CN115121226A - 一种磁性碳基FeCo双金属有机框架复合材料的制备方法及应用 - Google Patents

一种磁性碳基FeCo双金属有机框架复合材料的制备方法及应用 Download PDF

Info

Publication number
CN115121226A
CN115121226A CN202210813201.8A CN202210813201A CN115121226A CN 115121226 A CN115121226 A CN 115121226A CN 202210813201 A CN202210813201 A CN 202210813201A CN 115121226 A CN115121226 A CN 115121226A
Authority
CN
China
Prior art keywords
feco
organic framework
composite material
framework composite
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210813201.8A
Other languages
English (en)
Other versions
CN115121226B (zh
Inventor
刘瑞林
罗梦凡
蒋逸材
高媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuzhou Medical University
Original Assignee
Xuzhou Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuzhou Medical University filed Critical Xuzhou Medical University
Priority to CN202210813201.8A priority Critical patent/CN115121226B/zh
Publication of CN115121226A publication Critical patent/CN115121226A/zh
Application granted granted Critical
Publication of CN115121226B publication Critical patent/CN115121226B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及金属有机框架材料技术领域,具体涉及一种磁性碳基FeCo双金属有机框架复合材料的制备方法及应用。步骤1:利用碎纸屑、浓盐酸、NaOH和尿素水溶液制备废纸桨混合物;步骤2:将铁盐和钴盐溶解于乙醇溶液中,加入步骤1制备的废纸桨混合物,经过搅拌、热聚合反应、煅烧和洗涤后制备得到磁性CoFe2O4多孔碳;步骤3:将步骤2所制备的CoFe2O4多孔碳加入有机配体水溶液,经过超声分散、水热反应、洗涤、干燥后,制得磁性碳基FeCo双金属有机框架复合材料。本发明所用原料廉价易得,绿色环保,制备策略简单、条件温和,所得磁性碳基FeCo双金属有机框架复合材料质量稳定,用于高选择性吸附去除水中四环素,可以广泛的应用在制药工业废水及自来水废水处理中。

Description

一种磁性碳基FeCo双金属有机框架复合材料的制备方法及 应用
技术领域
本发明涉及金属有机框架材料技术领域,具体涉及一种磁性碳基FeCo双金属有机框架复合材料的制备方法及应用。
背景技术
四环素类抗生素是世界上第二常用的抗生素,四环素类抗生素在全球的使用总量和生产总量都相当高。四环素类抗生素在兽医药类的使用占比大于60%。四环素类化合物结构复杂、形态多样且不易被生物降解。研究显示,四环素的滥用和不合理使用会对水体中微生物、植物以及水生动物产生严重危害。尤其是,随着“超级细菌”的出现,长期暴露于含有四环素的环境中,细菌的耐药性问题越来越严重。此外,长期饮用含四环素的饮用水会导致肝脏损害,牙齿和骨骼的异常生长。水是生命之源。因此,发展高效去除水体中的四环素已引起国际社会的高度关注,也是目前亟待的社会问题。
迄今为止,国内外科学家们相继探索了催化降解法、高级氧化法、吸附法、滤膜分离法、人工湿地法等多种策略用于抗生素废水处理。每一种废水处理方法都有其优点和缺点。相比之下,吸附法因其处理成本低、可操作性强、重复利用性高、净化效率高、生态友好性等优点得到广泛应用。为了寻找性能优越的抗生素废水处理吸附剂,目前碳基纳米多孔材料、金属有机骨架材料、生物炭、金属氧化物、有机/无机杂化气凝胶、矿物材料以及吸附树脂等陆续被挖掘。在目前报道的众多吸附剂中,碳基纳米材料和金属有机框架材料因具有卓越的理化性质在抗生素废水处理中已受到科研和工业界的高度关注。但碳基纳米多孔材料在抗生素废水处理中普遍存在吸附容量低、碳源多为石油化工试剂且制备成本较高的缺点;金属有机框架材料存在分离回收困难,大尺寸制备性能往往下降且耐酸、耐腐殖酸性能差,尤其是应用多聚焦在单金属有机框架材料的挖掘。结合现有文献报道结果,我们推测若能将磁性多孔碳和双金属有机框架材料集成为一个单元,有望改善两类材料共有的缺点和发挥捕获抗生素的协同效果。
目前虽有原位一锅法制备磁性金属有机框架材料的文献报道,但需指出的是现有合成策略多以磁性Fe3O4为核制备磁性单金属有机骨架材料。实际上,研究结果显示双金属有机框架材料对有机污染物的去除性能远高于单金属有机框架材料。因此,利用磁性Fe3O4无法通过原位组装策略构筑磁性双金属有机框架材料。此外,最近天津大学刘长军教授课题组报道了一种磁性Fe3O4球形活性碳@Co-MOF应用于羟醛缩合催化反应,但其是否具有很好的抗生素清除效果尚不清晰,尤其是还未见一锅法原位合成磁性碳基FeCo双金属有机框架的研究报道。事实上,除了经典的磁性Fe3O4之外,NiFe2O4和CoFe2O4也是很好的磁性材料,但该类双金属磁性碳基有机骨架材料是否可以原位构筑并具有潜在工业应用至今不明。从实际应用和成本角度考虑,挖掘生物质衍生磁性碳基金属有机骨架材料对于大规模工业抗生素废水处理更具优势,由于生物质衍生多孔碳在工业废水处理已有不少实践应用。
近年来利用纤维素类废弃物替代传统化学试剂合成碳基纳米材料已是一个趋势,由于其具有廉价易得、毒性低以及含多种生物高分子聚合物的特性。目前,利用生物质衍生多孔碳的研究虽有报道,然采用低成本纤维素类废弃物制备高附加值磁性碳基双金属有机框架复合材料仍缺乏。因此,利用纤维素类废弃物为原料,通过低温冷冻处理技术将废纸加工为废纸浆,进一步将其转化为磁性碳基双金属有机框架复合材料有望解决目前化学试剂衍生磁性多孔碳制备成本高、吸附容量低以及难以实现大尺寸制备的瓶颈问题。
发明内容
针对上述存在的技术问题,本发明提出了一种磁性碳基FeCo双金属有机框架复合材料的制备方法,该方法以纤维素类废纸取代化学试剂可降低碳基多孔材料碳前驱体的成本;尿素/氢氧化钠的引入不但充当废纸的冻溶剂,而且也是合成CoFe2O4纳米粒子的必要试剂,加之铁钴盐释放的氯离子与混合物中的钠离子可形成NaCl纳米微晶模板,同时生成的CoFe2O4纳米粒子也是原位增长FeCo双金属有机框架材料的模板,进而达到“一石四鸟”制备磁性碳基FeCo双金属有机框架复合材料的目标。
为了实现上述目的,本发明所采用的技术方案如下:
一种磁性碳基FeCo双金属有机框架复合材料的制备方法,包括以下步骤:
步骤1:利用碎纸屑、浓盐酸、NaOH和尿素水溶液制备废纸桨混合物;
步骤2:将铁盐和钴盐溶解于乙醇溶液中,加入步骤1制备的废纸桨混合物,经过搅拌、热聚合反应、煅烧和洗涤后制备得到磁性CoFe2O4多孔碳;
步骤3:将步骤2所制备的CoFe2O4多孔碳加入有机配体水溶液,经过超声分散、原位水热反应、洗涤、干燥后,制得磁性碳基FeCo双金属有机框架复合材料。
优选的,所述步骤1的具体步骤为:
步骤1.1:将剪碎的碎纸屑浸泡于浓盐酸处理;
步骤1.2:将步骤1.1浸泡后的碎纸屑,经洗涤、干燥后浸渍于NaOH和尿素水溶液中,然后置于-18℃冷冻24小时,解冻后得到废纸桨混合物。
优选的,所述步骤2的具体步骤为:
步骤2.1:将铁盐和钴盐完全溶解于80%乙醇溶液中,加入步骤1制备的废纸桨混合物,常温搅拌0.5~2小时;
步骤2.2:将步骤2.1的产物转入水热反应釜加热,进行热聚合反应;
步骤2.3:将步骤2.2热聚合反应后的产物在惰性气体保护下,进行煅烧处理,然后依次用蒸馏水、无水乙醇洗涤产物,最后进行干燥处理,得到磁性CoFe2O4多孔碳。
优选的,所述步骤1.1的浓盐酸为38wt%,处理时间为24小时,其中碎纸屑和浓盐酸的配比为5g:2ml。
优选的,所述步骤1.2的NaOH溶液质量分数为7%,尿素溶液质量分数为12%,其中处理后的碎纸屑与NaOH和尿素混合水溶液的比例为1g:1ml。
优选的,所述步骤2.1中,铁盐和钴盐中Fe(III)与Co(II)的摩尔比为2,所述铁盐为无水三氯化铁,所述钴盐为六水合二氯化钴。
优选的,所述步骤2.2中水热反应釜温度为160~180℃,热聚合反应时间为12~24小时。
优选的,所述步骤2.3的煅烧的温度为550℃,时间为3小时。
优选的,所述步骤3的水热反应温度为160℃,反应时间为12小时,有机配体为均苯三甲酸。
一种制备的磁性碳基FeCo双金属有机框架复合材料,应用于废水中四环素的高效吸附去除。
与现有技术相比,本发明的有益效果是:
本发明以废纸为原料,利用浓盐酸预处理并结合尿素/氢氧化钠水溶液中低温冷冻水解技术制得废纸桨,将废纸桨浸泡于一定浓度的无水三氯化铁和氯化钴的乙醇水溶液中,经过浸渍促使金属铁、钴离子配位改性废纸桨形成类金属有机骨架配合物材料,同时将碱性体系中的钠离子和氯离子结合为氯化钠晶体模板,然后通过水热预碳化和惰性气体高温碳化法,制备成高比表面积、大孔容量及多级孔结构的磁性CoFe2O4/多孔碳基纳米酶。最后,利用磁性多孔碳自有的CoFe2O4纳米粒子为模板和Fe、Co离子源,通过原位水热反应合成磁性碳基FeCo双金属有机框架复合材料。
本发明所用碳源为废纸,相比石油化工试剂制备碳材料廉价易得;处理纤维素类废纸所用尿素和氢氧化钠不但能获得废纸浆,而且也是合成废纸衍生磁性多孔碳所需NaCl晶体模板和碱度调节原料,未来有望使用人畜尿液替代尿素,可见该工艺绿色环保;加之制备磁性碳基双金属有机框架材料利用磁性碳自身所含金属元素、通过原位水热处理具有制备策略简单、环保、条件温和的特点;本发明所得磁性碳基FeCo双金属有机框架复合材料质量稳定,作为一种新颖的磁性碳基双金属有机框架复合材料用于高选吸附去除水中四环素具有以下优点:(1)相比目前文献报道的大多数吸附剂,本发明所得吸附剂具有吸附容量高、耐腐殖酸性能好;(2)吸附速率快、外界磁场驱动易分离回收;(3)与吸附氯霉素相比,所得吸附剂对四环素具有很高的吸附选择性;(4)可再生性好,循环使用四次后对四环素的消除效率仍高达50%。总之,这些优越的特性和优点将助推该产品在制药工业废水及自来水废水处理中的广泛应用。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
在附图中:
图1是实施例制备的磁性碳基FeCo双金属有机框架复合材料的扫描电镜图。
图2是实施例制备的磁性碳基FeCo双金属有机框架复合材料的透射电镜图。
图3是实施例制备的磁性碳基FeCo双金属有机框架复合材料与磁性CoFe2O4/多孔碳的红外光谱图。
图4是实施例制备的磁性碳基FeCo双金属有机框架复合材料与磁性CoFe2O4/多孔碳的氮气吸附-解吸图。
图5是实施例制备的磁性碳基FeCo双金属有机框架复合材料与磁性CoFe2O4/多孔碳的孔尺寸分布图。
图6是实施例制备的磁性碳基FeCo双金属有机框架复合材料与磁性CoFe2O4/多孔碳的X射线光电子能谱分析图。
图7是实施例制备的磁性碳基FeCo双金属有机框架复合材料与磁性CoFe2O4/多孔碳的X射线粉末衍射分析图。
图8是实施例制备的磁性碳基FeCo双金属有机框架复合材料与磁性CoFe2O4/多孔碳的磁滞曲线分析图。
图9是实施例制备的磁性碳基FeCo双金属有机框架复合材料的Zeta电位分析图。
图10是不同吸附剂对水中四环素吸附性能的结果分析图。
图11是实施例制备的磁性碳基FeCo双金属有机框架复合材料在不同pH条件下对四环素的吸附性能。
图12是实施例制备的磁性碳基FeCo双金属有机框架复合材料在不同接触温度条件下对四环素的吸附性能。
图13是实施例制备的磁性碳基FeCo双金属有机框架复合材料在不同腐殖酸浓度下对四环素的吸附性能。
图14是实施例制备的磁性碳基FeCo双金属有机框架复合材料在不同起始四环素浓度及不同吸附时间条件下对四环素的吸附性能。
图15是实施例制备的磁性碳基FeCo双金属有机框架复合材料吸附四环素的非线性Langmuir分析曲线。
图16是实施例制备的磁性碳基FeCo双金属有机框架复合材料吸附四环素的非线性Freundlich分析曲线。
图17是实施例制备的磁性碳基FeCo双金属有机框架复合材料吸附四环素的非线性Temkin分析曲线。
图18是实施例制备的磁性碳基FeCo双金属有机框架复合材料吸附四环素的准一级动力学曲线。
图19是实施例制备的磁性碳基FeCo双金属有机框架复合材料吸附四环素的准二级动力学曲线。
图20是实施例制备的磁性碳基FeCo双金属有机框架复合材料吸附四环素的重复利用性结果。
图21为本发明的制备方法流程图。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例
一种磁性碳基FeCo双金属有机框架复合材料的制备方法,包括:
步骤1:利用碎纸屑、浓盐酸、NaOH和尿素水溶液制备废纸桨混合物;
步骤1.1:将150g剪碎的碎纸屑浸泡于60ml的38wt%浓盐酸处理24小时。
步骤1.2:将步骤1.1浸泡后的碎纸屑,洗涤、干燥,称取100g后浸渍于100ml的7%NaOH和12%尿素(质量分数)水溶液中,然后置于-18℃冷冻24小时,解冻后得到废纸桨混合物。
步骤2:将铁盐和钴盐溶解于乙醇溶液中,加入步骤1制备的废纸桨混合物,经过搅拌、热聚合反应、煅烧和洗涤后制备得到磁性CoFe2O4多孔碳;
步骤2.1:将10g无水三氯化铁和8.8g六水合氯化钴完全溶解于80%乙醇溶液中,加入步骤1解冻的60g废纸桨混合物,常温搅拌2小时。
步骤2.2:将步骤2.1的产物转入水热反应釜在160℃加热,进行热聚合反应24小时。
步骤2.3:将步骤2.2热聚合反应后所得黑色沉淀物洗涤、干燥后在氮气气氛、550℃煅烧处理3小时,然后用蒸馏水洗涤产物,最后进行干燥处理,得到磁性CoFe2O4/多孔碳。
步骤3:将步骤2.3制备得磁性CoFe2O4/多孔碳(3.0g)与均苯三甲酸(0.5g)水溶液混合,经超声分散、转入水热反应釜在160℃加热反应12小时。最后进行洗涤、干燥,即得磁性碳基FeCo双金属有机框架复合材料。
实验:
1.磁性碳基FeCo双金属有机框架复合材料理化性质研究
本发明磁性碳基FeCo双金属有机框架复合材料的形貌结构分析。场发射扫描电镜和高分辨透射电镜结果表明(图1与图2),所制备磁性碳基FeCo双金属有机框架复合材料呈现类棒状与碎颗粒状结构共存,且类球状CoFe2O4纳米颗粒均匀分布于碳骨架。傅里叶变换红外光谱数据(图3)表明,所制备磁性碳基FeCo双金属有机框架复合材料较磁性CoFe2O4/多孔碳材料具有更为丰富的官能团,尤其是羧基、羟基官能团最为明显,这非常有利于其与四环素类抗生素分子间的相互作用。为了探究所制备磁性碳基FeCo双金属有机框架复合材料的孔隙结构、比表面积特性和元素组成,采用物理吸附仪ASAP 2020以及元素分析对实施例制备复合材料的孔结构、化学组成进行了定性、定量的详细分析;结果见图4、图5及表1。
表1.磁性碳基多孔材料孔隙结构及元素组成分析
Figure BDA0003740082250000101
注:表中[a]是BET表面积;[b]是总孔容量;[c]是平均介孔尺寸。
由表1可知,实施例所制备磁性碳基FeCo双金属有机框架复合材料的比表面积为102.7m2/g、总孔容量为0.14cm3/g、平均介孔尺寸为5.9nm以及氧元素含量为27.3wt.%。相比之下,磁性碳基FeCo双金属有机框架复合材料的比表面积、总孔容量和氧元素含量明显高于对照组磁性CoFe2O4/多孔碳材料,这些优越的特性将非常有助于改善四环素的吸附性能。为了进一步明确实施例所得材料的元素组成,X射线光电子能谱技术被用于实施例的样品分析。结果显示(图6),实施例所得材料由C、O、Fe、Co元素组成,且这些元素在实施例材料表面含量明显高于对照组,这些结果揭示磁性碳基FeCo双金属有机框架复合材料被成功制备,且氧元素含量与元素分析结果一致。
为了探明实施例所得复合材料是否破坏了原有磁性多孔碳的晶型组成,X射线粉末衍射技术被进一步用于分析实施例与对照组磁性CoFe2O4/多孔碳材料的晶体衍射参数。结果表明(图7),所制备实施例材料很好地保留了对照组固有的晶体衍射参数,同时在衍射角20度以下出现FeCo金属有机骨架材料的衍射峰,这一结果充分证明本发明成功制备了实施例所述材料且几乎未破坏磁性多孔碳固有的晶型结构。与此同时,采用超导磁滞曲线分析仪对实施例与对照组的磁滞性能进行了探索,结果显示(图8)实施例所得材料的磁滞曲线略低于对照组,但仍具有较高的磁化强度且易于在外界磁场驱动下实现分离。Zeta电位分析结果表明(图9),所得实施例材料在宽pH范围(5-9)内带有正电荷,这将有利于从静电作用角度深入解析实施例材料对四环素吸附的机理探索。
2.磁性碳基FeCo双金属有机框架复合材料吸附四环素性能研究
2.1磁性碳基FeCo双金属有机框架复合材料吸附四环素的影响因素
本发明采用分光光度法对实施例制备的磁性碳基FeCo双金属有机框架复合材料吸附四环素的典型影响因素进行了研究。(1)最优吸附剂优化实验:为了验证实施例所得材料为最优吸附剂,本发明进行了如下实验:将50mg各种吸附剂分别加入50mL四环素溶液(150mg/L),置于恒温震荡箱内,在45℃、180rpm避光振荡90min。随后用紫外可见分光光度计测定上层清液中四环素的残余浓度,并分别计算吸附量和消除率。其中,吸附量(mg/g)和消除率(%)按如下计算:
Figure BDA0003740082250000111
其中,C0为四环素初始浓度,Ce为四环素平衡浓度,V(mL)为四环素溶液体积,W(mg)为磁性碳基FeCo双金属有机框架复合材料的用量。
由图10可知,相同吸附条件下,磁性碳基FeCo双金属有机框架复合材料对四环素的吸附效果最好(吸附量147.00mg/g,消除率为98%)。相比之下,磁性CoFe2O4/多孔碳复合材料(99.80mg/g,66.57%)和FeCo-MOF(92.79mg/g,61.86%)吸附效果相近且低于磁性碳基FeCo双金属有机骨架复合材料。需注意的是废纸浆衍生非碳材料吸附效果最差,吸附量和消除率分别为21.08mg/g和14.06%。这些结果证明实施例所得磁性碳基FeCo双金属有机骨架复合材料为最优吸附剂。
(2)溶液pH对吸附性能影响实验:将50mg磁性碳基FeCo双金属有机骨架复合材料加入50mL不同pH(3、5、6、7.4、9、12)的四环素溶液(150mg/L),置于恒温震荡箱内,在25℃、180rpm避光振荡60min。随后用紫外可见分光光度计测定上层清液中四环素的残余浓度,并分别计算吸附量和消除率。由图11可知,四环素溶液pH从3增大到12,四环素吸附量从130.71mg/g增大到180.83mg/g,消除率从65.36%增大到90.42%。这是由于溶液pH会影响碳材料表面电荷、四环素存在多种形态和电离度,进而影响四环素吸附量。当pH值<3.3,四环素以阳离子形态存在;3.3<pH<7.7,以分子形态存在;pH>7.7,以阴离子形态存在。在目前的pH测试范围内,碳材料带正电荷,故pH>7.7静电引力增大。但pH由7.4增大到12时,四环素吸附量和消除率增长不明显,从实际废水酸度角度考虑,中性条件仍是最优的选择。
(3)接触温度对吸附性能的影响实验:将50mg磁性碳基FeCo双金属有机骨架复合材料加入50mL四环素水溶液(200mg/L),置于恒温震荡箱内,在不同温度(25、35、45、55℃)、180rpm避光振荡60min。随后用紫外可见分光光度计测定上层清液中四环素的残余浓度,并分别计算吸附量和消除率。由图12可知,随着温度升高,四环素吸附量呈上升趋势。温度对吸附的影响取决于该反应是吸热反应还是放热反应,如果是吸热反应,提高温度会增加吸附剂的吸附量;如果是放热反应,则对吸附产生不利影响。本实验说明适当的温度升高对吸附四环素有促进作用,但当溶液温度超过45℃时吸附量略有下降且消除率几乎无明显变化。考虑到实际水样处理条件,选取25℃(即室温)更节能、环保。
(4)吸附剂剂量对吸附性能的影响实验:将不同质量(25、50、75、100mg)的磁性碳基FeCo双金属有机骨架复合材料加入50mL四环素水溶液(200mg/L),置于恒温震荡箱内,在25℃、180rpm避光振荡60min。随后用紫外可见分光光度计测定上层清液中四环素的残余浓度,并分别计算吸附量和消除率。由图13可知,随着吸附剂用量从0.5mg/mL增加至2mg/mL,四环素的吸附量从287.61mg/g降低至90.12mg/g,而消除率从71.90%增加至90.12%,这是因为吸附剂用量的增加导致吸附剂总比表面积增加,有效的吸附位点增多,四环素消除率增高。这种现象可能归结于:①溶液体积不变,吸附剂用量增加会导致吸附位点无法完全吸附饱和,单位质量吸附剂的吸附效率降低;②吸附剂过多导致颗粒积聚,造成散路径长度增加以及扩总比表面积降低,从而导致吸附量降低。考虑到实际低成本、高效率吸附需要,吸附剂用量选取1mg/mL。
(5)腐殖酸对吸附性能的影响实验:将20mg磁性碳基FeCo双金属有机骨架复合材料加入20mL含不同浓度腐殖酸(0、5、10、15、20、25mg/L)的四环素水溶液(200mg/L),随后加入不同置于恒温震荡箱内,在25℃、180rpm避光振荡180min。随后用紫外可见分光光度计测定上层清液中四环素的残余浓度,并分别计算吸附量和消除率。由图可知,不同浓度腐殖酸对四环素的吸附效果几乎无影响,说明磁性碳基FeCo双金属有机骨架复合材料对含腐殖酸水体中四环素的吸附具有很好的抗干扰能力。
(6)初始浓度和吸附时间对吸附性能的影响实验:将50mg的磁性碳基FeCo双金属有机骨架复合材料加入50mL不同浓度的四环素水溶液(50、100、150、200、300、400、500、600、700、800、900、1000mg/L),置于恒温震荡箱内,在25℃、180rpm避光振荡。随后在不同时间间隔(15、30、45、60、90、120、150、180min)用紫外可见分光光度计测定上层清液中四环素的残余浓度,并分别计算吸附量和消除率。由图14可知,在不同初始四环素浓度条件,吸附量随时间增加而增大,且吸附量随四环素初始浓度增高而增大。在初始吸附阶段(0-120min),四环素吸附量随时间变化增加显著,120min后吸附量增加缓慢。四环素初始浓度越大,四环素吸附达到平衡的时间越长。
2.2磁性碳基FeCo双金属有机框架复合材料吸附四环素的等温吸附、吸附动力学及可再生特性
本发明采用紫外分光光度法测试所制备磁性碳基FeCo双金属有机框架复合材料吸附四环素的等温吸附性能。具体试验方法如下:将50mg磁性碳基FeCo双金属有机框架复合材料加入50mL不同初始浓度的四环素溶液(100、200、400、600、800、1000mg/L),置于不同温度的水浴(298、308、318、328、338K)中以120转/分钟的速度振荡180分钟后取样,测量溶液吸光度,并进一步求出四环素浓度。由非线性Langmuir(图15)、非线性Freundlich(图16)、非线性Temkin曲线(图17)以及表2结果可知,实施例所得材料对四环素吸附过程更符合用Langmuir(Langmiur的R2值明显高于Freundlich和Temkin模型)单分子层吸附模型描述。在338K,实施例所得碳基复合材料对四环素的最大单分子层吸附容量高达909mg/g,这一吸附结果远高于目前报道的大部分碳基多孔材料、金属有机骨架材料以及生物炭等多种吸附剂。
另外,吸附动力学数据表明(图18与图19),实施例所得材料对四环素的准二级吸附动力学(R2大于0.99)拟合曲线明显优于准一级吸附动力学(R2小于0.96)数据,这一结果表明目前实施例所得材料吸附四环素主要受化学吸附控制。可再生性实验表明(图20),实施例所制备碳基复合材料具有较好的可循环利用性,重复循环利用四次对四环素的清除率仍可达50%,暗示本发明所制产品极具应用潜力。
表2.实施例所得材料吸附四环素的不同等温吸附数据分析结果.
Figure BDA0003740082250000151
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (10)

1.一种磁性碳基FeCo双金属有机框架复合材料的制备方法,其特征在于:包括以下步骤:
步骤1:利用碎纸屑、浓盐酸、NaOH和尿素水溶液制备废纸桨混合物;
步骤2:将铁盐和钴盐溶解于乙醇溶液中,加入步骤1制备的废纸桨混合物,经过搅拌、热聚合反应、煅烧和洗涤后制备得到磁性CoFe2O4多孔碳;
步骤3:将步骤2所制备的CoFe2O4多孔碳加入有机配体水溶液,经过超声分散、原位水热反应、洗涤、干燥后,制得磁性碳基FeCo双金属有机框架复合材料。
2.根据权利要求1所述的一种磁性碳基FeCo双金属有机框架复合材料的制备方法,其特征在于:所述步骤1的具体步骤为:
步骤1.1:将剪碎的碎纸屑浸泡于浓盐酸处理;
步骤1.2:将步骤1.1处理后的碎纸屑,经洗涤、干燥后浸渍于NaOH和尿素水溶液中,然后置于-18℃冷冻24小时,解冻后得到废纸桨混合物。
3.根据权利要求2所述的一种磁性碳基FeCo双金属有机框架复合材料的制备方法,其特征在于:所述步骤2的具体步骤为:
步骤2.1:将铁盐和钴盐完全溶解于80%乙醇溶液中,加入步骤1制备的废纸桨混合物,常温搅拌0.5~2小时;
步骤2.2:将步骤2.1的产物转入水热反应釜加热,进行热聚合反应;
步骤2.3:将步骤2.2热聚合反应后的产物在惰性气体保护下,进行煅烧处理,然后依次用蒸馏水、无水乙醇洗涤产物,最后进行干燥处理,得到磁性CoFe2O4多孔碳。
4.根据权利要求3所述的一种磁性碳基FeCo双金属有机框架复合材料的制备方法,其特征在于:所述步骤1.1的浓盐酸为38wt%,处理时间为24小时,其中碎纸屑和浓盐酸的配比为5g:2ml。
5.根据权利要求4所述的一种磁性碳基FeCo双金属有机框架复合材料的制备方法,其特征在于:所述步骤1.2的NaOH溶液质量分数为7%,尿素溶液质量分数为12%,其中处理后的碎纸屑与NaOH和尿素混合水溶液的比例为1g:1ml。
6.根据权利要求5所述的一种磁性碳基FeCo双金属有机框架复合材料的制备方法,其特征在于:所述步骤2.1中,铁盐和钴盐中Fe(III)与Co(II)的摩尔比为2,所述铁盐为无水三氯化铁,所述钴盐为六水合二氯化钴。
7.根据权利要求6所述的一种磁性碳基FeCo双金属有机框架复合材料的制备方法,其特征在于:所述步骤2.2中水热反应釜温度为160~180℃,热聚合反应时间为12~24小时。
8.根据权利要求7所述的一种磁性碳基FeCo双金属有机框架复合材料的制备方法,其特征在于:所述步骤2.3的煅烧的温度为550℃,时间为3小时。
9.根据权利要求8所述的一种磁性碳基FeCo双金属有机框架复合材料的制备方法,其特征在于:所述步骤3的水热反应温度为160℃,反应时间为12小时,有机配体为均苯三甲酸。
10.根据权利要求1-9任一项制备的磁性碳基FeCo双金属有机框架复合材料,应用于废水中四环素的高效吸附去除。
CN202210813201.8A 2022-07-11 2022-07-11 一种磁性碳基FeCo双金属有机框架复合材料的制备方法及应用 Active CN115121226B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210813201.8A CN115121226B (zh) 2022-07-11 2022-07-11 一种磁性碳基FeCo双金属有机框架复合材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210813201.8A CN115121226B (zh) 2022-07-11 2022-07-11 一种磁性碳基FeCo双金属有机框架复合材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN115121226A true CN115121226A (zh) 2022-09-30
CN115121226B CN115121226B (zh) 2024-04-16

Family

ID=83384376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210813201.8A Active CN115121226B (zh) 2022-07-11 2022-07-11 一种磁性碳基FeCo双金属有机框架复合材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN115121226B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116393131A (zh) * 2023-02-23 2023-07-07 南京工业大学 一种mil-88衍生磁性碳纳米材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106957439A (zh) * 2017-03-30 2017-07-18 中南大学 基于含钴双金属氧化物无溶剂制备Co‑MOF材料的方法
CN107042087A (zh) * 2017-01-19 2017-08-15 中国石油大学(华东) 一种原位水热制备磁性金属有机骨架核壳材料的方法
CN108816064A (zh) * 2018-06-26 2018-11-16 中国科学院青岛生物能源与过程研究所 一种原位生长金属有机框架材料的壳聚糖纳米纤维膜的制备方法
CN111254707A (zh) * 2020-02-25 2020-06-09 南通大学 一种负载Fe-MOF的活性炭纤维材料的制备方法
CN112844320A (zh) * 2020-12-26 2021-05-28 中南大学 一种碳材料包裹尖晶石铁氧化物原位生长MOFs吸附催化复合体及其制备方法与应用
CN114130364A (zh) * 2021-11-25 2022-03-04 大连理工大学 一种利用混合金属有机框架材料吸附并降解四环素的高效安全方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107042087A (zh) * 2017-01-19 2017-08-15 中国石油大学(华东) 一种原位水热制备磁性金属有机骨架核壳材料的方法
CN106957439A (zh) * 2017-03-30 2017-07-18 中南大学 基于含钴双金属氧化物无溶剂制备Co‑MOF材料的方法
CN108816064A (zh) * 2018-06-26 2018-11-16 中国科学院青岛生物能源与过程研究所 一种原位生长金属有机框架材料的壳聚糖纳米纤维膜的制备方法
CN111254707A (zh) * 2020-02-25 2020-06-09 南通大学 一种负载Fe-MOF的活性炭纤维材料的制备方法
CN112844320A (zh) * 2020-12-26 2021-05-28 中南大学 一种碳材料包裹尖晶石铁氧化物原位生长MOFs吸附催化复合体及其制备方法与应用
CN114130364A (zh) * 2021-11-25 2022-03-04 大连理工大学 一种利用混合金属有机框架材料吸附并降解四环素的高效安全方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116393131A (zh) * 2023-02-23 2023-07-07 南京工业大学 一种mil-88衍生磁性碳纳米材料及其制备方法和应用

Also Published As

Publication number Publication date
CN115121226B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
Yin et al. Evaluation of nitrate and phosphate adsorption on Al-modified biochar: influence of Al content
Wu et al. Immobilization of nanoscale zero-valent iron particles (nZVI) with synthesized activated carbon for the adsorption and degradation of Chloramphenicol (CAP)
CN111359580A (zh) 一种多孔结构的碳铁复合材料的制备方法及应用
Liu et al. An antibacterial and antifouling amidoxime-functionalized graphene oxide aerogel for selective uranium adsorption in Salt Lake water
Yao et al. Simultaneous oxidation and removal of Sb (III) from water by using synthesized CTAB/MnFe2O4/MnO2 composite
Sun et al. Effect of iron impregnation ratio on the properties and adsorption of KOH activated biochar for removal of tetracycline and heavy metals
CN108079949B (zh) 利用磁性猪粪生物炭去除水体中铅的方法
Zhang et al. Crayfish shell biochar modified with magnesium chloride and its effect on lead removal in aqueous solution
CN114471654B (zh) 一种氮化硼类材料锚定铁酸钴复合催化剂的制备及在催化降解土霉素中应用
Puente-Urbina et al. Porous materials modified with Fe 3 O 4 nanoparticles for arsenic removal in drinking water
Din et al. Investigation on cadmium ions removal from water by a nanomagnetite based biochar derived from Eleocharis dulcis
Wan et al. Magnetic-activated carbon composites derived from iron sludge and biological sludge for sulfonamide antibiotic removal
Lu et al. Valorization of oxytetracycline fermentation residue through torrefaction into a versatile and recyclable adsorbent for water pollution control
CN115121226A (zh) 一种磁性碳基FeCo双金属有机框架复合材料的制备方法及应用
Ge et al. Recyclable magnetic chitosan microspheres with good ability of removing cationic dyes from aqueous solutions
Xiang et al. Vinasse-based biochar magnetic composites: adsorptive removal of tetracycline in aqueous solutions
Nguyen et al. NiCo2O4-loaded sunflower husk-derived biochar as efficient peroxymonosulfate activator for tetracycline removal in water
Li et al. Adsorption of heavy metals and antibacterial activity of silicon-doped chitosan composite microspheres loaded with ZIF-8
Li et al. Heterostructure CoFe2O4/kaolinite composite for efficient degradation of tetracycline hydrochloride through synergetic photo-Fenton reaction
Ren et al. The study on adsorption behavior of 2, 4-DCP in solution by biomass carbon modified with CTAB-KOH
Huang et al. Adsorptive removal of oxytetracycline in wastewater by Cu/Al doped carbon microspheres prepared from low-molecular-weight chitosan
Fang et al. Tofukasu-derived biochar with interconnected and hierarchical pores for high efficient removal of Cr (VI)
Lin et al. A novel self-assembled ZIF-67 hollow prisms for high-efficient simultaneous removal of ciprofloxacin and lead
CN114873649B (zh) 一种用于修复砷污染土壤的纳米施氏矿物合成方法
Han et al. Enhanced removal of estrogens from simulated wastewater by biochar supported nanoscale zero-valent iron: performance and mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant