CN115025243A - 巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备方法和应用 - Google Patents

巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备方法和应用 Download PDF

Info

Publication number
CN115025243A
CN115025243A CN202210365623.3A CN202210365623A CN115025243A CN 115025243 A CN115025243 A CN 115025243A CN 202210365623 A CN202210365623 A CN 202210365623A CN 115025243 A CN115025243 A CN 115025243A
Authority
CN
China
Prior art keywords
organic framework
loaded
sheet metal
modified
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210365623.3A
Other languages
English (en)
Other versions
CN115025243B (zh
Inventor
杨雅琼
谭新柳
黄和
沈宝星
吕广萍
陈士林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Normal University
Original Assignee
Nanjing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Normal University filed Critical Nanjing Normal University
Priority to CN202210365623.3A priority Critical patent/CN115025243B/zh
Publication of CN115025243A publication Critical patent/CN115025243A/zh
Application granted granted Critical
Publication of CN115025243B publication Critical patent/CN115025243B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/38Silver; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medical Informatics (AREA)
  • Polymers & Plastics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)

Abstract

本发明公开了一种巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备方法和应用,该制备包括:将硝酸铜、聚乙烯吡咯烷酮和三氟乙酸加入到溶剂中混合,再加入四羧基苯酚卟啉反应得到二维片状金属有机骨架,随后加入AgNO3和NaBH4,反应得到二维片状金属有机骨架负载银纳米颗粒;将其分散在纯水中加入巯基苯硼酸混合反应得到巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒。本发明制备工艺简单、原料易得、成本低,易于规模化生产。本发明制备的纳米复合材料,同时具有高选择性、生物毒性较低的特点,可高效抑制革兰氏阳性菌生长和生物膜的形成,并且抑菌浓度低,对控制抗生素滥用导致的致病菌的耐药性具有很好的应用潜力。

Description

巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的 制备方法和应用
技术领域
本发明属于生物医药,具体涉及一种巯基苯硼酸修饰的二维片状金属-纳米片负载银纳米颗粒的制备方法和应用。
背景技术
由于抗生素的滥用,导致了致病菌的产生,是世界卫生健康领域的一大痛点。据估计,耐药菌引起的疾病每年导致大量的人类死亡,银纳米颗粒作为一种明确证明具有抑菌效果的纳米材料已被广泛应用,但其抑菌浓度较高且不具有靶向性,导致了不可忽视的体内毒性。近年来,光动力疗法因其无创性和组织深透性,在伤口愈合和疾病治疗等领域发挥了越来越重要的作用,但是活性氧物种固有的寿命短和扩散距离有限则限制了高效抑菌能力。此外,传统的抑菌材料大都集中一种抑菌机制上,导致抑菌效果普遍不佳。因而,多种抑菌机制的协同作用和细菌靶向清除无疑是抑菌材料智能设计的关键。为此,寻求一种更加高效、抑菌浓度低,生物相容性良好具有靶向作用的抑菌材料来作为抗生素的替代物,无疑可以降低耐药菌产生的风险,对于致病菌感染相关的疾病的管控和治疗具有重要的意义。
发明内容
发明目的:针对现有技术存在的问题,本发明提供了一种巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备方法,本发明制备的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒可以有效解决现有致病菌清除效率较低,或抑菌浓度较高导致的生物毒性较高的缺点。
本发明还提供一种巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒和应用。
技术方案:为了实现上述目的,本发明所述一种巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备方法,包括如下步骤:
(1)将硝酸铜Cu(NO3)2.3H2O、聚乙烯吡咯烷酮和三氟乙酸加入到溶剂中混合,再加入含四羧基苯酚卟啉(TCPP)的N,N-二甲基甲酰胺(DMF)溶剂反应,反应后洗涤,真空干燥得到二维片状金属有机骨架(CuTCPP);
(2)将步骤(1)得到的二维片状金属有机骨架分散在溶剂中,随后加入AgNO3和NaBH4,反应产物水洗后,冷冻干燥收集产物得到二维金属有机骨架负载银纳米颗粒;
(3)将步骤(2)所得二维片状金属有机骨架负载银纳米颗粒分散在纯水中加入巯基苯硼酸混合,然后将混合物孵育后离心得到沉淀即为巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒。
其中,步骤(1)中Cu(NO3)2.3H2O、TCPP、PVP摩尔比为75:30:1.14–75:20:1.14。
作为优选,步骤(1)所述的二维片状金属有机骨架制备中Cu(NO3)2.3H2O、TCPP、PVP摩尔比为75:25:1.14。
其中,步骤(1)中所述溶剂为N,N-二甲基甲酰胺(DMF)和乙醇混合溶剂。
作为优选,所述混合溶剂中DMF和乙醇体积比例为3:1。
其中,步骤(1)中反应为80-100℃反应2-3小时。
作为优选,步骤(1)中反应为80℃反应3小时。
其中,步骤(1)中反应后得到铜基金属有机骨架经乙醇和DMF洗涤,真空干燥后得到的粉末为二维片状金属有机骨架。
其中,步骤(2)所述二维片状金属有机骨架在振荡超声下分散在乙醇中,通过硼氢化钠原位还原硝酸银半小时,所得溶液经离心洗涤冷冻干燥得到的二维片状金属有机骨架负载银纳米颗粒备用。
其中,步骤(2)中AgNO3和NaBH4摩尔比为2:5-1.5:5.5,CuTCPP和AgNO3质量比为4:3–4:4。
作为优选,步骤(2)二维片状金属有机骨架负载银纳米颗粒制备中,AgNO3和NaBH4摩尔比为2:5,CuTCPP和AgNO3质量比为4:3。
作为优选,步骤(2)中二维片状金属纳米片浓度为2.5mg/mL。
其中,步骤(3)中二维金属纳米片负载银纳米颗粒分散在纯水中加入巯基硼酸混合,然后将混合物室温避光下搅拌12-15h。
作为优选,步骤(3)中混合物室温避光下搅拌12h。
其中,步骤(3)巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒制备中,CuTCPP@AgNPs与巯基苯硼酸的质量比为50000:6-50000:10。
作为优选,步骤(3)中CuTCPP@AgNPs与巯基苯硼酸的质量比为50000:7.7。
本发明所述的巯基苯硼酸修饰的二维片状金属-纳米片负载银纳米颗粒的制备方法所制备的巯基苯硼酸修饰的二维片状金属-纳米片负载银纳米颗粒。
本发明所述的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒在革兰氏阳性菌的清除和抑制生物膜形成中的应用。
本发明所述的巯基苯硼酸修饰的二维片状金属-纳米片负载银纳米颗粒在制备革兰氏阳性菌清除和抑制其生物膜形成的试剂中的应用。
其中,所述革兰氏阳性致病菌为金黄色葡萄球菌,肺炎球菌、链球菌、炭疽等。
本发明中将硝酸铜、聚乙烯吡咯烷酮如PVP(K30)和三氟乙酸在DMF-乙醇溶液中反应,得到二维片状金属有机骨架;再由硼氢化钠原位还原硝酸银与二维片状金属有机骨架,形成二维片状金属有机骨架负载银纳米颗粒;通过巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒是将巯基苯硼酸通过Ag-S键修饰到银纳米颗粒表面得到巯基苯硼酸修饰二维片状金属有机骨架负载银纳米颗粒。
本发明制备的一种巯基苯硼酸修饰的二维片状金属-纳米片负载银纳米颗粒在革兰氏阳性致病菌如金黄色葡萄球菌中,实现金黄色葡萄球菌高效、低浓度使用清除。银纳米颗粒已被广泛用于抑制细菌的生长,但其抑菌机制单一,过量的银离子的释放会带来对机体组织的不利影响。而光动力疗法作为一种依赖于活性氧调控的治疗策略,其最大的不足在于ROS的寿命较短和扩散距离不足导致义军效率较差因此,为了克服这种缺陷,本发明使用巯基苯硼酸作为金黄色葡萄球菌的靶向基团降低材料与细菌的扩散距离,提高纳米药物的可及性,同银纳米颗粒和金属纳米片的金属离子释放和光动力疗法的协同效应有助于进一步提高材料的抑菌效果。结果表明,此本发明制备的复合材料,在25μg/mL就具有良好的抑菌效率同时也显示出增强的体外抑菌和生物膜形成能力。通过体外平板生长实验、活死细菌染色、细菌形态扫描电镜测试以及生物膜去除实验和细胞毒性实验,结果都有效表明,巯基苯硼酸修饰的纳米片负载银纳米颗粒具有增强的细菌去除能力和良好的生物相容性,同时本发明的荧光探针制备原料易得、工艺简单、成本低,易于规模化生产。
本发明制备的是一种用于高效特异性抑制金黄葡萄球菌的巯基苯硼酸修饰的二维金属纳米片负载银纳米颗粒复合材料,其抑制效率高,同时具有高选择性、生物毒性较低的特点。采用本发明制备的用于高效清除金黄色葡萄球菌的复合纳米材料可高效抑制金黄色葡萄球菌的生长和生物膜的形成,并且抑菌浓度低、生物相容性良好,对控制抗生素滥用导致的致病菌的耐药性具有很好的应用潜力。
本发明采用巯基苯硼酸作为革兰氏阳性菌的靶向元件,协同金属离子释放和光动力疗法来增强抗菌效率。其中二维片状结构可以作为原位还原硝酸银的载体,使得合成的银纳米颗粒具有均匀分散的特点;同时二维片状结构可以提供丰富的比表面积增加其与靶标细菌的接触提高抑制效果。本发明制备的材料,以及本发明的靶向协同抑菌策略,可以避免抗生素滥用导致革兰氏阳性致病菌耐药性增加,延缓了疾病治疗效果,可以改善抗生素的治疗不足。此外,本发明制备的材料有效解决了普通银纳米颗粒其抑菌浓度较高导致的生物毒性较高且不具有靶向性的缺陷,并且抑菌能力强。
有益效果:与现有技术相比,本发明具有如下优点:
1、本发明提出了一种全新的用于革兰氏阳性菌的清除的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒,其制备工艺简单、原料易得、成本低,易于规模化生产。
2、本发明制备的用于金黄色葡萄球菌的清除的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的抑菌效率高、抑菌所需浓度低,生物相容性良好,具有高效的体外抑菌和生物膜去除能力。
3、采用本发明制备的用于革兰氏阳性菌的清除的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒可有效去除金黄色葡萄球菌,抑制生物膜的形成,并且更加便捷高效、灵敏度高、节约成本,对控制抗生素滥用、保护人体健康具有重要的意义。
附图说明
图1为本发明的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的透射电镜和紫外荧光图测试图;其中(A)二维片状铜基金属有机骨架(CuTCPP nanosheet)的扫面电子显微镜(SEM)图;(B)负载银纳米颗粒的二维片状铜基金属有机骨架(CuTCPP@AgNPs)的透射电子显微镜(TEM)图,(C)巯基苯硼酸修饰的二维片状铜基金属有机骨架负载银纳米颗粒(CuTCPP@AgNPs@MBA)的高分辨TEM图;(D)各种材料的紫外-可见光吸收图谱;(E)各种材料的荧光图谱;
图2为本发明的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的红外、X射线衍射图谱(XRD)、热重、X电子能谱(XPS)图;(A)各材料的红外图谱;(B)各材料的XRD图谱;(C)各材料的热重图谱;(D)CuTCPP@AgNPs@MBA的XPS图谱;(E)CuTCPP@AgNPs@MBA的Cu2p图谱,(F)CuTCPP@AgNPs@MBA的Ag3d图谱;
图3为本发明的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的抑菌机制图;其中(A)各材料的活性氧生成能力测试,以2,7-二氯二氢荧光素(DCF)为荧光指示剂;(B)在有无近红外照射下,Ag离子释放情况;
图4为本发明用于革兰氏阳性菌-金黄色葡萄球菌的清除的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的平板实验生物膜清除实验图;其中(A)不同材料在有无近红外光处理下细菌平板图;(B)不同材料的处理下细菌平板计数图;(C)不同浓度的CuTCPP@AgNPs@MBA处理下的细菌平板图;(D)不同浓度的CuTCPP@AgNPs@MBA处理下的细菌平板计数图;
图5本发明用于革兰氏阳性菌-金黄色葡萄球菌的清除的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的生物膜清除实验图;其中,(A)不同材料处理细菌生物膜结晶紫染色图;(B)不同材料处理细菌下生物膜的质量变化图;
图6为本发明用于革兰氏阳性菌-金黄色葡萄球菌的清除的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的细菌扫描电镜图;其中,(A)PBS处理细菌的SEM图;(B)CuTCPP处理细菌的SEM图;(C)CuTCPP@AgNPs处理细菌的SEM图;(D)CuTCPP@AgNPs@MBA处理细菌的SEM图;
图7为本发明用于革兰氏阳性菌-金黄色葡萄球菌的清除的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的活细菌和死细菌染色荧光成像图;其中,A和E分别是PBS处理细菌的钙黄绿素(Calcein)-AM和碘化丙啶(PI)染色图;B和F分别是CuTCPP处理细菌Calcein-AM染色和PI染色图;C和G分别是CuTCPP@AgNPs处理细菌Calcein-AM染色和PI染色图;D和H分别是CuTCPP@AgNPs@MBA处理细菌Calcein-AM染色和PI染色图;
图8本发明用于革兰氏阳性菌-金黄色葡萄球菌的清除的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的细胞毒性图。
具体实施方式
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的内容仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
实施例1
巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备,包括以下步骤:
(1)二维片状金属有机骨架的制备:将Cu(NO3)2 .3H2O(18mg,0.075mmol)、三氟乙酸(50μL,1.0moL/L)和PVP(K30)(50.0mg,分子量为44000-54000)加入到含有60mL的DMF和乙醇混合物中(v:v=3:1)100mL加盖小瓶中。然后,在搅拌下滴加20mL含四-(4-羧基苯基)卟啉(TCPP)(20mg,0.025mmol)的N,N-二甲基甲酰胺(DMF)和乙醇(v:v,3:1)混合溶液。随后将溶液超声10分钟,最后加热至80℃并保持3h;离心后所得红色纳米片用乙醇洗涤两次,真空干燥得到CuTCPP备用。
(2)二维片状金属有机骨架负载银纳米颗粒的制备:将步骤(1)合成的CuTCPP纳米片(20mg)分散在8mL乙醇中,随后将AgNO3(1mL,100mmol/L溶于乙醇溶液)加入上述溶液中搅拌1小时后,在剧烈搅拌下加入2.5mL NaBH4(100mmol/L在冰水中)30分钟。然后经水洗涤3-5次,离心取沉淀冷冻干燥收集产物得到CuTCPP@AgNPs;
(3)巯基苯硼酸修饰二维片状金属有机骨架负载银纳米颗粒的制备:将所得CuTCPP@AgNPs(2.5mg/mL纯水溶液)和巯基苯硼酸(MBA)水溶液(50μM)按20:1的体积比混合。然后,将混合物在黑暗中室温搅拌反应12小时,并在12000rpm下离心15分钟以除去未反应的化学物质,得到沉淀即为巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒(CuTCPP@AgNPs@MBA)。
实施例2
实施例1中制得的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒进行透射电镜和紫外荧光测试,结果表明合成的铜基金属有机骨架为二维片状材料(图1A),可以看到银纳米颗粒均匀分布在纳米片上(图1B),平均粒径在17nm左右,金纳米粒子的晶格间距为0.245nm(图1C);其紫外吸收光谱结果表明,CuTCPP@AgNPs在420nm波长具有紫外吸收峰,为Ag NPs的特征峰,证明金纳米粒子的成功负载具有相应的特征吸收峰(图1D),当巯基苯硼酸接枝后,CuTCPP@AgNPs@MBA的光谱吸收峰下降,证明了MBA的成功接枝;荧光光谱结果(图1E)表明,CuTCPP二维纳米片在400nm有一个强的发射峰,当接枝Ag NPs后,新的发射峰440nm波长处的吸收峰升高,证明银纳米粒子的成功负载;当MBA接枝后,新的发射峰440nm下降,证明MBA的接枝成功。
实施例3
实施例1制得的巯基苯硼酸修饰的二维片状金属-纳米片负载银纳米颗粒过程中的得到的CuTCPP,CuTCPP@AgNPs以及CuTCPP@AgNPs@MBA固体粉末分别测试红外光谱,XRD和XPS。图2A红外光谱结果表明,位于1669cm-1的C=O伸缩振动峰证明PVP和TCPP存在于CuTCPP中,1000cm-1的Cu-N伸缩振动峰,证明Cu成功的修饰在纳米片骨架中;图2B的XRD中,8°,9.5°,12.5°和20.5°特征峰的存在,证明CuTCPP纳米片的成功合成;38.1°和44.3°对应AgNPs(111)和(200)晶面,证明Ag NPs成功负载到CuTCPP纳米片表面;图2C热重测试结果表明银纳米颗粒的负载量为30%左右,巯基苯硼酸的修饰约为0.5%。XPS光谱(图2D)结果表明CuTCPP@AgNPs@MBA存在C,N,O,B,S,Ag和Cu元素。位于934.6eV和954.5eV吸附能(图2E)分别属于Cu2p1/2和Cu2p3/2。位于374.3eV and 368.3eV的特征峰(图2F)分别属于Ag3d3/2andAg3d5/2。上述结果证明银纳米粒子接枝在了CuTCPP纳米片表面。
实施例4
实施例1制得的巯基苯硼酸修饰的二维片状金属-纳米片负载银纳米颗粒过程中的得到的CuTCPP,CuTCPP@AgNPs以及CuTCPP@AgNPs@MBA通过2,7-二氯二氢荧光素二乙酸酯(DCFH-DA)(加入量约为各材料质量的6倍)来检测不同材料在近红外照射下活性氧生成能力以及通过电感耦合等离子体发射光谱仪(ICP-OES)来检测在有无近红外照射下CuTCPP@AgNPs@MBA的银离子释放变化来验证抑菌机制,结果表明巯基苯硼酸的修饰可以有效提高活性氧的生成能力(图3A),近红外光照下可以加速银离子的释放(图3B),具有显著优越的抑菌潜力。
实施例5
实施例1中制得的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒与革兰氏阳性菌-金黄色葡萄球菌的抑制实验测试:将培养获得的细菌离心、洗涤并稀释至107CFU/mL。将制备的菌悬液与PBS缓冲液(pH 7.4,10mmol/L,作为对照)、CuTCPP纳米片(50μg/mL),CuTCPP@AgNPs(75μg/mL)以及CuTCPP@AgNPs@MBA(75μg/mL)的37℃孵育2小时(上述各材料的浓度根据四羧基苯吩卟啉的量和热重数据标准化计算得到的,为了计算材料光照下ROS生成能力大小来换算的浓度,均按加入菌液终浓度),然后在有和无近红外光照20分钟(660nm,30mW/cm2)。取100μL稀释的悬液涂于LB琼脂平板上,37℃孵育过夜。对菌落拍照并计数。生物膜抑制实验则通过结晶紫染色法来进行评估。此外孵育后收集细菌沉淀并用2.5%戊二醛在4℃下固定2小时,然后连续使用30、50、70、90和100%乙醇依次脱水15分钟。然后将样品在25℃的真空烘箱中干燥并用扫描电镜和X-射线元素能谱分析仪记录分析。同时不同材料处理的活死细菌效果采用Calein-PI双染法并在荧光显微镜下拍照成像评估;材料的细胞毒性采用小鼠的黑色素瘤细胞B16F10进行MTT实验来测定评估。
其中细菌的体外平板实验见图4,该实验结果表明,巯基苯硼酸修饰的二维片状金属有机骨架银纳米颗粒具有增强的细菌清除能力,且显示出近红外光增强和浓度依赖性行为,在较低浓度下就可以实现显著抑菌效果,灵敏度高,同时在保证较低毒性下可以获得优越的抑菌效果。生物膜清除能力测试见图5,结果显示出,经巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒显示增强的生物膜清除能力,并且CuTCPP@AgNPs@MBA显著优于CuTCPP和CuTCPP@AgNPs,经材料处理的细菌的活死细菌荧光成像(图6)和形态测试(图7),都与体外抑菌实验和生物膜清除能力测试结果相一致,说明本发明制备的复合材料具有优越的金黄色葡萄球菌清除能力,同时该复合材料用于高效特异性抑制革兰氏阳性菌-金黄葡萄球菌,可以有效识别革兰氏阳性菌。
实施例6
将实施例1制得的巯基苯硼酸修饰的二维片状金属有机骨架负载的银纳米颗粒的生物相容性分析。
将实施例1制得巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒,细胞毒性测试:在96孔板中将小鼠黑色素瘤细胞B16F10在含有10%胎牛血清和25mM葡萄糖的DMEM中于5%CO2,37℃培养24h。接下来加入PBS缓冲液(pH 7.4,10mmol/L,作为对照)、CuTCPP纳米片(10,50,100μg/mL)、CuTCPP@AgNPs(10,50,100μg/mL)以及CuTCPP@AgNPs@MBA(10,50,100μg/mL),继续37℃孵育24小时。然后每孔加入20μL MTT37℃孵育4h。最后,去除上清液并用DMSO代替以溶解甲氮烷。并通过测量实验组和对照组之间在570nm处的吸光度比来评估细胞活力。
所得细胞毒性实验见图8。以上结果表明:实施例1制得的纳米复合材料具有较低的细胞毒性,100μg/mL浓度下也具有约60%的存活率,表明材料的良好的生物相容性。
实施例7
实施例7与实施例1制备方法相同,不同之处在于:步骤(1)中Cu(NO3)2.3H2O、TCPP、PVP摩尔比为75:30:1.14;步骤(1)中反应为100℃反应2小时。步骤(2)中AgNO3和NaBH4摩尔比为2:5,CuTCPP和AgNO3质量比为4:3。
实施例8
实施例8与实施例1制备方法相同,不同之处在于:步骤(1)中Cu(NO3)2.3H2O、TCPP、PVP摩尔比为75:20:1.14;步骤(1)中反应为90℃反应2.5小时。步骤(2)中AgNO3和NaBH4摩尔比为1.5:5.5,CuTCPP和AgNO3质量比为4:4。

Claims (10)

1.一种巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备方法,其特征在于,包括如下步骤:
(1)将硝酸铜Cu(NO3)2.3H2O、聚乙烯吡咯烷酮和三氟乙酸加入到溶剂中混合,再加入含四羧基苯酚卟啉(TCPP)的N,N-二甲基甲酰胺(DMF)溶剂反应,反应后洗涤,真空干燥得到二维片状金属有机骨架(CuTCPP);
(2)将步骤(1)得到的二维片状金属有机骨架分散在溶剂中,随后加入AgNO3和NaBH4,反应产物水洗后,冷冻干燥收集产物得到二维金属有机骨架负载银纳米颗粒;
(3)将步骤(2)所得二维片状金属有机骨架负载银纳米颗粒分散在纯水中加入巯基苯硼酸混合,然后将混合物孵育后离心得到沉淀即为巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒。
2.根据权利要求1所述的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备方法,其特征在于,步骤(1)中Cu(NO3)2.3H2O、TCPP、PVP摩尔比为75:30:1.14–75:20:1.14。
3.根据权利要求1所述的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备方法,其特征在于,步骤(1)中所述溶剂优选为N,N-二甲基甲酰胺和乙醇混合溶剂。
4.根据权利要求1所述的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备方法,其特征在于,步骤(1)中反应为80-100℃反应2-3小时,反应后得到铜基金属有机骨架经乙醇和DMF洗涤,真空干燥后得到的粉末为二维片状金属纳米片。
5.根据权利要求1所述的巯基苯硼酸修饰的二维片状金属-纳米片负载银纳米颗粒的制备方法,其特征在于,步骤(2)所述二维片状金属有机骨架振荡超声下分散在乙醇溶液中,通过硼氢化钠原位还原硝酸银半小时,所得溶液经离心洗涤冷冻干燥得到的二维片状金属有机骨架负载银纳米颗粒备用。
6.根据权利要求1所述的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备方法,其特征在于,步骤(2)中AgNO3和NaBH4摩尔比为2:5-1.5:5.5,CuTCPP和AgNO3质量比为4:3–4:4。
7.根据权利要求1所述的巯基苯硼酸修饰的二维片状金属-纳米片负载银纳米颗粒的制备方法,其特征在于,步骤(3)中二维金属纳米片负载银纳米颗粒分散在纯水中加入巯基硼酸混合,然后将混合物室温避光下搅拌12-15h。
8.根据权利要求1所述的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备方法,其特征在于,步骤(3)中二维片状金属有机骨架负载银纳米颗粒和巯基苯硼酸的质量比为50000:6-50000:10。
9.一种权利要求1所述的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备方法所制备的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒。
10.一种权利要求9所述的巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒在革兰氏阳性菌的清除和抑制生物膜形成中的应用。
CN202210365623.3A 2022-04-08 2022-04-08 巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备方法和应用 Active CN115025243B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210365623.3A CN115025243B (zh) 2022-04-08 2022-04-08 巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210365623.3A CN115025243B (zh) 2022-04-08 2022-04-08 巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备方法和应用

Publications (2)

Publication Number Publication Date
CN115025243A true CN115025243A (zh) 2022-09-09
CN115025243B CN115025243B (zh) 2024-02-23

Family

ID=83119585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210365623.3A Active CN115025243B (zh) 2022-04-08 2022-04-08 巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备方法和应用

Country Status (1)

Country Link
CN (1) CN115025243B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115382008A (zh) * 2022-09-22 2022-11-25 西南交通大学 一种适用于糖尿病创面修复的可注射水凝胶的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110393725A (zh) * 2018-04-20 2019-11-01 国家纳米科学中心 具有革兰氏选择性的苯硼酸及其衍生物修饰的金纳米颗粒、其制备方法及应用
CN112662134A (zh) * 2021-01-21 2021-04-16 荆楚理工学院 一种mof纳米片填充的环氧树脂复合材料的制备方法
CN112931530A (zh) * 2021-01-26 2021-06-11 新乡市华西卫材有限公司 一种负载纳米银的Cu-MOF抗菌材料及其制备方法和应用
US20220029173A1 (en) * 2020-07-22 2022-01-27 Rutgers, The State University Of New Jersey Carbon Nanomaterial Supported Single Atom Catalysts and Methods of Preparing Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110393725A (zh) * 2018-04-20 2019-11-01 国家纳米科学中心 具有革兰氏选择性的苯硼酸及其衍生物修饰的金纳米颗粒、其制备方法及应用
US20220029173A1 (en) * 2020-07-22 2022-01-27 Rutgers, The State University Of New Jersey Carbon Nanomaterial Supported Single Atom Catalysts and Methods of Preparing Same
CN112662134A (zh) * 2021-01-21 2021-04-16 荆楚理工学院 一种mof纳米片填充的环氧树脂复合材料的制备方法
CN112931530A (zh) * 2021-01-26 2021-06-11 新乡市华西卫材有限公司 一种负载纳米银的Cu-MOF抗菌材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUO XIMING: "Preparation of spherical metal–organic frameworks encapsulating ag nanoparticles and study on its antibacterial activity", 《MATERIALS SCIENCE AND ENGINEERING C》, vol. 80, no. 2017, pages 698 - 707, XP085168722, DOI: 10.1016/j.msec.2017.07.027 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115382008A (zh) * 2022-09-22 2022-11-25 西南交通大学 一种适用于糖尿病创面修复的可注射水凝胶的制备方法
CN115382008B (zh) * 2022-09-22 2023-03-10 西南交通大学 一种适用于糖尿病创面修复的可注射水凝胶的制备方法

Also Published As

Publication number Publication date
CN115025243B (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
Ngoepe et al. Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications
Liu et al. Synergism of 2D/1D MXene/cobalt nanowire heterojunctions for boosted photo-activated antibacterial application
Wang et al. Insights into rapid photodynamic inactivation mechanism of Staphylococcus aureus via rational design of multifunctional nitrogen-rich carbon-coated bismuth/cobalt nanoparticles
CN114306382B (zh) 一种铜基纳米酶及其制备方法和应用
Wang et al. In situ fabrication of metal-organic framework derived hybrid nanozymes for enhanced nanozyme-photothermal therapy of bacteria-infected wounds
Huang et al. Optical properties of biomass-derived nanomaterials for sensing, catalytic, biomedical and environmental applications
Pourali et al. Bio-synthesis of gold nanoparticles by Fusarium oxysporum and assessment of their conjugation possibility with two types of β-lactam antibiotics without any additional linkers
Salama Dicarboxylic cellulose decorated with silver nanoparticles as sustainable antibacterial nanocomposite material
CN112773899A (zh) 一种基于生物金属有机骨架材料的药物递送载体及其制备方法和应用
Fang et al. Phosphorus and sulfur codoped carbon nitride nanosheets with enhanced photocatalytic antibacterial activity and promotion of wound healing
CN114288406B (zh) 一种Zn-MOF@Ti3C2Tx杂化材料及其制备方法、应用
CN115025243B (zh) 巯基苯硼酸修饰的二维片状金属有机骨架负载银纳米颗粒的制备方法和应用
Bhatia et al. Duchsnea indica plant extract mediated synthesis of copper oxide nanomaterials for antimicrobial activity and free-radical scavenging assay
CN111170292A (zh) 一种纤维相红磷纳米粒子的制备方法及其应用
Eivazzadeh-Keihan et al. Biological investigation of a novel nanocomposite based on functionalized graphene oxide nanosheets with pectin, silk fibroin and zinc chromite nanoparticles
CN112209445B (zh) 一种三氧化钼纳米点抑菌材料的制备方法及其应用
CN111840552B (zh) 一种共价交联碳纳米点自组装材料的制备方法及应用
CN116395747B (zh) 一种四氧化三锰-硫化银Janus结构纳米复合材料及其制备方法
CN115607513B (zh) 铁载体仿生纳米粒子的制备方法及其在抗菌方面的应用
Hu et al. Multifunctional CuS nanocrystals for inhibiting both osteosarcoma proliferation and bacterial infection by photothermal therapy
Tan et al. Near-infrared light triggered photodynamic therapy and release of silver ion from CuTCPP nanosheet for synergistic Gram-positive bacteria elimination
Peter et al. Carboxymethyl chitosan capped copper oxide nanomaterials as antibacterial and antibiofilm coating for vulcanized natural rubber film
CN107916277B (zh) 一种纳米金的制备方法、纳米金及应用
Giridhar et al. Antibacterial activity of water soluble dye capped zinc oxide nanoparticles synthesised from waste Zn–C battery
Kuraganti et al. Characterization, in vitro cytotoxic and antibacterial exploitation of green synthesized freshwater cyanobacterial silver nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant