化石墨烯水溶液(浓度为5mg/mL)、0.8g抗坏血酸,以4000rpm的搅拌速度搅拌5min搅拌均匀,将混合液倒入反应釜中,并于90℃下进行凝胶反应12h,待反应釜冷却后取出凝胶块体,得到陶瓷微米纤维/石墨烯复合湿凝胶。
对比例3
对比例3与实施例1基本相同,不同之处在于:
在步骤④中,将上述陶瓷微米纤维/石墨烯复合泡沫放置在气氛炉中,在Ar气氛下进行高温热退火,将炉内温度从室温缓慢升高到1400℃,升温速率为10℃/min,进气速率20mL/min,并在氩气气氛中1400℃下高温热退火处理0.5h,得到陶瓷微米纤维增强石墨烯气凝胶材料。
对比例4
对比例4与实施例1基本相同,不同之处在于:
在步骤④中,将上述陶瓷微米纤维/石墨烯复合泡沫放置在气氛炉中,在Ar气氛下进行高温热退火,将炉内温度从室温缓慢升高到1400℃,升温速率为10℃/min,进气速率20mL/min,并在氩气气氛中1400℃下高温热退火处理2h,待自然冷却到室温后,得到陶瓷微米纤维增强石墨烯气凝胶材料。
对比例5
对比例5与实施例1基本相同,不同之处在于:
在步骤①中,采用1g氧化铝陶瓷纳米纤维(平均直径为150nm、平均长度为120μm)、0.01gAPG1214和100g水称取于烧杯中,以4000rpm的搅拌速度搅拌4h,得到陶瓷纳米纤维分散液;采用该陶瓷纳米纤维分散液替换实施例1中的陶瓷微米纤维分散液进行后续步骤。
对比例6
①称取50mg氧化锆纤维(氧化锆纤维的平均直径为4μm、平均长度为420μm)、10mg十二烷基苯磺酸钠,加入5mL水,超声30min,并磁力搅拌12h,得到氧化锆纤维的悬浮液。
②取5mL浓度为10mg/mL的氧化石墨烯水溶液加入到氧化锆纤维的悬浮液中,超声30min,并磁力搅拌1h,得到氧化石墨烯-氧化锆纤维分散液。
③在氧化石墨烯-氧化锆纤维分散液中滴加1mL质量分数为20%硫化铵((NH4)2S)水溶液,分散均匀后,在温度为90℃、还原3h,得还原过的样品。
④将还原过的样品用水冲洗后浸入氨水(氨水的质量浓度为15%)并在温度为90℃的条件下保存0.5h,最后用液氮迅速冷冻,然后放入到冷冻干燥机中进行冷冻干燥,冷冻干燥机内压强控制在20Pa以下,冷冻干燥机腔室温度控制在25℃,冷冻干燥冷阱温度控制在-70℃,冷冻干燥48h后,得到石墨烯-氧化锆纤维复合气凝胶。
对比例7
①将碳纤维(直径为10μm,长度为5mm)24mg和十二烷基苯磺酸钠1000mg分散在10mL水中形成溶液A,超声波处理30min;将氧化石墨烯240mg和抗坏血酸480mg加入50mL水中形成溶液B;将溶液A和溶液B混合,并通过超声分散30min,得到混合分散液。
②将混合分散液在10000rpm转速下搅拌发泡,得到混合泡沫。
③将混合泡沫80℃下进行还原反应6h,冷却至25℃,得到碳纤维复合石墨烯水凝胶。
④将碳纤维复合石墨烯水凝胶在浓度为1vol%的乙醇水溶液中进行浸泡洗涤24h,然后取出置于-45℃下冷冻处理12h,再升温至25℃,再置于65℃干燥处理24h,最后在氩气气氛500℃下进行退火处理,得到碳纤维复合石墨烯气凝胶样品。退火处理具体为:以15℃/min的加热速率加热至500℃,保持1h,再以15℃/min的降温速率降温至室温。
对比例8
①将氧化铝陶瓷微米纤维(平均直径为3μm、平均长度为230μm)24mg和十二烷基苯磺酸钠1000mg分散在10mL水中形成溶液A,超声波处理30min;将氧化石墨烯240mg和抗坏血酸480mg加入50mL水中形成溶液B;将溶液A和溶液B混合,并通过超声分散30min,得到混合分散液。
②将混合分散液在10000rpm转速下搅拌发泡,得到混合泡沫。
③将混合泡沫80℃下进行还原反应6h,冷却至25℃,得到氧化铝纤维复合石墨烯水凝胶。
④将氧化铝纤维复合石墨烯水凝胶在浓度为1vol%的乙醇水溶液中进行浸泡洗涤24h,然后取出置于-45℃下冷冻处理12h,再升温至25℃,再置于65℃干燥处理24h,最后在氩气气氛1400℃下进行退火处理,得到氧化铝纤维复合石墨烯气凝胶样品。退火处理具体为:以15℃/min的加热速率加热至1400℃,保持1h,再以15℃/min的降温速率降温至室温。
本发明对实施例1~10以及对比例1~8最终制得的材料的性能指标进行了测试,测试结果如表1所示;在表1中,1400℃高温考核12h,指的是在空气气氛1400℃高温马弗炉考核12h;本发明中,在将材料经过空气气氛1400℃高温马弗炉考核12h后,再使得材料经10000次压缩循环后测得50%压缩形变回弹率(%)的结果如表1所示;10000次压缩循环指的是利用万能实验机对测试样品进行加载-卸载10000次循环测试,每次加载时,压缩形变量为50%压缩形变;在本发明中,50%压缩形变是材料在厚度方向上的压缩量占材料初始厚度的50%。
在本发明中,所述耐温温度的测试为:将各实施例以及对比例最终制得的材料在空气气氛某一高温温度马弗炉中考核12h,材料在x、y、z方向的线性收缩率的平均值小于2%,则认为该材料可以耐受该高温温度,以实施例1为例,实施例1制得的材料在空气气氛1400℃高温马弗炉考核12h后,其在x、y、z方向的线性收缩率的平均值为0.2%,其耐温温度为1400℃;表1中,符号“-”表示未对该性能指标进行测试。
Figure BDA0003721446360000201
Figure BDA0003721446360000211
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (13)

1.一种耐高温超轻质陶瓷纤维多孔弹性体材料的制备方法,其特征在于,所述方法包括如下步骤:
(1)将陶瓷微米纤维、表面活性剂和水经高速搅拌分散均匀,形成陶瓷微米纤维分散液;所述陶瓷微米纤维、表面活性剂与水的质量比为(0.001~0.06):(0.00001~0.001):1;
(2)往所述陶瓷微米纤维分散液中加入氧化石墨烯溶液、还原剂和粘结剂并搅拌均匀,然后经凝胶反应,得到陶瓷微米纤维/石墨烯复合湿凝胶;
(3)将所述陶瓷微米纤维/石墨烯复合湿凝胶依次进行预冷冻和冷冻干燥的步骤,得到陶瓷微米纤维/石墨烯复合泡沫;
(4)将所述陶瓷微米纤维/石墨烯复合泡沫依次在惰性气氛下1200~1600℃热退火处理0.1~2h和空气气氛下300~800℃煅烧处理1~6h,制得耐高温超轻质陶瓷纤维多孔弹性体材料。
2.根据权利要求1所述的制备方法,其特征在于:
所述陶瓷微米纤维为氧化铝陶瓷微米纤维、SiBNC陶瓷微米纤维、莫来石陶瓷微米纤维、碳化硅陶瓷微米纤维中的一种或多种;和/或
所述陶瓷微米纤维的直径为2~16μm,长度为100~900μm。
3.根据权利要求1所述的制备方法,其特征在于:
所述表面活性剂为APG1214、APG0810、TX-10、AEO-3、AEG300、AEO-7、异构十三碳醇聚氧乙烯醚1309、SOE表面活性剂、SKYIN EP2445表面活性剂中的一种或多种。
4.根据权利要求1所述的制备方法,其特征在于,在步骤(1)中:
所述陶瓷微米纤维、表面活性剂与水的质量比为0.01:0.0001:1。
5.根据权利要求1所述的制备方法,其特征在于,在步骤(1)中:
所述高速搅拌的速度为2000~4000rpm,时间为1~6h。
6.根据权利要求1所述的制备方法,其特征在于,在步骤(2)中:
所述氧化石墨烯溶液中含有的氧化石墨烯的浓度为1~20mg/mL;
所述还原剂选自抗坏血酸、二硫苏糖醇、氢碘酸、亚硫酸钠、水合肼中的一种或多种;和/或
所述粘结剂为磷酸二氢铝、磷酸铝、正硅酸甲酯、正硅酸乙酯、硅溶胶、铝溶胶中的一种或多种。
7.根据权利要求6所述的制备方法,其特征在于,在步骤(2)中:
所述氧化石墨烯溶液中含有的氧化石墨烯的浓度为5mg/mL。
8.根据权利要求1所述的制备方法,其特征在于:
所述氧化石墨烯溶液中含有的氧化石墨烯、还原剂、粘结剂与陶瓷微米纤维的质量比为(0.02~1):(0.08~4):(0.005~0.05):1。
9.根据权利要求8所述的制备方法,其特征在于:
所述氧化石墨烯溶液中含有的氧化石墨烯、还原剂、粘结剂与陶瓷微米纤维的质量比为0.1:0.8:0.01:1。
10.根据权利要求1所述的制备方法,其特征在于:
所述凝胶反应的温度为60~90℃,所述凝胶反应的时间为8~24h;
所述预冷冻的温度为-60~-30℃,所述预冷冻的时间为8~24h;
所述冷冻干燥在冷冻干燥机中进行,在冷冻干燥过程中,控制所述冷冻干燥机腔室的温度为10~35℃,所述冷冻干燥机冷阱的温度为-80℃~-50℃,所述冷冻干燥的压强为1~30Pa,所述冷冻干燥的时间为24~96h;
所述热退火处理的温度为1400℃,时间为0.5h;和/或
所述煅烧处理的温度为600℃,时间为3h。
11.由权利要求1至10中任一项所述的制备方法制得的耐高温超轻质陶瓷纤维多孔弹性体材料。
12.根据权利要求11所述的耐高温超轻质陶瓷纤维多孔弹性体材料,其特征在于,所述耐高温超轻质陶瓷纤维多孔弹性体材料具有如下一个或多个性质:
所述耐高温超轻质陶瓷纤维多孔弹性体材料的耐温极限不小于1400℃,最高为1600℃;
所述耐高温超轻质陶瓷纤维多孔弹性体材料在历经1400℃高温考核12h后,在50%压缩形变下回弹率在95%以上;
所述耐高温超轻质陶瓷纤维多孔弹性体材料的密度为2~70mg/cm3,具有超轻特性;
所述耐高温超轻质陶瓷纤维多孔弹性体材料的室温热导率为0.023~0.032W/(m·K)。
13.由权利要求1至10中任一项所述的制备方法制得的耐高温超轻质陶瓷纤维多孔弹性体材料作为超轻弹性气凝胶材料的耐高温增强体和红外遮光体或超轻高温隔热材料在航空航天高温隔热领域、化工冶金高温隔热领域或核能发电高温隔热领域中的应用。
CN202210752515.1A 2022-06-29 2022-06-29 一种耐高温超轻质陶瓷纤维多孔弹性体材料及其制备方法和应用 Active CN115124363B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210752515.1A CN115124363B (zh) 2022-06-29 2022-06-29 一种耐高温超轻质陶瓷纤维多孔弹性体材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210752515.1A CN115124363B (zh) 2022-06-29 2022-06-29 一种耐高温超轻质陶瓷纤维多孔弹性体材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115124363A CN115124363A (zh) 2022-09-30
CN115124363B true CN115124363B (zh) 2023-01-31

Family

ID=83380148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210752515.1A Active CN115124363B (zh) 2022-06-29 2022-06-29 一种耐高温超轻质陶瓷纤维多孔弹性体材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115124363B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116768648B (zh) * 2023-04-25 2024-04-09 天津中德应用技术大学 一种三维网络微纳结构硅基前驱体超高温弹性陶瓷、制备方法和应用
CN117303927B (zh) * 2023-11-28 2024-03-01 上海南极星高科技股份有限公司 一种高强隔热的复合氧化铝纤维基多孔陶瓷的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012006416A2 (en) * 2010-07-08 2012-01-12 Rensselaer Polytechnic Institute High dielectric constant ceramic filler particles, composites and methods for making same
WO2013011250A1 (fr) * 2011-07-21 2013-01-24 Arkema France Fibres composites conductrices a base de graphene
CN105130380A (zh) * 2015-08-21 2015-12-09 哈尔滨工业大学 石墨烯-氧化锆纤维复合气凝胶的制备方法
WO2018219160A1 (zh) * 2017-05-31 2018-12-06 中南林业科技大学 一种高强度网络结构纳米载体材料的制备方法
CN109133962A (zh) * 2018-08-13 2019-01-04 中国科学院城市环境研究所 一种静电纺纳米纤维复合碳气凝胶及其制备方法
CN110156432A (zh) * 2019-06-27 2019-08-23 中素新科技有限公司 碳纤维复合石墨烯气凝胶及其制备方法和应用
CN111974320A (zh) * 2020-08-25 2020-11-24 航天特种材料及工艺技术研究所 一种耐高温弹性石墨烯气凝胶及其制备方法
CN112794705A (zh) * 2021-01-13 2021-05-14 兰州大学 一种基于石墨烯为模版制备超弹性氧化硅纳米陶瓷气凝胶的方法
CN113663611A (zh) * 2021-09-23 2021-11-19 航天特种材料及工艺技术研究所 一种耐高温复合纳米纤维气凝胶材料及其制备方法
CN114409954A (zh) * 2021-12-08 2022-04-29 西安理工大学 石墨烯/陶瓷纳米纤维/聚乙烯醇杂化气凝胶的制备方法
CN114560709A (zh) * 2021-11-19 2022-05-31 东华大学 一种具有铰接结构的陶瓷纳米纤维气凝胶及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012006416A2 (en) * 2010-07-08 2012-01-12 Rensselaer Polytechnic Institute High dielectric constant ceramic filler particles, composites and methods for making same
WO2013011250A1 (fr) * 2011-07-21 2013-01-24 Arkema France Fibres composites conductrices a base de graphene
CN105130380A (zh) * 2015-08-21 2015-12-09 哈尔滨工业大学 石墨烯-氧化锆纤维复合气凝胶的制备方法
WO2018219160A1 (zh) * 2017-05-31 2018-12-06 中南林业科技大学 一种高强度网络结构纳米载体材料的制备方法
CN109133962A (zh) * 2018-08-13 2019-01-04 中国科学院城市环境研究所 一种静电纺纳米纤维复合碳气凝胶及其制备方法
CN110156432A (zh) * 2019-06-27 2019-08-23 中素新科技有限公司 碳纤维复合石墨烯气凝胶及其制备方法和应用
CN111974320A (zh) * 2020-08-25 2020-11-24 航天特种材料及工艺技术研究所 一种耐高温弹性石墨烯气凝胶及其制备方法
CN112794705A (zh) * 2021-01-13 2021-05-14 兰州大学 一种基于石墨烯为模版制备超弹性氧化硅纳米陶瓷气凝胶的方法
CN113663611A (zh) * 2021-09-23 2021-11-19 航天特种材料及工艺技术研究所 一种耐高温复合纳米纤维气凝胶材料及其制备方法
CN114560709A (zh) * 2021-11-19 2022-05-31 东华大学 一种具有铰接结构的陶瓷纳米纤维气凝胶及其制备方法
CN114409954A (zh) * 2021-12-08 2022-04-29 西安理工大学 石墨烯/陶瓷纳米纤维/聚乙烯醇杂化气凝胶的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
二氧化硅气凝胶复合隔热材料研究进展;魏鹏湾等;《无机盐工业》(第10期);全文 *
石墨烯气凝胶复合材料制备及吸附性能的研究进展;钟铠等;《工业水处理》;20190620(第06期);全文 *
超低密度气凝胶的制备及应用;李健等;《化学进展》;20200624(第06期);全文 *

Also Published As

Publication number Publication date
CN115124363A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
CN115124363B (zh) 一种耐高温超轻质陶瓷纤维多孔弹性体材料及其制备方法和应用
Liu et al. Ultralight, thermal insulating, and high-temperature-resistant mullite-based nanofibrous aerogels
WO2021068737A1 (zh) 柔性莫来石纤维气凝胶材料及其制备方法
Wu et al. Synthesis of flexible aerogel composites reinforced with electrospun nanofibers and microparticles for thermal insulation
CN107137979B (zh) 一种微米纤维三维骨架/聚合物纳米纤维复合过滤材料及其制备方法
CN107653518B (zh) 一种高取向度连续超细/纳米氧化铝基陶瓷纤维束材料及其制备方法
CN113831581B (zh) 一种高弹性抗辐射纳米纤维气凝胶材料及其制备方法
CN113663611B (zh) 一种耐高温复合纳米纤维气凝胶材料及其制备方法
CN101172856A (zh) 一种氧化锆纤维的制备方法
CN110143827B (zh) 一种超轻弹性无机氧化物纤维气凝胶及其制备方法
Zhang et al. Super-insulating, ultralight and high-strength mullite-based nanofiber composite aerogels
CN112645729B (zh) 具有介孔结构的耐高温氧化锆复合隔热材料及其制备方法
CN112981575A (zh) 一种气凝胶复合纤维材料及其制备方法和应用
CN113149615A (zh) 一种超弹柔性三维复合陶瓷纳米纤维体块及其制备方法和应用
Dong et al. Fabrication and properties of lightweight SiOC fiber-based assembly aerogels with hierarchical pore structure
CN113321524B (zh) 一种基于多腔结构纤维的超高温陶瓷气凝胶的制备方法
Li et al. Hierarchically porous Al2TiO5 ceramics via freeze-gel casting
CN113648940B (zh) 一种超轻质高弹性抗辐射纳米纤维气凝胶材料及其制备方法
CN103469366B (zh) 拟薄水铝石胶溶静电纺丝制备超细氧化铝纤维的方法
CN113816729A (zh) 一种静电纺丝纳米纤维增韧氧化铝陶瓷及其制备方法
CN115057686B (zh) 一种高强度耐高温陶瓷纤维弹性体隔热材料及其制备方法和应用
CN111620698A (zh) 低热导率纳米纤维构架的多级孔陶瓷海绵材料及制备方法
CN116409981A (zh) 二氧化硅纳米纤维与石墨烯复合气凝胶及其制备方法和应用
CN115557790A (zh) 一种弹性SiC陶瓷海绵材料及其制备方法、应用
CN114773092A (zh) 一种通过氧化处理提高碳化硅纳米线气凝胶力学性能和隔热性能的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant