CN115044959B - 用于检验金刚石/铝硅复合材料界面的腐蚀剂及其使用方法 - Google Patents

用于检验金刚石/铝硅复合材料界面的腐蚀剂及其使用方法 Download PDF

Info

Publication number
CN115044959B
CN115044959B CN202210382432.8A CN202210382432A CN115044959B CN 115044959 B CN115044959 B CN 115044959B CN 202210382432 A CN202210382432 A CN 202210382432A CN 115044959 B CN115044959 B CN 115044959B
Authority
CN
China
Prior art keywords
aluminum
diamond
corrosion
sample
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210382432.8A
Other languages
English (en)
Other versions
CN115044959A (zh
Inventor
陈锋
顾高源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202210382432.8A priority Critical patent/CN115044959B/zh
Publication of CN115044959A publication Critical patent/CN115044959A/zh
Application granted granted Critical
Publication of CN115044959B publication Critical patent/CN115044959B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/04Etching of light metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种用于检验金刚石/铝硅复合材料界面的腐蚀剂,包括腐蚀溶液Ⅰ和腐蚀溶液Ⅱ,所述腐蚀溶液Ⅰ包括硝酸、丙三醇和水;所述腐蚀溶液Ⅱ包括氢氟酸、次磷酸、丙三醇和水;所述腐蚀剂的使用方法包括以下步骤:(1)试样加工成片状样品,打磨,清洗,干燥;(2)将试样在腐蚀溶液Ⅰ中电解腐蚀;(3)将(2)的试样在腐蚀溶液Ⅱ中电解腐蚀;(4)在扫描电子显微镜下观察金刚石和铝基体的界面及其反应产物;腐蚀剂能清晰完整地显示出金刚石/铝硅复合材料界面处Al4C3相和硅相的形貌,效率高,重现性好,使用方法操作简单。

Description

用于检验金刚石/铝硅复合材料界面的腐蚀剂及其使用方法
技术领域
本发明涉及一种材料界面腐蚀剂,特别涉及一种用于检验金刚石/铝硅复合材料界面的腐蚀剂及其使用方法。
背景技术
金刚石/铝复合材料的热导率高、热膨胀系数低、密度小,特别适合作为芯片半导体GaAs、GaN等使用的高性能电子封装散热材料。金刚石/铝复合材料的制备方法主要有粉末冶金烧结法和熔体压力浸渗法两大类,其中,后者所制备的复合材料的导热系数更高(金刚石颗粒的体积分数可高达65%)且可形成异形件,因而更具发展前景。就熔体压力浸渗法而言,铝液在浸入金刚石颗粒间隙时,因金刚石/铝液接触处的元素互扩散,通过形核和生长将生成Al4C3相,这种界面产物一方面能增加界面结合力因而可有效提高材料的热导率,但另一方面,因Al4C3相的热导率较低且具有吸湿性,过多的Al4C3相不仅会降低复合材料的热导率,还会降低其长周期服役性能。复合材料的性能在很大程度上取决于其界面组织,为此,必须寻找到一种能有效显示金刚石/铝复合材料界面处Al4C3相的形貌及分布的腐蚀剂及其检验方法,通过调整制备工艺,以实现对其组织和性能的有效控制。
目前已有若干文献公开了检测金刚石/铝复合材料界面的腐蚀剂及其检测方法:S.Kleiner等采用气压熔体浸渗法制备了金刚石/纯铝复合材料,将样品折断,在硝酸水溶液中进行电化学腐蚀以去除铝基体,然后在扫描电镜下可观察到金刚石表面有Al4C3相的生成(S.Kleiner,Effect of diamond crystallographic orientation on dissolutionand carbide formation in contact with liquid aluminium,Scripta Materialia 55(2006)291-294)。但该文献没有说明硝酸水溶液的浓度及电化学腐蚀参数(如被腐蚀面积的电流密度、腐蚀时间等),实际操作时控制的难度较大。I.E.Monje等采用气压熔体浸渗法制备了金刚石/纯铝复合材料,设计了一种专用装置对样品进行电化学腐蚀:将棒状样品(阴极)***铜制空心圆柱体(阳极)中,在空心圆柱体内侧的上下两端采用O型密封圈,将样品与空心圆柱体的径向间距固定为3mm,然后将装置置于10%(体积比)的硝酸水溶液中,腐蚀电流密度控制为2A/cm2,发现腐蚀时间为2.5min时,在扫描电镜下可较好地观察到金刚石表面形成的Al4C3相的形貌(I.E.Monje,Aluminum/diamond composites:Apreparativemethod to characterize reactivity and selectivity at the interface,ScriptaMaterialia 66(2012)789-792)。然而该文献提供的电化学腐蚀装置较复杂,特别是圆柱状金刚石/铝复合材料极难加工,实际应用难度很大。此外,上述两例均采用单一硝酸水溶液作为腐蚀剂,界面反应物Al4C3相会随铝基体的腐蚀而部分溶于腐蚀液中,难以显示其真实形貌。
近年来,金刚石/铝硅复合材料已得到更为广泛的研究,这是因为铝硅合金的熔点低、流动性好,因而浸渗温度显著低于纯铝,可有效控制金刚石/铝基体界面的反应程度,避免过量Al4C3相的生成。此外,研究表明硅相还能附着在金刚石的部分表面,既可以减少Al4C3相的生成量,还可以进一步增强界面结合力。与纯铝基体相比,金刚石/铝硅复合材料界面处Al4C3相的生成量相对较少,为此必须找到一种新型腐蚀剂及其界面检验方法,首先要避免对Al4C3相的腐蚀破坏,同时还要避免对硅相的过度腐蚀,最终能有效显示出这两种相的形貌,以便为复合材料组织和性能的控制提供依据。
发明内容
发明目的:本发明旨在提供一种用于检验金刚石/铝硅复合材料界面的腐蚀剂,能完整显示出Al4C3相和硅相的形貌,为复合材料组织和性能的控制提供依据;本发明的另一目的是提供该腐蚀剂的使用方法。
技术方案:本发明的一种用于检验金刚石/铝硅复合材料界面的腐蚀剂,包括腐蚀溶液Ⅰ和腐蚀溶液Ⅱ,所述腐蚀溶液Ⅰ包括硝酸、丙三醇和水;所述腐蚀溶液Ⅱ包括氢氟酸、次磷酸、丙三醇和水。
所述腐蚀溶液Ⅰ中,硝酸能快速去除较厚的铝覆盖层,使金刚石/铝基体界面初步显露出来,而丙三醇能抑制铝基体的点腐蚀,使铝基体的腐蚀去除过程更为均匀。
所述腐蚀溶液Ⅱ中,氢氟酸和次磷酸将Al4C3相周围残余的铝层进一步腐蚀去除干净,同时丙三醇能使铝基体的腐蚀去除过程更为均匀;此外,次磷酸还能防止电解时硅氧化为SiO2而被氢氟酸溶解,有助于显示出硅相的真实形貌,且其腐蚀产物次磷酸铝溶于水,可确保腐蚀过程的持续进行。
优选的,所述腐蚀溶液Ⅰ中,每100mL溶液中包括10~12mL硝酸,8~10mL丙三醇,其余为水;所述硝酸质量分数为65~70%。
腐蚀溶液Ⅰ的配置:取少量水于烧杯中,量取硝酸缓慢加入烧杯中,用玻璃棒搅拌,使其混合均匀,再加入丙三醇,搅拌均匀,最后加入水混合并定容到100mL。
优选的,所述腐蚀溶液Ⅱ中,每100mL溶液中包括5~7mL氢氟酸,7~10mL次磷酸,其余为水;所述氢氟酸质量分数35~40%;所述次磷酸质量分数85~85%。
腐蚀溶液Ⅱ的配置:取少量水于烧杯中,分别量取氢氟酸和次磷酸缓慢加入烧杯中用玻璃棒搅拌,使其混合均匀,再加入丙三醇,搅拌均匀,最后加入水混合并定容到100mL。
本发明的腐蚀剂的使用方法,包括以下步骤:
(1)将金刚石/铝硅复合材料试样加工成片状样品,打磨,清洗,干燥;
(2)将腐蚀试样与直流电源的正极连接,铂电极与负极连接,然后将正极与负极均放入腐蚀溶液Ⅰ中,打开直流电源开始电解腐蚀,之后取出试样清洗并烘干;
(3)将(2)的试样与直流电源的正极连接,铂电极与负极连接,然后将正极与负极均放入腐蚀溶液Ⅱ中,打开直流电源开始电解腐蚀,之后取出试样在酒精中清洗并烘干;
(4)在扫描电子显微镜下观察金刚石和铝基体的界面及其反应产物。
优选的,步骤(1)中所述的金刚石/铝硅复合材料,其基体中硅的重量百分比为5~9wt%,余量为铝。
优选的,步骤(2)中所述的腐蚀溶液Ⅰ温度为25℃条件下,电解腐蚀的腐蚀电流密度为2A/cm2,电解时间为10~14s。
其中,腐蚀电流密度为直流电源的电流强度除以试样暴露处铝硅基体部分的面积,而试样暴露处铝硅基体的面积百分比等于铝硅基体在金刚石/铝硅复合材料中的体积百分比。
优选的,步骤(3)中所述的腐蚀溶液Ⅱ温度为25℃条件下,电解腐蚀的腐蚀电流密度为2A/cm2,电解时间为16~20s。
优选的,所述步骤(1)采用激光切割机将金刚石/铝硅复合材料试样加工成片状样品,将切割面进行打磨处理,之后清洗并吹干;然后利用绝缘胶覆盖试样的部分面积,露出电解腐蚀面,制备出腐蚀试样。
优选的,步骤(2)中所述的腐蚀试样,其浸入腐蚀溶液的电解腐蚀面积为10mm×3mm,其他浸入腐蚀溶液的部分均以绝缘胶覆盖。
发明机理:与纯铝相比,由于铝硅合金的熔点低、流动性好,浸渗温度显著低于纯铝,因而金刚石/铝硅复合材料界面处Al4C3相的生成量较少,为此,首先要避免对Al4C3相的腐蚀破坏,同时还要避免对硅相的过度腐蚀,最终能有效显示出这两种相的形貌。本发明的用于检验金刚石-硅铝复合材料的腐蚀剂包括腐蚀溶液Ⅰ和腐蚀溶液Ⅱ。腐蚀溶液Ⅰ中,硝酸水溶液快速去除较厚的铝覆盖层,使金刚石/铝基体界面初步显露出来,而丙三醇能抑制铝基体的点腐蚀,使铝基体的腐蚀去除过程更为均匀,通过控制电解腐蚀时间从而防止对Al4C3相造成腐蚀破坏。腐蚀溶液Ⅱ中,氢氟酸和次磷酸将Al4C3相周围残余的铝层进一步腐蚀去除干净,同时丙三醇能使铝基体的腐蚀去除过程更为均匀;氢氟酸和次磷酸主要用于腐蚀铝基体,而对Al4C3相的腐蚀作用很小;此外,次磷酸还具有较强的还原性,可防止电解时硅氧化为SiO2而被氢氟酸溶解,有助于显示出硅相的真实形貌,且其腐蚀产物次磷酸铝溶于水,可确保腐蚀过程的持续进行。
有益效果:与现有技术相比,本发明具有如下显著优点:(1)腐蚀剂能清晰完整地显示出金刚石/铝硅复合材料界面处Al4C3相和硅相的形貌,效率高,重现性好;(2)通过腐蚀剂Ⅰ和Ⅱ配方的调整,以及两步电解工艺,保证了界面处Al4C3相的完整显示,避免了采用单一硝酸水溶液长时间腐蚀时对Al4C3相形貌的破坏;(3)该腐蚀剂的使用方法操作简单,效率高,重现性好。
附图说明
图1为实施例1中金刚石/铝硅复合材料界面照片;
图2为实施例1中金刚石/铝硅复合材料界面处Si颗粒的EDS能谱图;
图3为实施例2中金刚石/铝硅复合材料界面照片;
图4为实施例3中金刚石/铝硅复合材料界面照片;
图5为对比例1中金刚石/铝硅复合材料界面照片。
具体实施方式
下面结合实施例对本发明的技术方案作进一步说明。
实施例1
本发明的用于检验金刚石/铝硅复合材料界面的腐蚀剂,包括腐蚀溶液Ⅰ和腐蚀溶液Ⅱ,腐蚀溶液Ⅰ包括:质量分数68%的硝酸11mL,纯度为99%的丙三醇8mL,余量为去离子水;腐蚀溶液Ⅱ包括:质量分数35%的氢氟酸7mL,质量分数80%的次磷酸10mL,纯度为99%的丙三醇9mL,余量为去离子水。
腐蚀溶液Ⅰ的配制:取少量去离子水于烧杯中,量取11mL硝酸缓慢加入烧杯中,用玻璃棒搅拌,使其混合均匀,再加入8mL丙三醇,搅拌均匀,最后加入去离子水混合并定容到100mL。
腐蚀溶液Ⅱ的配制:取少量去离子水于烧杯中,分别量取7mL氢氟酸和10mL次磷酸缓慢加入烧杯中,用玻璃棒搅拌,使其混合均匀,再加入9mL丙三醇,搅拌均匀,最后加入去离子水混合并定容到100mL。
本发明的用于检验金刚石/铝硅复合材料界面的腐蚀剂的使用方法包括以下步骤:
(1)电解腐蚀试样制备:
试样1为金刚石/铝硅复合材料(金刚石体积分数为65vol%;基体为Al-9wt%Si合金),采用气压浸渗制备(浸渗温度为630℃,气压为1.5MPa,金刚石/铝液接触时间为3min)。用激光切割机将复合材料切割成10mm×10mm×2mm的片状,将切割面进行打磨处理,之后清洗并吹干;然后利用绝缘胶覆盖试样的部分面积,露出10mm×3mm的电解腐蚀面(其中金属基体面积占复合材料面积的35%),获得腐蚀试样。
(2)将腐蚀试样与直流电源的正极连接,铂电极片与负极连接,然后将正极与负极均放入25℃的腐蚀溶液Ⅰ中,保证样品的电解腐蚀面完全浸没于腐蚀溶液,打开直流电源,调节电压,使腐蚀样品暴露处金属基体的腐蚀电流密度达到2A/cm2,电解时间为10s,之后取出试样在酒精中清洗并烘干;
(3)将(2)腐蚀后的试样与直流电源的正极连接,铂电极与负极连接,然后将正极与负极均放入25℃的腐蚀溶液Ⅱ中,保证样品的电解腐蚀面完全浸没于腐蚀溶液,打开直流电源,调节电压,使腐蚀样品暴露处金属基体的腐蚀电流密度达到2A/cm2,电解时间为18s,之后取出试样在酒精中清洗并烘干;
(4)在扫描电子显微镜下观察金刚石和铝基体的界面,结果如图1。
由图1可见,Al4C3相呈细颗粒状稀疏附着在金刚石表面生长,且在不同表面呈选择性的非均匀分布。相关研究表明,Al4C3相在金刚石的(1 1 1)晶面上容易生长,而在(1 0 0)晶面上较难生长(I.E.Monje,Aluminum/diamond composites:A preparative method tocharacterize reactivity and selectivity at the interface,Scripta Materialia66(2012)789-792),这与图1的结果吻合。在图1中还可看到在金刚石表面附着有粗大的颗粒,经EDS能谱表征(图2),其为硅颗粒。可见,本发明的腐蚀剂及其检验方法能方便有效地检验金刚石/铝硅复合材料的界面组织。
实施例2
本发明的用于检验金刚石/铝硅复合材料界面的腐蚀剂,包括腐蚀溶液Ⅰ和腐蚀溶液Ⅱ,腐蚀溶液Ⅰ包括:质量分数70%的硝酸10mL,纯度为99%的丙三醇9mL,余量为去离子水;腐蚀溶液Ⅱ包括:质量分数38%的氢氟酸6mL,质量分数83%的次磷酸9mL,纯度为99%的丙三醇10mL,余量为去离子水。
腐蚀溶液Ⅰ的配制:取少量去离子水于烧杯中,量取10mL硝酸缓慢加入烧杯中,用玻璃棒搅拌,使其混合均匀,再加入9mL丙三醇,搅拌均匀,最后加入去离子水混合并定容到100mL。
腐蚀溶液Ⅱ的配制:取少量去离子水于烧杯中,分别量取6mL氢氟酸和9mL次磷酸缓慢加入烧杯中,用玻璃棒搅拌,使其混合均匀,再加入10mL丙三醇,搅拌均匀,最后加入去离子水混合并定容到100mL。
本发明的用于检验金刚石/铝硅复合材料界面的腐蚀剂的使用方法包括以下步骤:
(1)电解腐蚀试样制备:
试样2为金刚石/铝硅复合材料(金刚石体积分数为64vol%;基体为Al-5wt%Si合金),采用气压浸渗制备(浸渗温度为700℃,气压为1.5MPa,金刚石/铝液接触时间为3min)。用激光切割机将复合材料切割成10mm×10mm×2mm的片状,将切割面进行打磨处理,之后清洗并吹干;然后利用绝缘胶覆盖试样的部分面积,露出10mm×3mm的电解腐蚀面(其中金属基体面积占复合材料面积的36%),获得腐蚀试样。
(2)将腐蚀试样与直流电源的正极连接,铂电极片与负极连接,然后将正极与负极均放入25℃的腐蚀溶液Ⅰ中,保证样品的电解腐蚀面完全浸没于腐蚀溶液,打开直流电源,调节电压,使腐蚀样品暴露处金属基体的腐蚀电流密度达到2A/cm2,电解时间为14s,之后取出试样在酒精中清洗并烘干;
(3)将(2)腐蚀后的试样与直流电源的正极连接,铂电极与负极连接,然后将正极与负极均放入25℃的腐蚀溶液Ⅱ中,保证样品的电解腐蚀面完全浸没于腐蚀溶液,打开直流电源,调节电压,使腐蚀样品暴露处金属基体的腐蚀电流密度达到2A/cm2,电解时间为20s,之后取出试样在酒精中清洗并烘干;
(4)在扫描电子显微镜下观察金刚石和铝基体的界面,结果如图3。
由图3可以看出,Al4C3相和硅相在金刚石表面的附着,其中Al4C3相在金刚石不同表面呈选择性的非均匀分布。与实施例1相比,本实施例的浸渗温度较高(700℃),而硅含量降低(5wt%Si),因而Al4C3相尺寸有所增大,而硅相的分布密度降低。可见,本发明的腐蚀剂及其检验方法能方便有效地检验金刚石/铝硅复合材料的界面组织。
实施例3
本发明的用于检验金刚石/铝硅复合材料界面的腐蚀剂,包括腐蚀溶液Ⅰ和腐蚀溶液Ⅱ,腐蚀溶液Ⅰ包括:质量分数65%的硝酸12mL,纯度为99%的丙三醇10mL,余量为去离子水;腐蚀溶液Ⅱ包括:质量分数40%的氢氟酸5mL,质量分数85%的次磷酸7mL,纯度为99%的丙三醇8mL,余量为去离子水。
腐蚀溶液Ⅰ的配制:取少量去离子水于烧杯中,量取12mL硝酸缓慢加入烧杯中,用玻璃棒搅拌,使其混合均匀,再加入10mL丙三醇,搅拌均匀,最后加入去离子水混合并定容到100mL。
腐蚀溶液Ⅱ的配制:取少量去离子水于烧杯中,分别量取5mL氢氟酸和7mL次磷酸缓慢加入烧杯中,用玻璃棒搅拌,使其混合均匀,再加入8mL丙三醇,搅拌均匀,最后加入去离子水混合并定容到100mL。
本发明的用于检验金刚石/铝硅复合材料界面的腐蚀剂的使用方法包括以下步骤:
(1)电解腐蚀试样制备
试样3为金刚石/铝硅复合材料(金刚石体积分数为63vol%;基体为Al-7wt%Si合金),采用气压浸渗制备(浸渗温度为750℃,气压为1.5MPa,金刚石/铝液接触时间为3min)。用激光切割机将复合材料切割成10mm×10mm×2mm的片状,将切割面进行打磨处理,之后清洗并吹干;然后利用绝缘胶覆盖试样的部分面积,露出10mm×3mm的电解腐蚀面(其中金属基体面积占复合材料面积的37%),获得腐蚀试样。
(2)将腐蚀试样与直流电源的正极连接,铂电极片与负极连接,然后将正极与负极均放入25℃的腐蚀溶液Ⅰ中,保证样品的电解腐蚀面完全浸没于腐蚀溶液,打开直流电源,调节电压,使腐蚀样品暴露处金属基体的腐蚀电流密度达到2A/cm2,电解时间为12s,之后取出试样在酒精中清洗并烘干;
(3)将(2)腐蚀后的试样与直流电源的正极连接,铂电极与负极连接,然后将正极与负极均放入25℃的腐蚀溶液Ⅱ中,保证样品的电解腐蚀面完全浸没于腐蚀溶液,打开直流电源,调节电压,使腐蚀样品暴露处金属基体的腐蚀电流密度达到2A/cm2,电解时间为16s,之后取出试样在酒精中清洗并烘干;
(4)在扫描电子显微镜下观察金刚石和铝基体的界面,结果如图4。
由图4可以看出,Al4C3相和硅相在金刚石表面的附着,其中Al4C3相在金刚石不同表面呈选择性的非均匀分布。由于本实施例的浸渗温度很高(750℃),Al4C3相尺寸明显增大,且密集分布在金刚石表面,而硅相分布情况介于实施例1和实施例2之间。可见本发明的腐蚀剂及其检验方法能方便有效地检验金刚石/铝硅复合材料的界面组织。
对比例1
(1)电解腐蚀试样制备:
与实施例2完全相同。
(2)腐蚀剂配制及腐蚀方法:
参照了I.E.Monje的论文(I.E.Monje,Aluminum/diamond composites:Apreparative method to characterize reactivity and selectivity at theinterface,Scripta Materialia 66(2012)789-792)中用于金刚石/纯铝复合材料界面显示的腐蚀剂及检验方法:
a.腐蚀剂:取少量去离子水于烧杯中,量取10ml质量百分比为68%的硝酸缓慢加入烧杯中,用玻璃棒搅拌,使其混合均匀,再加入去离子水混合并定容到100mL。
b.电化学腐蚀:将腐蚀试样与直流电源的正极连接,铂电极片与负极连接,然后将正极与负极均放入25℃的腐蚀溶液中,保证样品的电解腐蚀面完全浸没于腐蚀溶液,打开直流电源,调节电压,使腐蚀样品暴露处金属基体的腐蚀电流密度达到2A/cm2,电解时间为2.5min,之后取出试样在酒精中清洗并烘干;
c.在扫描电子显微镜下观察金刚石和铝基体的界面,结果如图5。
由图5可见,在金刚石表面看不到Al4C3相的存在,只见到密集分布的腐蚀凹坑,这应该是界面反应物Al4C3相被腐蚀去除或脱落后留下的凹坑。在金刚石表面可看到硅相颗粒,但其尺寸比实施例2中的略小,说明硅颗粒也受到一定的腐蚀作用。
通过三个实施例的金刚石/铝硅复合材料界面的电解腐蚀效果图对比分析可知,随浸渗温度升高,Al4C3颗粒逐渐粗化,在界面的分布从稀疏逐渐变为密集;随铝硅合金中硅含量的升高,金刚石表面的硅相数量也逐步增多。本发明方法可以较好检测出不同浸渗温度及不同硅含量制备的金刚石/铝硅复合材料的界面差异,为复合材料的研究和生产提供了有效的检测手段。

Claims (5)

1.一种用于检验金刚石/铝硅复合材料界面的腐蚀剂,其特征在于,包括腐蚀溶液Ⅰ和腐蚀溶液Ⅱ,所述腐蚀溶液Ⅰ包括硝酸、丙三醇和水;所述腐蚀溶液Ⅱ包括氢氟酸、次磷酸、丙三醇和水;所述腐蚀溶液Ⅰ中,每100mL 溶液中包括10~12mL硝酸,8~10mL丙三醇,其余为水;所述硝酸质量分数为65~70%;所述腐蚀溶液Ⅱ中,每100mL 溶液中包括5~7mL氢氟酸,7~10mL次磷酸,8~10mL丙三醇,其余为水;所述氢氟酸质量分数35~40%;所述次磷酸质量分数80~85%。
2.一种权利要求1所述的腐蚀剂的使用方法,其特征在于,包括以下步骤:
(1)将金刚石/铝硅复合材料试样加工成片状样品,打磨,清洗,干燥;
(2)将腐蚀试样与直流电源的正极连接,铂电极与负极连接,然后将正极与负极均放入腐蚀溶液Ⅰ中,打开直流电源开始电解腐蚀,之后取出试样清洗并烘干;
(3)将(2)的试样与直流电源的正极连接,铂电极与负极连接,然后将正极与负极均放入腐蚀溶液Ⅱ中,打开直流电源开始电解腐蚀,之后取出试样在酒精中清洗并烘干;
(4)在扫描电子显微镜下观察金刚石和铝基体的界面及其反应产物。
3.根据权利要求2所述腐蚀剂的使用方法,其特征在于,步骤(1)中所述的金刚石/铝硅复合材料,其基体中硅的重量百分比为5~9wt%,余量为铝。
4.根据权利要求2所述腐蚀剂的使用方法,其特征在于,步骤(2)中所述的腐蚀溶液Ⅰ温度25℃条件下,电解腐蚀的腐蚀电流密度为2A/cm2,电解时间为10~14s。
5.根据权利要求2所述腐蚀剂的使用方法,其特征在于,步骤(3)中所述的腐蚀溶液Ⅱ温度为25℃条件下,电解腐蚀的腐蚀电流密度为2A/cm2,电解时间为16~20s。
CN202210382432.8A 2022-04-13 2022-04-13 用于检验金刚石/铝硅复合材料界面的腐蚀剂及其使用方法 Active CN115044959B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210382432.8A CN115044959B (zh) 2022-04-13 2022-04-13 用于检验金刚石/铝硅复合材料界面的腐蚀剂及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210382432.8A CN115044959B (zh) 2022-04-13 2022-04-13 用于检验金刚石/铝硅复合材料界面的腐蚀剂及其使用方法

Publications (2)

Publication Number Publication Date
CN115044959A CN115044959A (zh) 2022-09-13
CN115044959B true CN115044959B (zh) 2023-08-15

Family

ID=83158128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210382432.8A Active CN115044959B (zh) 2022-04-13 2022-04-13 用于检验金刚石/铝硅复合材料界面的腐蚀剂及其使用方法

Country Status (1)

Country Link
CN (1) CN115044959B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935863A (zh) * 2009-06-30 2011-01-05 比亚迪股份有限公司 一种铝合金电解抛光液及制备方法和铝合金电解抛光方法
CN113088975A (zh) * 2021-03-26 2021-07-09 西安建筑科技大学 一种铝/铝/钛/镍/不锈钢复合材料用金相腐蚀剂及腐蚀方法
CN113358645A (zh) * 2021-05-12 2021-09-07 东南大学 一种适用于低碳低合金钢的奥氏体晶粒显示的侵蚀剂及其显示方法
CN114318341A (zh) * 2021-12-16 2022-04-12 东风汽车集团股份有限公司 一种铝合金金相腐蚀方法及其金相腐蚀剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935863A (zh) * 2009-06-30 2011-01-05 比亚迪股份有限公司 一种铝合金电解抛光液及制备方法和铝合金电解抛光方法
CN113088975A (zh) * 2021-03-26 2021-07-09 西安建筑科技大学 一种铝/铝/钛/镍/不锈钢复合材料用金相腐蚀剂及腐蚀方法
CN113358645A (zh) * 2021-05-12 2021-09-07 东南大学 一种适用于低碳低合金钢的奥氏体晶粒显示的侵蚀剂及其显示方法
CN114318341A (zh) * 2021-12-16 2022-04-12 东风汽车集团股份有限公司 一种铝合金金相腐蚀方法及其金相腐蚀剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Aluminum/diamond composites: A preparative method to characterize reactivity and selectivity at the interface;I.E. Monje et al;Scripta Materialia;第66卷;789-795 *

Also Published As

Publication number Publication date
CN115044959A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
Boen et al. The electrodeposition of silicon in fluoride melts
Coleman et al. Corrosion behaviour of aluminium-based metal matrix composites
Cai et al. Duration of thermal stability and mechanical properties of Mg 2 Si/Cu thermoelectric joints
Cheng et al. A systematic study of the role of cathodic polarization and new findings on the soft sparking phenomenon from plasma electrolytic oxidation of an Al-Cu-Li alloy
CN109211648B (zh) 一种氧化铝弥散强化铜合金金相样品的制备方法
Liao et al. Electrochemical migration behavior of Sn-3.0 Ag-0.5 Cu solder alloy under thin electrolyte layers
Zhai et al. Effect of Si content on microstructure and properties of Si/Al composites
JP2001220637A (ja) 陽極酸化処理用アルミニウム合金、陽極酸化皮膜を有するアルミニウム合金部材およびプラズマ処理装置
CN115044959B (zh) 用于检验金刚石/铝硅复合材料界面的腐蚀剂及其使用方法
KR20140106468A (ko) MoTi 타깃재 및 그 제조 방법
Xu et al. Evolution of interfacial structures and mechanical performance of sapphire and Sn–9Zn–2Al joints by ultrasound
Morita et al. New bonding technique using copper oxide materials
CN111850420A (zh) 一种具有室温零热膨胀效应的合金材料
Zhou et al. Corrosion behavior of the Al2Cu intermetallic compound and coupled Al2Cu/Al
Liu et al. Microstructure and electrolysis behavior of self-healing Cu–Ni–Fe composite inert anodes for aluminum electrowinning
CN110865091A (zh) 一种制备粉末Ti2AlNb合金EBSD样品的电解抛光方法
CN114086179B (zh) 一种铜基体表面金刚石耐磨涂层的制备方法
CN113340698B (zh) 一种用于锆合金金相组织观察的侵蚀剂及制备锆合金金相试样的方法
Fellner et al. Electrolytic silicide coating in fused salts
Bertocci et al. Passivity and passivity breakdown in nickel aluminide
CN111965158A (zh) 多孔硅-金枝晶复合结构的单步快速制备方法
Ren et al. Electrochemical Impedance Studies on the Corrosion of Cu-35Ni-10Al Alloy in a Molten (0.62 Li, 0.38 K) 2CO3 Environment
Li et al. Formation mechanism of Cu/Cu3Sn–Cu/Cu interconnections based on solder-filled microporous copper as interlayer via a current-assisted thermal compression bonding
Murali et al. Electropolishing of Al-7Si-0.3 Mg cast alloy by using perchloric and nitric acid electrolytes
KR20190065796A (ko) 결함이 없는 알루미늄 합금 코팅층 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant