CN115069283B - 一种多元掺杂多孔碳纳米片复合两相TiO2半球的制备方法 - Google Patents

一种多元掺杂多孔碳纳米片复合两相TiO2半球的制备方法 Download PDF

Info

Publication number
CN115069283B
CN115069283B CN202210552949.7A CN202210552949A CN115069283B CN 115069283 B CN115069283 B CN 115069283B CN 202210552949 A CN202210552949 A CN 202210552949A CN 115069283 B CN115069283 B CN 115069283B
Authority
CN
China
Prior art keywords
carbon nano
porous carbon
sheet
doped
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210552949.7A
Other languages
English (en)
Other versions
CN115069283A (zh
Inventor
王德宝
孙媛媛
张茗豪
孙瑞红
宋彩霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202210552949.7A priority Critical patent/CN115069283B/zh
Publication of CN115069283A publication Critical patent/CN115069283A/zh
Application granted granted Critical
Publication of CN115069283B publication Critical patent/CN115069283B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种多元掺杂多孔碳纳米片复合两相TiO2半球的制备方法,所得异质结是由N,K掺杂的多孔碳纳米片原位复合N,C,K掺杂的锐钛矿/金红石TiO2异质结构半球组成,其制备步骤为:首先将D‑氨基葡萄糖盐酸盐、尿素和草酸钛钾混合,加热搅拌至形成均匀的液体,再将所得液体放入管式炉中,通氮气,以1‑10min/℃升温速度加热至500‑600℃保温1‑6h,再通过程序升温至750‑850℃保温1‑6h,自然冷却,得到掺杂多孔碳纳米片复合掺杂两相TiO2半球光催化剂。该异质结光催化剂用于室内空气净化,光催化吸附降解水中有机污染物,可见光光催化分解水制氢,5‑羟基糠醛氧化和制备染料敏化太阳能电池的光催化材料,具有显著的光催化活性。

Description

一种多元掺杂多孔碳纳米片复合两相TiO2半球的制备方法
技术领域
本发明属于空气净化领域,涉及一种多元掺杂多孔碳纳米片复合两相TiO2半球的制备方法,具体地说,是涉及一种由N,O,K掺杂的多孔碳纳米片原位复合N,C,K掺杂的锐钛矿/金红石TiO2异相结多孔半球光催化剂的制备方法。
背景技术
随着社会的发展和人们生活水平的提高以及城市化进程的加快,人们在室内生活和工作的时间也逐渐增加。因此,室内空气质量对每一个人的健康有重大影响。但由于劣质装修装饰材料造成了室内空气的恶化,室内空气的污染物主要有挥发性有机化合物(VOCs)如甲醛、一氧化碳、氮氧化物等,长期接触室内污染物将严重危害人类的健康,诱发各种疾病。世界卫生组织一则报告中指出空气污染每年会夺去700万人的生命,其中4.3万与室内空气污染关系密切。因此,有效去除室内VOCs对改善居住环境,提高国民体质,减少雾霾具有重要的社会意义。
光催化材料的出现无疑为室内空气净化问题提供了最经济有效的解决方式。光催化氧化可有效降解污染物,二氧化钛是(TiO2)一种无毒无害、价格低廉、催化活性高且化学性质不活泼的非常有潜力的光催化剂,在室内空气净化、有机污染物降解、制氢等方面得到了广泛的应用。然而,传统的TiO2纳米粒子由于带隙大(锐钛矿TiO2禁带宽度约为3.2eV),只能在紫外光照射下才有光催化活性,难以利用可见光,并容易使产生的光生载流子复合,大大降低催化效率。因此,拓宽光响应,充分利用可见光,减少光生载流子复合是本发明所要解决的关键问题。
发明内容:
本发明针对现有技术中制备TiO2只能在紫外光照射下才有光催化活性,难以利用可见光,并容易使产生的光生载流子复合等缺点,提出了一种多元掺杂多孔碳纳米片复合两相TiO2半球的制备方法,其特征在于所述多元掺杂多孔碳纳米片复合两相TiO2半球是由N,O,K掺杂的多孔碳纳米片原位复合N,C,K掺杂的锐钛矿/金红石TiO2异相结多孔半球组成,用于室内空气净化,光催化吸附降解水中有机污染物,可见光光催化分解水制氢,5-羟甲基糠醛等生物质氧化的光催化材料,其制备方法包括下述步骤:
(1)将10-1000mmol D-氨基葡萄糖盐酸盐、10-1000mmol尿素和1-100mmol草酸钛钾混合,在30-100℃的油浴中加热熔融,持续搅拌直至形成均匀的液体;
(2)将步骤(1)得到的液体倒入瓷舟中,然后将瓷舟放入管式炉中,在氮气气氛中,以1-10min/℃升温速度加热至500-600℃保温1-6h,再程序升温至750-850℃保温1-6h,待自然冷却至室温后取出样品,得到多元掺杂多孔碳纳米片复合两相TiO2半球光催化剂。
本发明的优点在于:该方法工艺过程简单,一步完成。所制备的一种掺杂多孔碳纳米片复合掺杂两相TiO2半球是由N,O,K掺杂的多孔碳纳米片原位复合N,C,K掺杂的锐钛矿/金红石TiO2异质结构半球组成,这种多孔结构的复合光催化剂具有高的表面积,比表面高达297.6m2/g,能提供更多的活性位点,N,C,K元素的掺杂有利用引入杂质能级。这种多孔结构的复合光催化剂既能够快速吸附有害气体,又有利于大大增强可见光的吸收,促进载流子的分离,提高光催化效率。
本发明所述方法制备的掺杂多孔碳纳米片复合掺杂两相TiO2半球的光催化效率高,对于室内空气净化,光催化吸附降解水中有机污染物,5-羟甲基糠醛等生物质氧化和可见光光催化分解水制氢,都有很好的光催化活性。还可用于制备染料敏化太阳能电池。
附图说明
图1为利用本发明实施例一所述方法制备的多元掺杂多孔碳纳米片复合两相TiO2半球的XRD谱图。
图2为利用本发明实施例一所述方法制备的多元掺杂多孔碳纳米片复合两相TiO2半球的不同角度的SEM照片。
图3为利用本发明实施例一所述方法制备的多元掺杂多孔碳纳米片复合两相TiO2半球不同倍数的TEM照片和HRTEM照片。
图4为利用本发明实施例一所述方法制备的多元掺杂多孔碳纳米片复合两相TiO2半球的STEM-HADDF照片和各元素的STEM-mapping照片。
图5为利用本发明实施例一所述方法制备的多元掺杂多孔碳纳米片复合两相TiO2半球的氮气吸脱附等温线和孔径分布图。
图6为利用本发明实施例一、实施例二所述方法制备的多元掺杂多孔碳纳米片复合两相TiO2半球和对比例一所述方法制备的催化剂光催化空气净化甲醛的转化速率图。
图7为利用本发明实施例一、实施例二所述方法制备的多元掺杂多孔碳纳米片复合两相TiO2半球和对比例一所述方法制备的催化剂在>420nm的可见光照射下光催化水分解产氢速率图。
图8为利用本发明实施例一所述方法制备的掺杂多孔碳纳米片复合掺杂两相TiO2半球在>420nm的可见光照射下光催化水分解产氢循环稳定性。
具体实施方式
下面通过实施例对本发明作进一步详细说明:
实施例一:
(1)将20mmol D-氨基葡萄糖盐酸盐、80mmol尿素和1.7mmol草酸钛钾混合,在75℃的油浴中加热,持续搅拌直至形成均匀的液体;
(2)将步骤(1)得到的液体倒入瓷舟中,然后将瓷舟放入管式炉中,通氮气,以10min/℃升温速度加热至550℃保温4h,再通过程序升温至850℃保温4h,自然冷却至室温后取出,得到掺杂多孔碳纳米片复合掺杂两相TiO2半球光催化剂。
实施例二:
(1)将20mmol D-氨基葡萄糖盐酸盐、80mmol尿素和1.7mmol草酸钛钾混合,在75℃的油浴中加热,持续搅拌直至形成均匀的液体;
(2)将步骤(1)得到的液体倒入瓷舟中,然后将瓷舟放入管式炉中,通氮气,以10min/℃升温速度加热至500℃保温2h,再通过程序升温至750℃保温4h,自然冷却至室温后取出,得到掺杂多孔碳纳米片复合掺杂两相TiO2半球光催化剂。
实施例三:
(1)将20mmol D-氨基葡萄糖盐酸盐、160mmol尿素和3.4mmol草酸钛钾混合,在50℃的油浴中加热,持续搅拌直至形成均匀的液体;
(2)将步骤(1)得到的液体倒入瓷舟中,然后将瓷舟放入管式炉中,通氮气,以10min/℃升温速度加热至550℃保温4h,再通过程序升温至850℃保温4h,自然冷却至室温后取出,得到掺杂多孔碳纳米片复合掺杂两相TiO2微光催化剂。
实施例四:
(1)将60mmol D-氨基葡萄糖盐酸盐、800mmol尿素和20mmol草酸钛钾混合,在75℃的油浴中加热,持续搅拌直至形成均匀的液体;
(2)将步骤(1)得到的液体倒入瓷舟中,然后将瓷舟放入管式炉中,通氮气,以10min/℃升温速度加热至550℃保温4h,再通过程序升温至850℃保温6h,自然冷却至室温后取出,得到掺杂多孔碳纳米片复合掺杂两相TiO2半球光催化剂。
实施例五:
(1)将100mmol D-氨基葡萄糖盐酸盐、800mmol尿素和50mmol草酸钛钾混合,在80℃的油浴中加热,持续搅拌直至形成均匀的液体;
(2)将步骤(1)得到的液体倒入瓷舟中,然后将瓷舟放入管式炉中,通氮气,以10min/℃升温速度加热至600℃保温4h,再通过程序升温至900℃保温2h,自然冷却至室温后取出,得到掺杂多孔碳纳米片复合掺杂两相TiO2半球光催化剂。
实施例六:
(1)将20mmol D-氨基葡萄糖盐酸盐、80mmol尿素和1.7mmol草酸钛钾混合,在75℃的油浴中加热,持续搅拌直至形成均匀的液体;
(2)将步骤(1)得到的液体倒入瓷舟中,然后将瓷舟放入管式炉中,通氮气,以10min/℃升温速度加热至550℃保温4h,再通过程序升温至850℃保温4h,自然冷却至室温后取出,得到掺杂多孔碳纳米片复合掺杂两相TiO2半球光催化剂。
实施例七:
(1)将20mmol D-氨基葡萄糖盐酸盐、80mmol尿素和1.7mmol草酸钛钾混合,在75℃的油浴中加热,持续搅拌直至形成均匀的液体;
(2)将步骤(1)得到的液体倒入瓷舟中,然后将瓷舟放入管式炉中,通Ar气,以10min/℃升温速度加热至550℃保温4h,再通过程序升温至850℃保温4h,自然冷却至室温后取出,得到掺杂多孔碳纳米片复合掺杂两相TiO2半球光催化剂。
对比例一:
(1)将20mmol D-氨基葡萄糖盐酸盐、80mmol尿素和1.7mmol草酸钛钾均匀分散在35ml水中,转移到45mL反应釜中,在180℃的烘箱中反应6h。取出反应釜自然冷却到室温。然后分别用去离子水和无水乙醇洗涤、烘干;
(2)将步骤(1)得到的样品放到瓷舟里,然后将瓷舟放入管式炉中,通氮气,以10min/℃升温速度加热至550℃保温4h,再通过程序升温至850℃保温4h,自然冷却至室温后取出,得到锐钛矿型TiO2光催化剂。
图1为利用本发明实施例一所述方法制备的多元掺杂多孔碳纳米片复合两相TiO2半球的XRD谱图。从图中可以看出,得到的TiO2/C光催化剂中TiO2有两种晶相,分别匹配锐钛矿(JCPDS 71-1166)和金红石相(JCPDS 78-1509)TiO2。在2θ为25.3°、37.8°、48.0°处的强的衍射峰分别对应锐钛矿型TiO2的(101)、(004)、(200)晶面。在2θ为27.4°、54.3°处的强的衍射峰分别对应金红石型的(110)、(211)晶面。XRD图证明了样品中金红石和锐钛矿相TiO2的存在。除了TiO2的峰以外,在TiO2/C中没有观察到其它衍射峰,表明合成的样品中没有其他杂质。可能是因为TiO2的衍射峰强度太强且得到的碳为无定形的碳,所以没有明显的碳峰。
图2为利用本发明实施例一所述方法制备的多元掺杂多孔碳纳米片复合两相TiO2半球不同角度的SEM照片。从图a可以看出,TiO2纳米颗粒均匀分散在碳纳米片上,图b侧面照片表明,在碳纳米颗粒上均匀锚定半球形TiO2纳米颗粒。图中也可以观察到截面朝外的半球。
图3为利用本发明实施例一所述方法制备的多元掺杂多孔碳纳米片复合两相TiO2半球不同倍数的TEM照片和HRTEM照片。从图可以看出,TiO2纳米半球颗粒均匀分散在碳纳米片上,TiO2颗粒的直径约为150nm。图b的放大照片可以看出TiO2纳米颗粒是紧密地锚定在碳纳米片上。图c可以看到实施例一所得样品的晶格间距为0.35nm和0.25nm,分别对应锐钛矿的(101)晶面和金红石的(101)晶面,进一步证实了锐钛矿/金红石相结的形成,并且从图中可以看出金红石相TiO2和锐钛矿相TiO2是紧密接触的,这有利于光生载流子的迁移。
图4为利用本发明实施例一所述方法制备的多元掺杂多孔碳纳米片复合两相TiO2半球的STEM-HADDF照片和各元素的STEM-mapping照片。从图可以看出,Ti,O,C,N,K五种元素均匀分布。
图5为利用本发明实施例一所述方法制备的多元掺杂多孔碳纳米片复合两相TiO2半球的N2吸脱附等温线和孔径分布图。所得BET比表面积为297.6m2/g。
图6为利用本发明实施例一和对比例一所述方法制备的多元掺杂多孔碳纳米片复合两相TiO2半球和对比例一所述方法制备的催化剂在>420nm的可见光照射下光催化空气净化甲醛的转化速率图。从图可以看出,,实施例一所得样品利用可见光对甲醛的降解30min,其降解率接近100%,远优于对比例一所得样品的光催化降解效率。
图7为利用本发明实施例一和对比例一所述方法制备的多元掺杂多孔碳纳米片复合两相TiO2半球和对比例一所述方法制备的催化剂在>420nm的可见光照射下光催化水分解产氢速率图。在可见光照射下六个小时后的产氢速率。从图可以看出,实施例一和对比例一所得样品的产氢速率分别为28.7和0.98mmol/g/h,实施例一所得样品的产氢速率远高于对比例一所得样品的产氢速率。
图8为利用本发明实施例一所述方法制备的多元掺杂多孔碳纳米片复合两相TiO2半球在>420nm的可见光照射下光催化水分解产氢循环稳定性。从图可以看出,4个循环之后,产氢量几乎没有下降。
上述实施例是本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,未背离本发明的原理与工艺过程下所作的其它任何改变、替代、简化等,均为等效的置换,都应包含在本发明的保护范围之内。

Claims (1)

1.一种多元掺杂多孔碳纳米片复合两相TiO2半球的制备方法,其特征在于所述多元掺杂多孔碳纳米片复合两相TiO2半球是由N, O, K掺杂的多孔碳纳米片原位复合N, C, K掺杂的锐钛矿/金红石TiO2异相结多孔半球组成,用于光催化降解空气中甲醛、可见光光催化分解水制氢的光催化材料,其制备方法包括下述步骤:
(1)将10-100 mmol D-氨基葡萄糖盐酸盐、10-1000 mmol尿素和1-100 mmol草酸钛钾混合,在30-100 ℃的油浴中加热熔融,持续搅拌直至形成均匀的液体;
(2)将步骤(1)得到的液体倒入瓷舟中,然后将瓷舟放入管式炉中,在氮气气氛中,以1-10min/℃升温速度加热至500-600 ℃保温1-6 h,再程序升温至750-850 ℃保温1-6 h,待自然冷却至室温后取出样品,得到多元掺杂多孔碳纳米片复合两相TiO2半球光催化剂。
CN202210552949.7A 2022-05-20 2022-05-20 一种多元掺杂多孔碳纳米片复合两相TiO2半球的制备方法 Active CN115069283B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210552949.7A CN115069283B (zh) 2022-05-20 2022-05-20 一种多元掺杂多孔碳纳米片复合两相TiO2半球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210552949.7A CN115069283B (zh) 2022-05-20 2022-05-20 一种多元掺杂多孔碳纳米片复合两相TiO2半球的制备方法

Publications (2)

Publication Number Publication Date
CN115069283A CN115069283A (zh) 2022-09-20
CN115069283B true CN115069283B (zh) 2023-07-21

Family

ID=83249729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210552949.7A Active CN115069283B (zh) 2022-05-20 2022-05-20 一种多元掺杂多孔碳纳米片复合两相TiO2半球的制备方法

Country Status (1)

Country Link
CN (1) CN115069283B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107115884A (zh) * 2017-06-12 2017-09-01 青岛科技大学 一种g‑C3N4/TiO2纳米线组装结构光催化剂及其制备方法
CN108355693A (zh) * 2018-02-02 2018-08-03 北京工业大学 高效超细TiO2纳米颗粒/石墨相氮化碳纳米片复合光催化剂的制备
JP2020157283A (ja) * 2019-03-28 2020-10-01 公立大学法人山陽小野田市立山口東京理科大学 光触媒の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012125839A1 (en) * 2011-03-15 2012-09-20 University Of Kentucky Research Foundation Carbon particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107115884A (zh) * 2017-06-12 2017-09-01 青岛科技大学 一种g‑C3N4/TiO2纳米线组装结构光催化剂及其制备方法
CN108355693A (zh) * 2018-02-02 2018-08-03 北京工业大学 高效超细TiO2纳米颗粒/石墨相氮化碳纳米片复合光催化剂的制备
JP2020157283A (ja) * 2019-03-28 2020-10-01 公立大学法人山陽小野田市立山口東京理科大学 光触媒の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Glucosamine-induced growth of highly distributed TiO2 nanoparticles on graphene nanosheets as high-performance photocatalysts;Lanbing Gu et al.;《RSC Adv.》;第6卷;67039–67048 *
二氧化钛涂覆多壁碳纳米管的制备及可见光催化活性;丛野;秦云;李轩科;董志军;袁观明;崔正威;;物理化学学报(06);1509-1515 *

Also Published As

Publication number Publication date
CN115069283A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN107824210B (zh) 一种氮掺杂介孔碳包裹的二氧化钛复合光催化剂及其制备方法和应用
CN108940338B (zh) 钾元素掺杂多孔氮化碳光催化剂及其制备方法和应用
CN108714431B (zh) 一种纳米纤维素增强复合光催化剂及其制备方法和应用
CN110975918B (zh) 一种硫化铟锌-氮掺杂石墨烯泡沫复合光催化材料及其制备方法和应用
CN105642299A (zh) 一种镍掺杂的铁酸镧/粘土纳米结构复合材料及其制备方法和应用
CN1857769A (zh) 低温法制备碳掺杂介孔二氧化钛可见光光催化剂
CN109759082A (zh) 一种氧化铟-硫化铟空心多孔六棱柱复合光催化剂的制备方法
CN111468147A (zh) 一种多孔碳复合二氧化钛-卤氧化物光催化剂及其制备方法
CN105771948A (zh) 具有高光催化制氢性能的双壳二氧化钛催化剂及其制备方法
CN110975857A (zh) 一种三维有序大孔氧缺陷型二氧化铈催化剂及其制备方法和应用
CN111957333A (zh) 一种Yb2O3/g-C3N4双功能催化剂的制备方法及应用
CN111185152A (zh) 一种多功能耦合的PAC/Bi2O3/TiO2复合材料制备方法
CN113289658A (zh) 一种BN负载TiO2-SrTiO3异质结光催化降解材料及制法
CN115069283B (zh) 一种多元掺杂多孔碳纳米片复合两相TiO2半球的制备方法
CN113134349A (zh) 一种蓝色层状Nb2O5光催化剂的制备方法及应用
CN109794289B (zh) 一种手碟型草酸氧钛盐光催化剂及其制备方法
CN108298632B (zh) 一种纳米TiO2光催化剂降解染料废水的工艺
CN115301267A (zh) 一种适用于可见光催化的多孔管状氮化碳催化剂及其制备方法和应用
CN102408246A (zh) 一种氮掺杂硅铝固载TiO2多孔陶瓷的制备方法
CN113694946A (zh) 一种核壳结构的Bi2O2CO3@rGO光催化剂及其制备方法及应用
CN111715266B (zh) 一种具有可见光催化活性的LiCl-CN纳米管及其制备方法与应用
CN114192163A (zh) 一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂及其制备方法
CN114870879A (zh) 双金属钙钛矿负载类石墨烯型氮化碳可见光催化剂及制备方法
CN108465464B (zh) 一种钛酸锶钡/钒酸铋的制备方法及应用
CN109894132B (zh) 以废弃物为碳源制备碳掺杂氧化钛可见光催化剂的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant