CN115124358A - 一种微孔化锆莫来石原料及其制备方法及应用 - Google Patents

一种微孔化锆莫来石原料及其制备方法及应用 Download PDF

Info

Publication number
CN115124358A
CN115124358A CN202210699681.XA CN202210699681A CN115124358A CN 115124358 A CN115124358 A CN 115124358A CN 202210699681 A CN202210699681 A CN 202210699681A CN 115124358 A CN115124358 A CN 115124358A
Authority
CN
China
Prior art keywords
raw material
zirconium mullite
mullite
zirconium
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210699681.XA
Other languages
English (en)
Inventor
王治峰
马淑龙
李亚伟
李燕京
桑绍柏
梁雄
康剑
马飞
周伟
张康康
安建成
罗华明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jinyu Tongda Refractory Technology Co ltd
Wuhan University of Science and Engineering WUSE
Original Assignee
Beijing Jinyu Tongda Refractory Technology Co ltd
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jinyu Tongda Refractory Technology Co ltd, Wuhan University of Science and Engineering WUSE filed Critical Beijing Jinyu Tongda Refractory Technology Co ltd
Priority to CN202210699681.XA priority Critical patent/CN115124358A/zh
Publication of CN115124358A publication Critical patent/CN115124358A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及耐火合成料技术领域,具体涉及一种微孔化锆莫来石原料及其制备方法。本发明所述的锆莫来石原料的制备方法,是以含氧化锆蓝晶石为主要原料,引入高铝矾土生粉以调整氧化铝含量在特定范围内;并利用含氧化锆蓝晶石在莫来石化过程中产生的巨大的体积膨胀效应来填充材料的气孔来实现微孔化;以及利用含氧化锆蓝晶石中锆的均匀分布来进一步提高材料的抗侵蚀等性能,从而制备出具有优异抗侵蚀性能及高温性能的微孔化锆莫来石原料。

Description

一种微孔化锆莫来石原料及其制备方法及应用
技术领域
本发明涉及耐火合成料技术领域,具体涉及一种微孔化锆莫来石原料及其制备方法及应用。
背景技术
莫来石是铝硅酸盐在高温下生成的矿物,具有高的荷重软化温度、低的热膨胀系数等特点,是一种优质的耐火原料,在冶金、水泥、石化等高温行业应用广泛。化学式为3AI2O3-2SiO2的天然莫来石非常少,通常烧结法或电熔法等人工合成。
锆莫来石耐火原料是指含有二氧化锆的莫来石。为进一步提高莫来石的抗化学侵蚀、耐热震并降低膨胀系数,在AI2O3-SiO2系中引入ZrO2能改善莫来石的结构,一般由电熔法制得,制备成本非常高。
同时,现有研究表明,理想的锆莫来石的矿物组成为莫来石和单斜氧化锆,化学组成方面氧化锆的变化范围很大,从7%-40%均有,但是最佳的化学组成为Al2O3:52.7%、SiO2:15.6、ZrO2:31.7%,这种组成相当于Al2O3-SiO2-ZrO2三元系中三元最低共熔点的组成,使用温度可达1600℃以上。这一特定组成的熔体在析晶时,莫来石、刚玉、单斜氧化锆同时析出,莫来石与刚玉形成共析体,单斜氧化锆初晶以串柱状分布于短柱状及针状莫来石周围,形成交错排列结构,因而抗侵蚀性能最优。
含氧化锆的蓝晶石是一种氧化铝含量在50%左右、以蓝晶石和硅酸锆为主晶相的原矿,其高温下会转变为莫来石、高硅玻璃相及氧化锆,同时产生16-18%的体积膨胀。
CN110423108A公开了一种基于蓝晶石尾矿的含锆莫来石材料及其制备方法,其以蓝晶石尾矿为主要原料,添加氧化铝粉及氧化铍湿法共混共磨后,经烘干、破碎、混合造粒、成型、烘干后高温制备获得。虽然该方法采用了价格低廉的含锆蓝晶石尾矿为原料,但添加的高纯氧化铝粉成本较高,且需要添加氧化铍促进莫来石的生成,制备工艺流程也较长,整体制备成本仍然较高;而且,其添加了有机烧失物聚乙烯醇,在烧成时释放大量有毒有害气体。此外,该方法中混合原料中氧化铝含量至少要70%以上,导致所得锆莫来石产品的耐碱性较差。
发明内容
针对上述技术问题,本发明提出一种新的锆莫来石原料制备方法,其具有工艺相对简单、原料成本相对低廉,更适于大规模工业化生产的优点。
第一方面,本发明提供的锆莫来石原料的制备方法,包括:以含氧化锆蓝晶石、生矾土为混合料,混磨,得到细粉或浆料;将细粉或浆料制成坯体,烘干,焙烧,冷却;
其中,所述混合料中氧化铝含量控制在60±2%范围内;
所述细粉的平均粒度或所述浆料中颗粒的平均粒度均小于0.044mm。
本发明研究发现,常规直接采用氧化铝粉末来调整原料中氧化铝含量时,因杂质含量低不容易形成液相,所得锆莫来石材料的显气孔率较高,抗碱侵蚀性能较差。
为此,本发明提出通过引入二级、三级铝矾土生粉为原料,既能够调整原料中氧化铝含量在合适的范围,又可使原料在较低温度下形成液相,有助于降低最终锆莫来石原料的显气孔率,进而提高其抗碱侵蚀性能。除此之外,生矾土制备过程中分解形成的假刚玉活性高,更容易与蓝晶石转化形成的石英反应,以获得力学性能更优的锆莫来石。
同时,本发明通过控制中间产物细粉或浆料的粒度可实现直接压制成胚,省略了常规锆莫来石原料制备工艺中困料工序,简化了加工工艺;同时还有助于减小材料中气孔孔径,进而可利用含氧化锆蓝晶石在莫来石化过程中产生的巨大体积膨胀效应来填充材料的气孔,进一步降低孔径尺寸,实现材料的微孔化结构,进一步提高材料的抗碱侵蚀性能及高温性能。
此外,通过控制细粉或浆料的粒度还可以使蓝晶石中氧化锆在混合物料中分布更加均匀,从而进一步提高材料的抗侵蚀等性能。
综上,本发明通过上述多重手段,制备出具有优异抗侵蚀性能及高温性能的微孔化锆莫来石材料。
进一步地,通过烘干控制所述坯体中水分小于0.8%。
进一步地,本发明所述的焙烧的条件为:空气气氛下于1500~1600℃下保温4~16h。含氧化锆蓝晶石向莫来石的转变非常快,微细结构控制难度大,为此本发明在精确控制原料氧化铝含量、细粉粒度及胚体水分基础上,进一步控制焙烧温度,有利于含氧化锆蓝晶石的体积膨胀效应快速且均匀,从而形成的孔径微小且均匀,使所得锆莫来石原料的导热系数较同类材料更低。
此外,本发明所述的含氧化锆蓝晶石为含氧化锆3-5%的蓝晶石矿。所述含氧化锆蓝晶石的用量占原料总质量的25~75%。所述生矾土可选自二级生矾土和/或三级生矾土,具体可根据实际需要调整。
作为本发明的具体实施方式之一,所述锆莫来石原料的制备方法包括如下步骤:
1)按氧化铝质量分数60±2%,选取适量的含氧化锆蓝晶石25~75%、二级生矾土0~25%、三级生矾土0~75%;
2)将原料采用湿法或干法共磨混合,混磨为粒度均达到小于0.044mm的细粉;
3)用半干法机压或湿法挤压成块状坯体,烘干至水分含量小于0.8%;
4)将烘干后的坯体在空气气氛下于1500~1600℃下焙烧,保温4~16h,然后冷却至室温,制得氧化铝含量60±2%、氧化锆含量1~4%、平均孔径1-4微米的锆莫来石复相材料。
第二方面,本发明还提供上述方法获得的锆莫来石原料,其主晶相为莫来石,锆为单斜氧化锆,具有优良的抗碱侵蚀性能及耐高温性能,是一种更优质的耐火原料。
本发明所得锆莫来石原料中,氧化铝含量在60±2%范围内,铝硅摩尔比为0.6,氧化锆含量在1~4%之间,平均孔径1-4μm,孔径小于5μm的孔的比例在80%以上。
所述锆莫来石原料的化学组成为Al2O3含量58~62%,SiO2含量28~32%,ZrO2含量1~4%。
所述锆莫来石原料的显气孔率为4.1-21.3%,闭气孔率为0.5-8.9%,体积密度为2.48-2.74g/cm3,真密度为3.15-3.17g/cm3,使用温度为1600℃以上,导热系数为1.7~2.8W/(m·K)(500℃下激光法检测),经制砖碱侵蚀实验检测,该锆莫来石的抗碱侵蚀性能优良。
第三方面,本发明还提供上述锆莫来石原料在水泥窑用耐火材料领域中的应用。
具体应用中,可采用本发明所述的锆莫来石原料作为主体材料制成水泥窑用锆莫砖。研究表明,所得锆莫砖的显气孔率为16-22%,体积密度为2.3-2.5g/cm3,常温耐压强度为78-86MPa,荷重软化温度在1600℃以上;导热系数低于1.6W/(m·K)(YB/T 4130-2005(耐火材料导热系数试验方法-水流量平板法))。
本发明的有益效果如下:
1、本发明实现了含氧化锆蓝晶石的高效利用,提高资源的有效利用率。
2、本发明利用高铝矾土生粉调整产物中氧化铝含量,使得铝硅摩尔比为0.6,从而具有优异的抗侵蚀性能及高温性能。
3、本发明通过控制细粉粒度,烘干及焙烧程度,降低材料的孔径,在此基础上利用含氧化锆蓝晶石在莫来石化过程中产生的巨大的体积膨胀效应来填充材料的气孔,进一步降低孔径,形成的孔径微小且均匀,从而实现材料的微孔化,使得材料导热系数较同类材料更低。
4、本发明所述方法还可使材料中锆分布更加均匀,可进一步提高材料的抗侵蚀等性能。
5、本发明所述方法中,通过冷却过程,氧化锆从高温下的立方相向四方相转变,并在低温下转变为单斜氧化锆,在这一系列相变过程中,材料内部会形成微裂纹,微裂纹可提高材料的韧性。
6、制备工艺简单,烧成温度适宜,适宜大规模工业化生产。
附图说明
图1为实施例1所得锆莫来石原料的孔径分布。
图2为实施例2所得锆莫来石原料的孔径分布。
图3为实施例3所得锆莫来石原料的孔径分布。
图4为不同锆莫砖及市场用硅莫砖在碱侵蚀后试样的断面外观。
图5为锆莫来石原料的抗碱蒸气侵蚀实验示意图。
图6为三种合成锆莫来石原料碱侵蚀后显微结构及EDS面成分分布图;图中(a)~(b)-Al2O3含量53%的锆莫来石原料;(c)~(d)-Al2O3含量88%的高铝料;(e)~(f)-实施例1所得锆莫来石原料。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
本实施例提供一种锆莫来石原料的制备方法,步骤如下:
(1)按重量百分比,取氧化铝含量52.81%、氧化锆含量4.07%的含氧化锆蓝晶石75%,氧化铝含量71.84%、灼减14.77%的二级生矾土25%;
所得混合料中氧化铝含量控制在60±2%范围内;
(2)将上述各料在球磨机中共混、共磨,得到粒度小于0.044mm的细粉;
(3)向细粉中加6%水搅拌均匀,机压成坯,干燥至水含量0.8%以下后入窑;
(4)在1600℃下保温10h,冷却至常温,得到锆莫来石原料。
所得锆莫来石原料的化学成分、气孔率及密度见下表1,平均孔径及孔径分布见图1。
表1 1600℃下制备锆莫来石原料化学成分、气孔率及密度
项目 单位 实施例1
Al<sub>2</sub>O<sub>3</sub> 59.77
ZrO<sub>2</sub> 3.17
显气孔率 4.1
闭气孔率 8.9
体积密度 g/cm<sup>3</sup> 2.74
真密度 g/cm<sup>3</sup> 3.15
由图1可知,所得锆莫来石原料的平均孔径为3.2μm,孔径小于5μm的孔的占比为82%。
实施例2
本实施例提供一种锆莫来石原料的制备方法,步骤如下:
(1)按重量百分比,取氧化铝含量52.81%、氧化锆含量4.07%的含氧化锆蓝晶石50%,氧化铝含量71.84%、灼减14.77%的二级生矾土15%,氧化铝含量56.04%、灼减11.18%的三级生矾土35%;
所得混合料中氧化铝含量控制在60±2%范围内;
(2)将上述各料在球磨机中湿磨,得到颗粒粒径小于0.044mm的浆料;
(3)经压滤脱水、真空挤泥,制得泥坯,烘干至水含量0.8%以下后入窑;
(4)在1550℃下保温10h,冷却至常温,得到锆莫来石原料。
所得锆莫来石原料的化学成分、气孔率及密度见下表2,平均孔径及孔径分布见图2。
表2 1550℃下制备锆莫来石原料化学成分、气孔率及密度
项目 单位 实施例2
Al<sub>2</sub>O<sub>3</sub> 60.50
ZrO<sub>2</sub> 2.17
显气孔率 8.0
闭气孔率 5.6
体积密度 g/cm<sup>3</sup> 2.73
真密度 g/cm<sup>3</sup> 3.16
由图2可知,所得锆莫来石原料的平均孔径为2.6μm,孔径小于5μm的孔的占比为85%。
实施例3
本实施例提供一种锆莫来石原料的制备方法,步骤如下:
(1)按重量百分比,取氧化铝含量52.81%、氧化锆含量4.07%的含氧化锆蓝晶石25%,氧化铝含量56.04%、灼减11.18%的三级生矾土75%;
所得混合料中氧化铝含量控制在60±2%范围内;
(2)将上述各料在球磨机中共混、共磨,得到粒径小于0.044mm的细粉;
(3)加纸浆废液7%,机压成坯,烘干至水含量0.8%以下后入窑;
(4)在1500℃下保温10h,冷却至常温,得到锆莫来石原料。
所得锆莫来石原料的化学成分、气孔率及密度见下表3,平均孔径及孔径分布见图3。
表3 1500℃下制备锆莫来石原料化学成分、气孔率及密度
项目 单位 实施例3
Al<sub>2</sub>O<sub>3</sub> 60.29
ZrO<sub>2</sub> 1.11
显气孔率 21.3
闭气孔率 0.5
体积密度 g/cm<sup>3</sup> 2.48
真密度 g/cm<sup>3</sup> 3.17
由图3可知,所得锆莫来石原料的平均孔径为1.7μm,孔径小于5μm的孔的占比为95%。
由上述三个实施例所得锆莫来石原料的性能指标可知,通过调整含氧化锆蓝晶石与生矾土的比例关系,可以获得不同显气孔率的锆莫来石原料。
效果验证1
为了评价实施例1-3所得锆莫来石原料的抗碱侵蚀性能、高温性能及导热系数,以上述实施例1-3所得锆莫来石原料为主体材料,制备水泥窑用锆莫砖(1#、2#、3#),并与市售硅莫砖(4#)进行比较,结果如下。
1、高温性能
表4
项目 单位,条件 1# 2# 3# 4#
显气孔率 16.5 18.0 21.8 18.8
体积密度 g/cm<sup>3</sup> 2.49 2.48 2.36 2.75
常温耐压强度 MPa 81.9 78.1 85.3 90.3
荷重软化温度 ℃,0.1MPa,T<sub>0.6</sub> 1700 1700 1639 1700
从表中可见,荷重软化温度均在1600℃以上,表明本发明所得锆莫来石原料具有良好的耐高温性能。
2、抗碱侵蚀性能
采用熔碱坩埚法评价了锆莫砖(1#、2#、3#)及市场硅莫砖(4#)的抗碱侵蚀性能。
实验条件为:温度1350℃,侵蚀时间5h,侵蚀介质为K2CO3,加入量35g,坩埚内孔φ36mm×40mm。
结果显示:侵蚀后1#、2#、3#坩埚外表面无裂纹,4#有裂纹,沿坩埚中间切开,断口见下图4。
从图中可见,碱与1#、2#、3#锆莫砖反应后在界面形成保护性渣皮,界面清晰无明显的碱侵蚀,无碱裂,1#、2#、3#锆莫砖表现出优异的抗碱侵蚀性能,进而验证了1#、2#、3#锆莫来石具有优异的抗碱侵蚀性能。而4#硅莫砖虽在断口未见裂纹,但在坩埚外表面可见明显裂纹。
3、导热系数
1#、2#、3#锆莫砖导热系数见下表。
表5锆莫砖在500℃、800℃、1000℃下导热系数(单位:W/(m·K))
测试温度(℃) 1# 2# 3# 4#
500 1.229 1.168 1.068 ---
800 1.385 1.301 1.220 ---
1000 1.461 1.322 1.267 2.300
从表中看出,1#、2#、3#锆莫砖的导热系数满足第二代新型干法窑低于1.6W/(m·K)的要求,更低于当前使用4#硅莫砖2.3W/(m·K),表明1#、2#、3#锆莫来石具有低热导率的优点。
效果验证2
为了进一步验证本发明所得锆莫来石原料的优异抗碱侵蚀性能,本发明合成制备了Al2O3含量53%的莫来石及Al2O3含量88%的高铝料(市场硅莫砖中主要原料),并与实施例1中锆莫来石进行抗碱侵蚀性能对比。
采用碱蒸气法进行碱侵蚀实验。实验过程:将上述锆莫来石原料破碎筛取5~3mm的颗粒料,参照GB/T 14983–2008(耐火材料抗碱性试验方法)所述方法进行几类热处理后原材料抗碱蒸气侵蚀实验。
图5为抗碱蒸气侵蚀实验示意图。由图5可见,首先将炭黑(C)与K2CO3按照质量比1:1预混合制备侵蚀介质,接着按照侵蚀介质与颗粒状试样质量的比为1:1装入封闭的石墨坩埚(Φ80mm×150mm)之中,并用多孔的不锈钢网支撑体分隔,将石墨坩埚置于刚玉匣钵(240mm×130mm×120mm)中并用焦炭掩埋,并在1 000℃下保温10h。
通过SEM观察三种试样侵蚀后显微结构,通过碱侵蚀深度来评价抗碱侵蚀性能的优劣,结果如下图6所示。由图可知:Al2O3含量53%的试样及Al2O3含量88%试样碱侵蚀后EDS面成分分布中碱(K)在颗粒表面及内部均有分布,表明整个颗粒均受到碱不同程度的侵蚀;而实施例1所得锆莫来石中碱(K)仅分布在颗粒表面附近,表明仅表面区域发生侵蚀。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

1.一种锆莫来石原料的制备方法,其特征在于,包括:以含氧化锆蓝晶石、生矾土为混合料,混磨,得到细粉或浆料;将细粉或浆料制成坯体,烘干,焙烧,冷却;
其中,所述混合料中氧化铝含量控制在60±2%范围内;
所述细粉的平均粒度或所述浆料中颗粒的平均粒度均小于0.044mm。
2.根据权利要求1所述的锆莫来石原料的制备方法,其特征在于,通过烘干控制所述坯体中水分小于0.8%。
3.根据权利要求2所述的锆莫来石原料的制备方法,其特征在于,所述焙烧的条件为:空气气氛下于1500~1600℃下保温4~16h。
4.根据权利要求3所述的锆莫来石原料的制备方法,其特征在于,所述含氧化锆蓝晶石的用量占原料总质量的25~75%。
5.根据权利要求4所述的锆莫来石原料的制备方法,其特征在于,所述生矾土为二级生矾土和/或三级生矾土。
6.权利要求1-5任一项所述制备方法得到的锆莫来石原料。
7.根据权利要求6所述的锆莫来石原料,其特征在于,所述锆莫来石原料中,氧化铝含量在60±2%范围内,铝硅摩尔比为0.6,氧化锆含量在1~4%之间,平均孔径1-4μm,孔径小于5μm的孔的比例在80%以上。
8.根据权利要求7所述的锆莫来石原料,其特征在于,所述锆莫来石原料的化学组成为Al2O3含量58~62%,SiO2含量28~32%,ZrO2含量1~4%。
9.根据权利要求8所述的锆莫来石原料,其特征在于,所述锆莫来石原料的显气孔率为4.1-21.3%,闭气孔率为0.5-8.9%,体积密度为2.48-2.74g/cm3,真密度为3.15-3.17g/cm3,使用温度为1600℃以上,导热系数为1.7~2.8W/(m·K)。
10.权利要求6-9任一项所述锆莫来石原料在水泥窑用耐火材料领域中的应用。
CN202210699681.XA 2022-06-20 2022-06-20 一种微孔化锆莫来石原料及其制备方法及应用 Pending CN115124358A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210699681.XA CN115124358A (zh) 2022-06-20 2022-06-20 一种微孔化锆莫来石原料及其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210699681.XA CN115124358A (zh) 2022-06-20 2022-06-20 一种微孔化锆莫来石原料及其制备方法及应用

Publications (1)

Publication Number Publication Date
CN115124358A true CN115124358A (zh) 2022-09-30

Family

ID=83379390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210699681.XA Pending CN115124358A (zh) 2022-06-20 2022-06-20 一种微孔化锆莫来石原料及其制备方法及应用

Country Status (1)

Country Link
CN (1) CN115124358A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100298109A1 (en) * 2008-01-30 2010-11-25 Krosakiharima Corporation Zirconia-mullite refractory raw material and a plate brick
CN104261810A (zh) * 2014-10-08 2015-01-07 武汉科技大学 一种含锆莫来石复相材料及其制备方法
CN104261849A (zh) * 2014-10-08 2015-01-07 江苏省陶瓷研究所有限公司 一种含锆莫来石-高硅氧玻璃复相材料及其制备方法
CN108367993A (zh) * 2015-11-05 2018-08-03 研磨剂与耐火品研究与开发中心C.A.R.R.D.有限公司 经烧结的耐火锆石复合材料,其制造方法和其用途
CN110194673A (zh) * 2019-05-31 2019-09-03 武汉科技大学 一种节能型莫来石氧化锆复相耐火材料及其制备方法
CN110423108A (zh) * 2019-06-21 2019-11-08 武汉科技大学 一种基于蓝晶石尾矿的含锆莫来石材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100298109A1 (en) * 2008-01-30 2010-11-25 Krosakiharima Corporation Zirconia-mullite refractory raw material and a plate brick
CN104261810A (zh) * 2014-10-08 2015-01-07 武汉科技大学 一种含锆莫来石复相材料及其制备方法
CN104261849A (zh) * 2014-10-08 2015-01-07 江苏省陶瓷研究所有限公司 一种含锆莫来石-高硅氧玻璃复相材料及其制备方法
CN108367993A (zh) * 2015-11-05 2018-08-03 研磨剂与耐火品研究与开发中心C.A.R.R.D.有限公司 经烧结的耐火锆石复合材料,其制造方法和其用途
US20180327314A1 (en) * 2015-11-05 2018-11-15 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Sintered zirconia mullite refractory composite, methods for its production and use thereof
CN110194673A (zh) * 2019-05-31 2019-09-03 武汉科技大学 一种节能型莫来石氧化锆复相耐火材料及其制备方法
CN110423108A (zh) * 2019-06-21 2019-11-08 武汉科技大学 一种基于蓝晶石尾矿的含锆莫来石材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
戴克思等: "水泥制造工艺技术", 中国建材工业出版社, pages: 522 - 252 *

Similar Documents

Publication Publication Date Title
Johari et al. Effect of the change of firing temperature on microstructure and physical properties of clay bricks from Beruas (Malaysia)
CN108367993B (zh) 经烧结的耐火锆石复合材料,其制造方法和其用途
CN111620679B (zh) 一种以熔融二氧化硅为硅源制备高纯莫来石材料的方法
US9546114B2 (en) SiAlON bonded silicon carbide material
CN107935575B (zh) 高纯低蠕变电熔莫来石砖及其制备方法
WO2011055642A1 (ja) ムライトセラミックス及びその製造方法
JP5943032B2 (ja) 軽量断熱アルミナ・マグネシア質耐火物の製造方法
CN103626503A (zh) 一种热风炉用长寿莫来石砖及其制备方法
CN108218445A (zh) 一种红柱石硅线石匣钵及制备方法
CN108218444A (zh) 一种含锆红柱石增韧匣钵及制备方法
US3929498A (en) Sintered zirconia bodies
KR20160064163A (ko) 시알론 매트릭스를 갖는 내화 제품
CN112897994A (zh) 一种刚玉尖晶石复相材料制备方法
CN115124358A (zh) 一种微孔化锆莫来石原料及其制备方法及应用
KR101174622B1 (ko) 납석을 이용한 뮬라이트 합성방법
WO2000030999A1 (en) Insulating raw material for high temperature applications
AU591802B2 (en) Composite refractory materials
JP2001526175A (ja) 熱ショック抵抗性の改良された稠密耐火物
Sarkar et al. Effect of Cement and sol Combined Binders on High-Alumina Refractory Castables
CN114751727B (zh) 一种致密钙长石质耐火材料的制备方法
Jiang et al. Effects of sintering temperature on the properties and the pore evolution of microporous MgAl2O4 aggregates
CN115521156B (zh) 一种锂电池正极材料用陶瓷匣钵的制备方法
Khalil et al. Utilisation of South Libyan clay for preparation of mullite-alumina based refractory ceramics
JPH06166564A (ja) 溶融シリカ質焼結体およびその製法
CN118561586A (zh) 一种掺钛防渗抗蚀铝锆耐火材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220930